新型平衡式变量叶片泵节能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,随着汽车工业的迅速发展,人们对汽车的舒适性和安全性有了更高的要求。上世纪80年代,为提高行驶的安全性和驾驶的舒适性,国内外生产的汽车大都安装了液压式动力转向系统。经过分析研究无论是国外还是国内的动力转向系统都存在较大的能量损失,整个转向系统要消耗原动机约3%的能源,但真正转向消耗的能量约占其中的40%,另外60%左右的能量不仅白白浪费掉了,而且还会增加液压系统的发热量,降低使用寿命,产生噪声和增加尾气排放。
     目前世界汽车保有量约7.5亿辆,并且还在迅速增长。它给人类以巨大贡献的同时也对环境造成了巨大的危害,其中许多方面都与燃用矿物燃料的汽车有直接关系。因此,降低汽车燃油消耗,降低废气的排放,对于改善和提高城市的空气质量也是不容忽视的。据估计汽车用油可能占到目前世界石油消费总量的40%,如果尽可能地降低汽车这一“用油大户”的耗油量,无疑将对世界能源形势产生积极影响。其实汽车技术领域的节能研究一直在进行着,但在以往的工作中,研究人员主要关注的是如何降低发动机和传动系统的能耗,甚至为了在每百公里降低零点几升的油耗而投入大量成本,而对辅助系统如转向系统等则关注较少。
     本文在前期收集国内外相关文献的基础上,提出了一种含有浮动块的新型平衡式变量叶片泵,该泵应用在汽车转向泵等工况。这是针对现有液压动力转向系统中转向泵能量损失较大而研究设计的一种具有速度补偿功能的叶片式转向泵。它从泵本身的结构入手,通过改变叶片泵内部机械结构而达到节能降耗的目的。主要侧重于对叶片泵降能耗理论分析及结构改进的研究,分析变量机构在不同转速下的工作特性,合理设计其结构,从而降低叶片泵的能耗损失。与传统的平衡式叶片泵比较来看,新型变量叶片泵在保持现有平衡式定量叶片泵转子径向受力平衡等优点的基础上,还能够十分方便的按照转速的不同要求,自动改变排量。
     重点分析了变量机构浮动块体在不同转速条件下的运动规律,根据力学原理推导了变量机构的动力学模型,应用Adams软件对变量机构进行动力学仿真分析,获得变量机构的运动参数曲线。同时关注不同转速条件下,变量机构所能达到的变排量效果,建立叶片泵的流量输出方程,在此基础上进行Matlab仿真分析流量输出动态性能。根据大连液压件厂的生产条件设计、制造基于全新变量原理的平衡式变量叶片泵样机,利用大连液压件厂试验台进行试验。从试验的角度验证平衡式变量叶片泵基于速度补偿原理实现变量的可行性。
With the rapid development of automotive industry recently, people are requiring higher quality for the comfort and safety of cars. In the 80s of last century, hydraulic power steering system is used in cars domestically and abroad in order to improve the driving safety and comfort. However both domestic and overseas power steering system have serious energy loss: the entire system will cost 3 percent energy of the engine, but only 40 percent of it will transfer to consumed energy, while the other 60 percent of the energy will be wasted. Also it will increase the heat of the hydraulic system, reduce the using life, produce noise and increase exhaust emission.
     The number of cars in the world is about 0.75 billion at present and is still keeping increasing. With the tremendous contribute to people, cars are causing serious damage to the circumstances, most of them are related with the cars using mineral fuel. Therefore, reducing the fuel consuming and exhaust emission is playing an important role in improving the quality of the air. According to the estimation, the fuel used by cars is about 40 percent out of the total usage of fuel for the world. So if we can minimize the fuel cost by cars, it will definitely have a positive impact on the energy position. The research of energy saving in cars technology is always ongoing. However in the previous research, the researchers put more attention on the consume of engine and drive system, cost a lot to save little fuel within one hundred kilometer, while paid little attention on auxiliary system, e.g. steering system.
     Based on the related literature collection, a new variable displacement of double-action vane pump is presented in this thesis which is applied in auto steering pump etc. With respect to the serious energy cost of present hydraulic power steering system, the proposed vane steering pump has the ability of rate compensation. Designed according to the pump structure, it can reduce energy loss by changing the interior structure of the pump. Based on the research of the energy saving theory and structure improvement of vane pump and the working conditions and characteristics of the variable frameworks under different speeds, a reasonable structure is designed to reduce the machine energy cost. As compared with the traditional double-action vane pump, the new vane can not only keep the advantage of balance of radial suffer force for rotor but also change its exhaust quantity automatically according to different rotate speeds.
     The transformation rule of the variable framework floating block under different rotate speeds is analyzed and the dynamics model of variable framework is derived according to the engineering dynamics principles. The dynamic estimation of the variable framework utilizing ADAMS is also analyzed, and figures of the dynamic parameters can be obtained. Concerning with the variable effects under different rotate speeds, the theoretical flux output equation is provided; and some MATLAB simulations are given upon this to give a theoretical feasibility proof of the project. According to the real machining ability and level of technology of Dalian Hydraulic Component Company, a sample machine of variable displacement of double-action vane pump is designed and produced based on the new variable theory, and some tests have been done on the synthetic test-bed in Dalian Hydraulic Component Company. The practice feasibility of the double-action vane pump is validated from the experimental perspective.
引文
[1]孙玉清.船舶动力装置平衡式变量叶片泵原理及实用型号研究.高校博士点基金申请书
    [2]雷天觉.液压工程手册.北京:机械工程出版社,1998
    [3]黎克英,陆祥生.叶片式液压泵和马达.北京:机械工业出版社,1993
    [4]郑辙.变量双作用叶片泵的研究.山东交通学院学报.vol10,2002.11
    [5]刘继刚.双作用变量叶片泵的研制.燕山大学学报.vol26,2002.7
    [6]Guided vane pump uses noncontact design.World pumps.1998.11
    [7]郭秀芳,樊百夫.稳流叶片泵的研制开发.液压气动与密封.Vol91,2002.1,41-42
    [8]李岚,马晓军.双作用叶片泵自动变量控制系统研究.机械传动.Vol29,2005.6,70-71
    [9]叶世亮.双作用变量叶片泵.液压气动与密封.vol93,2002.6
    [10]李兆结.ZZH型汽车液压动力转向器的研制.洛阳工业大学学报.1992,(2),23-24
    [11]李明才编.汽车动力转向的构造与维修.北京:中国林业出版社,1988,46-49
    [12]姚晶宇.新型双作用叶片式转向泵节能研究:(硕士学位论文).杭州:浙江大学,2005.5
    [13]王力.节能型转向泵的理论分析与研究:(硕士学位论文).山西:太原理工大学,2005.5
    [14]吉林工业大学汽车教研室.汽车设计.北京:机械工业出版社,1981.7
    [15]张听.电动助力转向助力特性的仿真分析:(硕士学位论文).长春:吉林大学,2003.3
    [16]赵燕,周斌,张中甫.汽车转向系统的技术发展趋势.汽车研究与开发.2003.2:22-24
    [17]王健,刘绒霞,刘继勇.汽车电子转向器的设计.西安工业学院学报.2001.3(1):42-45
    [18]左建令.汽车电子转向系统控制方法研究:(硕士学位论文).长春:吉林大学,2003.3
    [19]林逸,施国标等.电动助力转向系统转向性能的客观评价.农业机械学 报.2003.7(34):4-7
    [20]余志生.汽车理论.北京:机械工业出版社,1990
    [21]蒋平.工程力学基础.北京:高等教育出版社,399-401
    [22]叶耿,杨家军等.汽车电动式动力转向系统转向器路感研究.华中科技大学学报(自然科学版).2002.2(2):24-26
    [23]郭孔辉.汽车操纵动力学.长春:吉林科学技术出版社,1991.12
    [24]张国智,康佼等.汽车动力转向油泵的油量控制.机床与液压.2000(1):60-61
    [25]张驰云,谢隽.现代汽车动力转向技术的现状与发展.上海工程技术大学学报.2003.12(17):286-290
    [26]李一染,权龙.液压转向助力系统能耗特性的分析和比较.工程设计学报.2002.8(3):131-135
    [27]李建启.自行式建筑机械的液压转向与节能.建筑机械.1991,(12):19-23
    [28]杨玉学.汽车实用技术手册.沈阳:辽宁科学技术出版社,1983
    [29]腾进岭等.稳流式变量叶片泵的特性测试与分析.全国第二届液压气动技术交流论文
    [30]转向助力叶片泵产品介绍.大连液压件厂.2003
    [31]年产30万台轻、轿车转向泵技术改造项目可行性研究报告.大连液压件厂.2003
    [32]R.Gellrich,A.Kunz.Theretical and practical aspects of the wear of vane pumps Part A.Adaptation of a model for predictive wear calculation.Wear.1995:862-867
    [33]吴修义.98年北京的第五届国际汽车展会上的电动转向系统.汽车与配价.1998,(26):29-33
    [34]朱讯.新型电子控制电动助力转向系统.北京汽车.1996,(4):33-37
    [35]Heathershaw A.O.ptimzing variable ratio steering for improve on-center sensitivity and cornering control.SAE No:2000-01-0821,2000,109:1140-1151
    [36]Shimizu Y,Kawai T,Yuzuriha J.Improvement in driver vehicle system performance by varying steering gain with vehicle speed and steering angle:VGS(variable gear ratio steering system) SAE No.1999-01-0395.1999,108:630-639
    [37]邓泽英.电子动力转向系统.电子技术.1995(3):43-46
    [38]Yoshitomo Tokumoto.Development of energy-saving pump for hydraulic power steering,JSAE Review.vol.18,July,1997:310-313
    [39]李一染,权龙.液压转向助力系统能耗特性的分析和比较.工程设计学报.2002.8(3):131-135
    [40]机械设计手册编委会.机械设计手册(第3册).北京:机械工业出版社,2004
    [41]陈善华,魏宏.汽车电子转向技术发展与展望.汽车技术.2003(1):1-7
    [42]Yoshitomo Tokumoto.Development of energy saving pump for hydraulic power steering.JSAE Review.Vol.18,July,1997:310-313
    [43]胡燕平,胡小平.重型汽车稳流液压泵动力转向系统分析.矿山机械.2000(9)
    [44]胡燕平,齐涤非.动力转向稳流液压泵的性能计算.矿业研究与开发.1997.12(17):17-19
    [45]姚晶宇,王庆丰.采用双联泵结构的新型液压动力转向泵研究.机床与液压.2005(10):93-95
    [46]Hideya kato,Kyosuka haga,and Mikio Suzuki.Energy-Saving Power Steering Pump.SAE Paper 950582.Toyoda Machine Works,Ltd.1995
    [47]Yoshiharu Inaguma,Keiji Suzuki,and Kyosuke Haga.An Energy Saving Technique in an Electro-Hydraulic Power Steering(EHPS) System.SAE Paper 960934.Toyoda Machine Works,Ltd..1996
    [48]Ferries,Gary R.,Arbanas,R.Larry.Control Structure Interaction in Hydraulic Power Sreering System.Proceedings of the 1997 American Conlol Conference.1997,Vol.2
    [49]周俊龙.动力转向器瞬态响应性能指标评价与分析,重型汽车,1998:(6),8-9
    [50]洪家娣.车辆液压动力转向器动态优化设计分析.华东交通大学学报.1998,15(4):1-4
    [51]Chicurel E.180° Steering Interval Mechanism.M.echanism&Machine Theory.1999,34(3):21-36
    [52]Alexandcr L.Berdichevsky.Investigation into Power Steering Seals Noise and Vibrational Instability Criteria.Tribology Transactions.1999,42(3):548-558
    [53]苗立东,夏长高.循环球式液压助力转向系统分析.江苏大学学报(自然科学 版),2002,23(3):46-47
    [54]温济全,金忠孝,杨立勤.上海大学学报(自然科学版).1996,2(6):640-646
    [55]R.Gellrich,A.Kunz.Theretical and practical aspects of the wear of vane pumps Part A.Adaptation of a model for predictive wear calculation.Wear.(1995),862-867
    [56]林九如.YB叶片泵降噪途径的探讨.宁波大学学报.1995,8(2):52-59
    [57]Yoshiharu Inaguma,Kazuhiro Watanabe and Hideya Kato.Energy-saving and Reduction of Oil TemPerature Rising in Hydraulic Power Steering System.SAE paper 1999-01-0392,Toyoda Machine works,Ltd.Akira Hibi,Toyohashi University of Technology.1999
    [58]肖生发,冯樱,马力.电子控制式电动助力转向系统的开发前景.汽车科技.2001(3):4-5
    [59]姜立永,谭满志等.汽车与地球环境.吉林工业大学学报.1997(1)
    [60]姜华奎.中国汽车工业的发展和对环境的影响.武汉汽车工业大学学报.1999(4)
    [61]Geoffrey P.Dyer.Analysis of Energy Consumption for Various Power Assisted Steering Systens.SAE Paper 970379,A.E.Bishop&Associates Pry.Ltd.,1997
    [62]张再刚.高性能轿车转向泵助力泵定子曲线的设计:(硕士学位论文).大连:大连轻工业学院,2000.3
    [63]孙玉清.速度、压力补偿平衡式叶片泵.专利号:02203765.9,2002
    [64]陈磊,孙玉清等.新型平衡式变量叶片泵.机械工程学报.2006,42(3):227-232
    [65]李少年.可压缩流体工作介质双作用叶片泵力学特性的建模与仿真:(硕士学位论文).兰州:兰州理工大学,2004.6
    [66]张雪彪.汽车动力转向叶片泵降噪研究:(硕士学位论文).大连:大连轻工业学院,2001.3
    [67][日]牧野洋,胡茂松译.自动机械机构学.北京:科学出版社,1980
    [68]彭国勋,肖正扬.自动机械的凸轮机构设计.北京:机械工业出版社,1990
    [69]曾俊英.高性能双作用叶片泵定子曲线的研究.南京航空航天大学学报.1994,26(2):273-277
    [70]黄楔衡.高次方程型定子过渡曲线的探讨.液压工业.1982(3):47-57
    [71]叶志锋,孙建国.用最优控制理论设计双作用叶片泵定子曲线.航空动力学报.1996,11(4):381-384
    [72]宋俊.王淑莲等.液压元件优化.北京:机械工业出版社,1999
    [73]朱伟华.叶片泵定子内曲线的研究:(硕士学位论文).广州:华南理工大学,2003.3
    [74]苏比尔绍尔.机械零件强度计算手册.北京:机械工业出版社,1987,38-39
    [75]贾卫军.汽车助力转向泵噪声研究:(硕士学位论文).大连:大连海事大学,2005.3
    [76]张再刚,刘德全.流量均匀的转向泵定子曲线的设计.大连轻工业学院学报.2000,19(1):60-62
    [77]朱华兴.凸轮转子叶片泵转子凸轮最佳过渡曲线的研究.机床与液压.1997(6):27-28
    [78]温济全,金忠孝,杨立勤.双作用叶片泵流量脉动的分析.液压气动与密封.1997(1):16-18
    [79]邹慧君,傅祥志,张春林.机械原理.北京:高等教育出版社,1999
    [80]余家荣.复变函数.北京:高等教育出版社,1992
    [81]王峥嵘.可压缩流体工作介质双作用叶片泵配流及顺时流量的建模与仿真:(硕士学位论文).兰州:兰州理工大学,2004.6
    [82]刘惠枝.工程流体力学.大连:大连海事大学出版社,1995
    [83]薛晓虎.液压系统缝隙内流体泄漏特性的分析.机械工程学报.2004,40(6):75-80
    [84]郑凯,胡仁喜.ADAMS2005机械设计高级应用实例.北京:机械工业出版社,2006
    [85]郑建荣.ADAMS一虚拟样机技术入门与提高.北京:机械工业出版社,2002
    [86]倪进峰,徐诚.Pro/E与ADAMS的复杂模型船体方法.机械工程师.2004,9:15-16
    [87]李军,邢俊文.ADAMS实例教程.北京:北京理工大学出版社,2002.
    [88]赵文辉,李思昆.机电一体化系统虚拟样机的异构建模和仿真.系统仿真学报.2001,13(5):592-595
    [89]炊海春.Pro/ENGINEER从零件到整机.北京:人民邮电出版社,2003.
    [90]高秀华,李炎亮,邓洪超,冯增宁.机械三维动态设计仿真技术—Pro/ENGINEER 和Pro/MECHANICA应用.北京:化学工业出版社,2003.
    [91]宋培林.虚拟模型:机械工程的一门新兴技术.美国机械动力学公司,2002.
    [92]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践.西安:西北工业大学出版社,2002.
    [93]M.E.Lngrim,GY.Masada.The Extended Bond Graph Notation Journal of Dynamic System,Transaction of ASME Measurement and Control.vol 113,1991.3,113-116
    [94]M.E.Lngrim.Extended Bond Graph representation of the Transaction of the ASME.vol113,1991.3,118-121
    [95]刘建能,田树军.液压系统动态特性数字仿真.大连:大连理工大学出版社,1994
    [96]德兰斯非尔德.液压控制系统的设计与动态分析.大连工学院液压教研室译.北京:科学技术出版社,1987.3
    [97]陆元章.液压系统的建模与分析.上海:上海交通大学出版社,1989.12,107-114
    [98]高翔.液压助力转向系统的仿真分析.江苏大学学报.2003,24(6):34-38
    [99]田树军,刘能宏.SIM-1液压系统动态仿真软件包的开发与应用.机床与液压.1987(4),1-5
    [100]何祖威,朱幕译.高级连续系统仿真语言及应用.重庆:重庆大学出版社,1998
    [101]党坤,尹峰.液压泵子系统的动态仿真.大连海事大学学报.vol24,1998(2),105-107
    [102]王益群,高英杰.液压传动及控制系统故障诊断枝术的新进展.燕山大学学报.1998,22(1),1-3
    [103]党坤.辽海2号采油平台液压起升系统的动态仿真:(硕士学位论文)大连:大连海事大学,1999.4
    [104]费千.船舶辅机.大连:大连海事大学出版社,1993.4,89-90
    [105]刘兴彪.现代系统建模与仿真技术.西安:西北工业大学出版社,2001
    [106]钟麟.MATLAB仿真技术与应用教程.北京:国防工业出版社,2004
    [107]刘兴堂.现代系统建模与仿真技术.西安:西北工业大学出版社,2003
    [108]孙涛.基于Matlab环境下的车辆操纵稳定性仿真研究与计算实例.机械科学与技术.vol22,2003.7
    [109]任京.液压转向闭式回路动态仿真建模与分析.车辆与动力技术.vol2,2001.7
    [110]洪家第,施振邦.液压动力转向器动态仿真研究.机械设计.1997.7
    [111]陈桂明,张明威.应用Matlab建模与仿真.北京:科学出版社,2001
    [112]荣延藻.车辆液压动力转向系统故障检修.北京:国防工业出版社,2001
    [113]薛定宇.基于MATLAB/simulink的系统仿真技术与应用.北京:清华大学出版社,2002
    [114]QC/T 299-2000汽车动力转向油泵技术条件.北京:国家机械工业局
    [115]R.Gellrich,A.Kunz,G.Beckmann.Theoretical and practical aspects of the wear of vane pumps Part A.Adaptation of a model for predictive wear calaulation.Wear.1995:862-867
    [116]R.Gellrich,A.Kunz,G.Beckmann.Theoretical and practical aspects of the wear of vane pumps Part B.Analysis of wear behaviour in the Vickers vane pump test.Wear.1995:868-875
    [117]Antonio Giuffrida,Rosario Lanzafane.Cam shape and theoretical flow rate in balanced vane pumps.Mechanism and Machine Theory.2005(40):353-369
    [118]转向助力叶片泵产品介绍.大连液压件厂,2003
    [119]Eiichi Kojima.Development Of A Quieter Variable-Dispacement Vane Pump For Automotive Hydraulic Power Steering System.International Journal of Fluid Power.2003,(4):5-14
    [120]肖田元.虚拟制造及其在轿车数字化工程中的应用.系统仿真学报.2002,14(3):342-347

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700