荧光核酸适体探针的设计及其在血管生成素分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核酸适体是一类经体外人工进化程序筛选出的寡聚核苷酸。它能高效、特异地结合蛋白质等多种目标物质,且具有易合成、易功能化修饰、稳定性好等优点,在生物医学的基础研究和临床诊断与治疗等方面显示出巨大的应用前景。本文选择了与肿瘤发生、发展密切相关的人血管生成素为目标蛋白,基于核酸适体和荧光分析方法,以荧光核酸适体探针的设计及其在血管生成素分析中的应用为主线,开展了以下几方面工作:
     (1)设计合成核酸适体/核酸分子“光开关”复合物探针,发展了基于核酸适体和核酸分子“光开关”[Ru(bipy)2(dppz)]2+的血管生成素检测方法。血管生成素与核酸适体的结合引起核酸适体/核酸分子“光开关”复合物探针的荧光信号显著下降,从而实现血管生成素的检测,在2.5~20 nmol/L的浓度范围内有良好的线性关系,检测下限为1.5 nmol/L。该方法中探针设计简便,不需要直接对蛋白质及核酸适体进行荧光标记。
     (2)设计合成单荧光标记的核酸适体探针,发展了基于荧光各向异性技术的血管生成素检测方法。血管生成素与核酸适体的结合引起核酸适体探针的荧光各向异性信号显著增强,从而实现血管生成素的特异性检测,在2~55 nmol/L的浓度范围内有良好的线性关系,检测下限为1 nmol/L。利用该方法实现了肺癌病人血清中血管生成素的检测。
     (3)设计合成双荧光标记的核酸适体探针,发展了基于荧光共振能量转移的血管生成素检测方法。血管生成素与核酸适体的结合引起核酸适体的空间结构发生变化,使得核酸适体探针的荧光共振能量转移效率增加,从而实现血管生成素的高灵敏检测,在0.5~40 nmol/L的浓度范围内有良好的线性关系,检测下限为0.2 nmol/L。利用该方法实现了健康人和肺癌病人血清中血管生成素的检测。
     (4)设计合成两端芘标记的核酸适体探针,发展了基于激发态二聚体的血管生成素检测方法。血管生成素与核酸适体的结合引起核酸适体空间结构的变化,导致两端芘分子的靠拢而形成激发态二聚体,使得荧光信号发生显著变化,从而实现血管生成素的高特异、高灵敏检测,在0.2~30 nmol/L的浓度范围内有良好的线性关系,检测下限为0.1 nmol/L。
     (5)将核酸适体探针的应用从蛋白质的简便、快速、高特异、高灵敏的检测拓展到活细胞水平上的蛋白质实时分析。利用单荧光标记的核酸适体探针,结合激光共聚焦成像技术,对血管生成素的内化过程进行实时成像研究,发展了一种在活细胞水平上进行蛋白质分析的新方法。血管生成素-核酸适体复合物与细胞共培育,能选择性地结合到脐带静脉内皮细胞和乳腺癌细胞上;核染实验和Z-轴扫描结果证实,复合物能进入靶细胞,到达细胞核;实时成像结果证实,复合物能快速结合到靶细胞上并进入细胞;不同温度培养实验证实,复合物进入细胞是受培养温度影响的,提示为内吞作用方式。该方法采用核酸适体作为细胞水平上蛋白质识别和标记的工具,无需事先标记目标蛋白,无需对目标细胞预先进行基因操作,更不必将目标细胞进行固定,可实时反映细胞-蛋白相互作用的真实状况,有望用于跟踪和定位细胞代谢过程中分泌的细胞因子、生长因子、多肽、酶等重要生物分子。
     以上研究工作表明,基于荧光核酸适体探针的血管生成素分析方法无需使用抗体,操作简便,成本较低,均具有快速、灵敏、选择性高的特点,有望在血管生成素的相关基础研究和临床检验中得到应用。
Aptamers are a novel class of synthetic DNA/RNA oligocleotides generated from in vitro selection to bind with proteins and various targets. Due to their high affinity and specificity, easy synthesis, conveniently functional modification and good stability, aptamers have shown great prospect for basic biomedical research and clinical diagnosis and therapy. In this dissertation, angiogenin, which is closely correlated with the occurrence and development of cancers, was chosen as the target protein. Aiming at the design of fluorescent aptamer probes and their applications to angiogenin analysis, a series of angiogenin assays based on aptamers and fluorescent analyses have been developed. The research work of this dissertation is summarized as follows:
     (1) Aptamer/nucleic acid“molecular light switch”complex probe was designed and synthesized, and a method for angiogenin detection based on aptamer and nucleic acid“molecular light switch”[Ru(bipy)2(dppz)]2+ was developed. This method took advantage of the obvious fluorescent signal decrease of aptamer/nucleic acid“molecular light switch”complex probe upon specific angiogenin/aptamer binding. By monitoring the change of fluorescent intensity, angiogenin detection could be achieved quickly. This assay could determine angiogenin in the range of 2.5~20 nmol/L with a detection limit of 1.5 nmol/L. In this assay, the design of probe is convenient since neither the aptamers nor target proteins should be labeled directly.
     (2) A singly fluorophore-labeled aptamer probe was designed and synthesized, and a method for angiogenin detection based on fluorescence anisotropy was developed. This method took advantage of the obvious fluorescence anisotropy signal increase of fluorophore-labelled aptamer probe upon specific angiogenin/aptamer binding. By monitoring the anisotropy change, angiogenin detection could be achieved specifically. This assay could determine angiogenin in the range of 2~55 nmol/L with a detection limit of 1 nmol/L. Angiogenin in serum samples from lung cancer patients have also been detected by using this method.
     (3) A dually fluorophore-labeled aptamer probe was designed and synthesized and a method for angiogenin detection based on fluorescence resonance energy transfer (FRET) was developed. This method took advantage of the FRET efficiency increase caused by configuration shift upon specific protein/aptamer binding. By monitoring the fluorescence intensity of donor and acceptor fluorophores and calculating the FRET efficiency, angiogenin detection could be achieved with high sensitivity. This assay could determine angiogenin in the range of 0.5~40 nmol/L with a detection limit of 0.2 nmol/L. Angiogenin in serum samples from health people and lung cancer patients have also been detected by using this method.
     (4) A dually pyrene-labeled aptamer probe was designed and synthesized and a method for angiogenin detection based on pyrene excimer was developed. The method took advantage of the obvious fluorescence signal change of excimer caused by configuration shift and encounter of the pyrene molecules at the both termini upon specific protein/aptamer binding. By monitoring the fluorescence intensity of aptamer probe, quantitative angiogenin detection could be achieved with high specificity and sensitivity. This assay could determine angiogenin in the range of 0.2~30 nmol/L with a detection limit of 0.1 nmol/L.
     (5) The applications of aptamer probes were extended from convenient, quick, highly sensitive and specific protein detection to real-time protein assay in live cells. A novel simple and quick method for visualizing the real-time cellular internalization process of angiogenin was developed by using singly fluorophore-labeled aptamer probe and confocal laser scanning microscopy. Specifically, when aptamer/angiogenin conjugates were added into cell cultures, conjugates could be selectively bound to human umbilical vein endothelial cells and human breast cancer MCF-7 cells. Nuclear staining and Z-axis scanning studies demonstrated that the aptamer/angiogenin conjugates were internalized to intracellular organelles of target cells, and dynamic confocal imaging studies indicated that the conjugates were quickly bound to target cells and internalized. Different temperature culture studies validated that the internalization of aptamer/angiogenin conjugates were dependent on culture temperature and implied an endocytosis process. This method provides the first evidence that a fluorophore-labeled aptamer could be used not only as a protein labeling agent but also as a protein recognition agent to report the actual interaction of proteins with cancer cells in real time without target protein prelabelling, target gene cloning and target cell fixing. This method also provides the promising potential of fluorophore-labeled aptamers used as recognition and labeling probes for tracking and localizing of some important biomolecules such as cell factors, growth factors, polypeptides and enzymes secreted by metabolic processes.
     The above fluorescent aptamer probe-based analytical methods are convenient and low-cost without using antibody. Angiogenin in serum and living cells could be analysed quickly, sensitively and selectively. Therefore, these aptamer-based methods have the potential to be used in basic research and clinical diagnosis concerning angiogenin.
引文
[1] Giordano A, Avantaggiati M L. p300 and CBP: Partners for life and death. Journal of Cellular Physiology, 1999, 181(2): 218-230
    [2] Orgel L E. The origin of life: a review of facts and speculations. Trends in Biochemical Sciences, 1998, 23(12): 491-495
    [3] Yockey H P. Origin of life on earth and shannon’s theory of communication. Journal of Computational Chemistry, 2000, 24(1): 105-123
    [4] Boulikas T. Common structural features of replication origins in all life forms. Journal of Cellular Biochemistry, 1996, 60(3): 297-316
    [5] Harlow E, Lane D.抗体技术实验指南.沈关心,龚非力译.北京:科学出版社, 2002
    [6] Clark P M, Price C P. Removal of interference by immunoglobulins in an enzyme-amplified immunoassay for thyrotropin in serum. Clinical Chemistry, 1987, 33(3): 414
    [7] Boulianne G L, Hozumi N, Shulman M J. Production of functional chimeric mouse/human antibody. Nature 1984, 312(5995): 643-646
    [8] Drewes G, Bouwmeester T. Global approaches to protein-protein interactions. Current Opinion on Cell Biology, 2003, 15 (2): 199-205
    [9] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505-510
    [10] Abelson J. Directed evolution of nucleic acids by independent replication and selection. Science, 1990, 249(4968): 488-489
    [11] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(30): 818-822
    [12] Ellington A D, Szostak J W. Selection in vitro of single-stranded DNA molecules that fold into specific ligand binding structures. Nature, 1992, 355(6363): 850-852
    [13]王镜岩,朱圣庚,徐长法.生物化学,上册,第三版.北京:高等教育出版社,2002
    [14] Nguyen D H, DeFina S C, Fink W H, et a1. Binding to an RNA aptamer changes the charge distribution and conformation of malachite green. Journalof American Chemical Society, 2002, 124(50): 15081-15084
    [15] Thomas H, Dinshaw J P. Adaptive recognition by nucleic acid aptamers. Science, 2000, 287(5454): 820-825
    [16] Yang Y S, Kochoyan M, Burgstaller P, et al. Structural basis of ligand discrimi- nation by two related RNA aptamers resolved by NMR spectroscopy. Science, 1996, 272(5266): 1343-1347
    [17] Kelly J A, Feigon J, Yeates T O. Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(GGTTGGTGTGGTTGG). Journal of Molecular Biology, 1996, 256(3): 417-422
    [18] Tasset D M, Kubik M F, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of Molecular Biology, 1997, 272(5): 688-698
    [19] Jenison R D, Gill S C, Pardi A, et al. High-resolution molecular discrimination by RNA. Science, 1994, 263(5152): 1425-1429
    [20] Burgsraller P, Famulok M. Isolation of RNA aptamers for biological cofactors by in vitro selection. Angewandte Chemie-International Edition, 1994, 33(10): 1084-1087
    [21] Kiga D, Futamura Y, Yokoyama S, et al. An RNA aptamer to the xanthine /guanine base with a distinctive mode of purine recognition. Nucleic Acids Research, 1998, 26(7): 1755-1760
    [22] Michaud M, Jourdan E. Immobilized DNA aptamers as target specific chiral stationary phases for resolution of nucleoside and amino acid derivative enan- tiomers. Analytical Chemistry, 2004, 76(4): 1015-1020
    [23] Shoji A, Kuwahara M, Sawai H, et al. Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivety. Journal of American Chemical Society, 2007, 129(5): 1456-1464
    [24] Famulok M. Molecular recognition of amino acids by RNA aptamers: an L-citrulline binding RNA motif and its evolution into an L-arginine binder. Journal of American Chemical Society, 1994, 116(5): 1698-1706
    [25] Yang Y, Kochoyan M, Burgstaller P, et al. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science, 1996, 272(5266): 1343-1347
    [26] Jiang L, Patel D J. Solution structure of the tobramycin-RNA aptamer complex. Nature Structural Biology, 1998, 5(9): 769-774
    [27] Proske D, Blank M, Buhmann R, et al. Aptamers-basic research, drugdevelopment and clinical applications. Applied Microbiology and Biotechnology, 2005, 69(3): 367-374
    [28] Cox J C, Rajendran M, Riedel T, et al. Automated acquisition of aptamer sequences. Combinatorial chemistry & high throughput screening, 2002, 5(4): 289-299
    [29] Chandra S, Gopinath B. Methods developed for SELEX. Analytical and Bioanalytical Chemistry, 2007, 387(1): 171-182
    [30] Mendonsa S D, Bowser M T. In vitro evolution of functional DNA using capillary electrophoresis. Journal of the American Chemical Society, 2004, 126(1): 20-21
    [31] Cox J C, Hayhurst A, Hesselberth J, et al. Automated selection of anti-protein aptamers. Bioorganic & Medicinal Chemistry, 2001, 9(10): 2525-2531
    [32] Vater A, Jarosch F, Buchner K, et al. Short bioactive spiegelmers to migraine -associated calcitonin gene-related peptide rapidly identified by a novel approach: tailored-SELEX. Nucleic Acids Research, 2003, 31(21): e130
    [33] Golden M C, Collins B D, Willis M C, et al. Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. Journal of Biotechnology, 2000, 81(3): 179-188
    [34] Singer B S, Shtatland T, Brown D, et al. Libraries for genomic SELEX. Nucleic Acids Research, 1997, 25(21): 781-786
    [35] Wen J D, Gray D M. Selection of genomic sequences that bind tightly to Ff gene 5 protein: primer-free genomic SELEX. Nucleic Acids Research, 2004, 32(22): e182
    [36] K?nig J, Julius C, Feldbrugge M et al. Combining SELEX and the yeast three-hybrid system for in vivo selection and classification of RNA aptamers. RNA, 2007, 13(2): 614-622
    [37] Daniesls D A, Chen H, Hicke B J, et al. A tenascin2C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential-enrichment. Proceedings of National Academy of Sciences of the United States of America, 2003, 100(26): 15416-15421
    [38] Wang C, Zhang M, Yang G, et a1. Single-stranded-DNA aptamers that bind differentiated but not parental cells: subtraetive systematic evolution of ligands by exponential enrichment. Journal of Biotechnology, 2003, l02(1): 15-22
    [39] Shangguan D H, Li Y, Tang Z W, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proceedings of National Academyof Sciences of the United States of America, 2006, 103(32): 11838-11843
    [40] Tang Z W, Shangguan D H, Wang K M, et al. Selection of aptamers for molecular recognition and characterization of cancer cells. Analytical Chemistry, 2007, 79(13): 4900-4907
    [41] Shangguan D H, Cao Z H, Li Y, et al. Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clinical Chemistry, 2007, 53(6): 1153-1158
    [42] Mallikaratchy P, Tang Z W, Meng L, et al. Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt's lymphoma cells. Molecular & Cellular Proteomics, 2007, 6(12): 2230-2238
    [43] Chen H W, Medley C D, Sefah K, et al. Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem, 2008, 3(6): 991-1001
    [44] Herr J K, Smith J E, Medley C D, et al. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Analytical Chemistry, 2006, 78(9): 2918-2924
    [45] Smith J E, Medley C D, Tang Z W, et al. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Analytical Chemistry, 2007, 79(8): 3075-3082
    [46] Huang Y F, Chang H T, Tan W H. Cancer cell targeting using multiple aptamers conjugated on nanorods. Analytical Chemistry, 2008, 80(3): 567-572
    [47] Medley C D, Smith J E, Tang Z W, et al. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Analytical Chemistry, 2008, 80(4): 1067-1072
    [48] Shangguan D H, Cao Z H, Meng L, et al. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. Journal of Proteome Research, 2008, 7(5): 2133-2139
    [49] Jayasena S D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry, 1999, 45(9): 1628-1650
    [50] Nimjee S M, Rusconi C P, Sullenger B A. Aptamers: An emerging class of therapeutics. Annual Review of Medicine, 2005, 56: 555-583
    [51] Bunka D H J, Stockley P G. Aptamers come of age– at last. Nature, 2006, 4: 588-596
    [52] Kawakami J, Imanaka H, Sugimoto N, et al. In vitro selection of atpamers that act with Zn2+. Journal of Inorganic Biochemistry, 2000, 82(2): 197-206
    [53] Hofmann H P, Limmer S, Hornung V, et al. Ni2+ binding RNA mofifs with anasymmetric purine-rich internal loop and a G-A base pair. RNA, 1997, 3(11): 1289-1300
    [54] Haller A A, Sarnow P. In vitro selection of a 7-methyl-guanosine binding RNA that inhibits translation of capped mRNA molecules. Proceedings of National Academy of Sciences of the United States of America, 1997, 94(16): 8521-8526
    [55] Dewey T M, Mundt A A, Crouch G J, et al. New uridine derivatives for systematic evolution of RNA ligands by exponential enrichment. Journal of the American Chemical Society, 1995, 117(32): 8474-8475
    [56] Sassanfar M, Szostak J W. An RNA motif that binds ATP. Nature, 1993, 364: 550-553
    [57] Geiger A, Burgstaller P, Vonder E, et al. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Research, 1996, 24(6): 1029-1036
    [58] Harada K, Frankel A D. Identification of two novel arginine binding DNAs. The EMBO Journal, 1995, 14(23): 5798-5811
    [59] Roth A, Breaker R R. An amino acid as a cofactor for a catalytic polynuclotide. Proceedings of National Academy of Sciences of the United States of America, 1998, 95(11): 6027-6031
    [60] Lauhon C T, Szostak J W. RNA aptamers that bind flavin and nicotinamide redox cofactors. Journal of the American Chemical Society, 1995, 117(4): 1246-1257
    [61] Lorsch J R, Szostak J W. In vitro selection of RNA aptamers specific for cyanocobalamin. Biochemistry, 1994, 33(4): 973-982
    [62] Masud M M, Kuwahara M, Ozaki H, et al. Sialyllactose-binding modified DNA aptamer bearing additional functionality by SELEX. Bioorganic & Medicinal Chemistry, 2004, 12(5): 1111-1120
    [63] Jeremy R B, Stephen R A, Roger Y T, et al. Aptamers switch on fluorescence of triphenylmethane dyes. Journal of the American Chemical Society, 2003, 125(48): 14716-14717
    [64] Schneider D J, Feigon J, Hostomsky Z, et al. High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus. Biochemistry, 1995, 34(29): 9599-9610
    [65] Tereshko V, Skripkin E, Patel D J, et al. Encapsulating streptomycin within a small 40-mer RNA. Chemistry and Biology, 2003, 10(2): 175-187
    [66] Ellington A D, Xu W. Anti-peptide aptamers recognize amino acid sequence and bind a protein epitope. Proceedings of National Academy of Sciences of the United States of America, 1996, 93(15): 7475-7480
    [67] Williams K, Ausiello A D, Bartel P D, et al. Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proceedings of National Academy of Sciences of the United States of America, 1997, 94(21): 11285-11290
    [68] Bock L C, Griffin L C, Latham J A, et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992, 355(6360): 564-566
    [69] Green L S, Jellinek D, Jenison R, et al. Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry, 1996, 35(45): 14413-14424
    [70] Gopinath S C, Sakamaki Y, Kaxasaki K, et al. An efficient RNA aptamer against human influenza B virus hemagglutinin. Journal of Biochemistry, 2006, 139(5): 837-846
    [71] Jellinek D, Green L S, Bell C, et al. Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor. Biochemistry, 1994, 33(34): 10450-10456
    [72] Cerchia L, Frédéric D, Pestourie C, et al. Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biology, 2005, 3(4): e123
    [73] Lupold S E, Hicke B J, Lin Y, et al. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Research, 2002, 62(14): 4029-4033
    [74] Blank M, Weinschenk T, Priemer M, et al. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels selective targeting of endothelial regulatory protein pigpen. Journal of Biological Chemistry, 2001, 276(19): 16464-16468
    [75] Daniels D A, Chen H, Hicke B J, et al. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proceedings of National Academy of Sciences of the United States of America, 2003, 100 (26): 15416-15421
    [76] Blum J H, Dove S L, Ann Hochschild A, et al. Isolation of peptide aptamers that inhibit intracellular processes. Proceedings of National Academy ofSciences of the United States of America, 2000, 97(5): 2241-2246
    [77] Borghouts C, Kunz C, Delis N, et al. Monomeric recombinant peptide aptamers are required for efficient intracellular uptake and target inhibition. Molecular Cancer Research, 2008, 6(2): 267-281
    [78] Chassey B, Mikaelian I, Mathieu A-L, et al. An antiproliferative genetic screening identifies a peptide aptamer that targets calcineurin and up-regulates its activity. Molecular & Cellular Proteomics, 2007, 6: 451-459
    [79] Gold L. Oligonucleolides as research, diagnostic and therapeutic agents. Journal of Biological Chemisrey, 1995, 270(23): 13581-13584
    [80] Clark S L, Remcho V T. Aptamers as analytical reagents. Electrophoresis, 2002, 23(9): 1335-1340
    [81] Jiang Y X, Zhu C F, Ling L S, et a1. Specific aptamer-protein interaction studied by atomic force microscopy. Analytical Chemistry, 2003, 75(9): 2112-2116
    [82]何晓晓,金容,杨柳,等.基于AFM的血管生成素与其核酸识体(Aptamer)的相互作用力.科学通报, 2007, 52(19): 2271-2275
    [83] Kusser W. Chemically modified nucleic acid aptamers for in vitro selections: evolving evolution. Journal of Biotechnology, 2000, 74(1): 27-38
    [84] Yang X, Bassett S E, Li X, et a1. Construction and selection of bead-bound combinatorial oligonucleoside phosphoruthioate and phosphorodithioate aptamers libraries designed for rapid PCR-based sequencing. Nucleic Acids Research, 2002, 30(23): e132
    [85] Healy J M, Lewis S D, Kurz M, et al. Phannacokinetics and biodistribution of novel aptamer compositions. Pharmaceutical Research, 2004, 21(12): 2234-2246
    [86] Jellinek D, Green L S, Bell C, et a1. Potent 2'-amino-2’deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry, 1995 34(36): 1l363-ll372
    [87] Vater A, Klussrnann S. Toward third-generation aptamers: Spiegelmers and their therapeutic prospects. Current Opinion Drug Discovery Development, 2003, 6(2): 253-261
    [88] Di Giusto D A, King G C. Constrction, stability, and activity of multivalent circular anticoagulant aptamers. Journal of Biological Chemistry, 2004, 279(45): 46483-4648
    [89] Schmidt K S, Borkowski S, Kurreck J, et al. Application of locked nucleicacids to improve aptamer in vivo stability and targeting function. Nucleic Acids Research, 2004, 32(19): 5757-5765
    [90] Shangguan D H, Tang Z W, Mallikaratchy P, et al. Optimization and modifications of aptamers selected from live cancer cell lines. ChemBioChem, 2007, 8(6), 603-606
    [91] Kandimalla V B, Ju H X. New horizons with a multi dimensional tool for applications in analytical chemistry-aptamer. Analytical Letters, 2004, 37(11): 2215-2233
    [92] Gokulrangan G, Unruh J R, Holub D F, et al. DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy. Analytical Chemistry, 2005, 77(7): 1963-1970
    [93] Charlton J, Kirschenheuter G P, Smith D. Highly potent irreversible inhibitors of neutrophil elastase generated by selection from a randomized DNA-valine phosphonate library. Biochemistry, 1997, 36(10): 3018-3026
    [94] Fang X H, Cao Z H, Tan W H, et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Analytical Chemistry, 2001, 73(23): 5752-5757
    [95] Wang Y, Killian J, Rando R R. RNA molecules that specifically and stoichio- metrically bind aminoglycoside antibiotics with high affinities. Biochemistry, 1996, 35(38): 12338-12346
    [96] Tyagi S, Kramer F R. Molecular beacons: Probes that fluorescence upon hybridization. Nature Biotechnology, 1996, 14(3): 303-308
    [97] Tyagi S, Bratu D P, Kramer F R. Multicolor molecular beacons for allele discrimination. Nature Biotechnol, 1998, 16(1): 49-53
    [98] Kostrikis L G, Tyagi S, Mhlanga M M, et al. Molecular beacons-spectral genotyping of human alleles. Science, 1998, 279(5354): 1228-1229
    [99] Maarten L S, Belinda A J G, Jacqueline A M V, et al. Semiautomated DNA mutation analysis using a robotic workstation and molecular beacons. Clinical Chemistry, 2001, 47(4): 739-744
    [100] Sokol D L, Zhang X, Lu P, et al. Real time detection of DNA-RNA hybridization in living cells. Proceedings of National Academy of Sciences of the United States of America, 1998, 95(20): 11538-11543
    [101] Perlette J, Tan W H. Real-time monitoring of intracellular mRNA hybridization inside single living cells. Analytical Chemistry, 2001, 73(22): 5544-5550
    [102] Cui Z Q, Zhang Z P, Zhang X E. Visualizing the dynamic behavior ofpoliovirus plus-strand RNA in living host cells. Nucleic Acids Research, 2005, 33(10): 3245-3252
    [103] Wu Y R, Yang C J, Moroz L L, et al. Nucleic acid beacons for long-term real-time intracellular monitoring. Analytical Chemistry, 2008, 80(8): 3025-3028
    [104] Li J J, Geyer R, Tan W H. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Research, 2000, 28(11): e52
    [105] Fang X H, Li J J, Tan W H. Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA. Analytical Chemistry, 2000, 72(14): 3280-3285
    [106] Tan W H, Wang K M, Drake T J. Molecular beacons. Current Opinion in Chemical Biology, 2004, 8(10): 547-553
    [107] Wang K M, Tang Z W, Yang C J, et al. Molecular engineering of DNA: molecular beacons. Angewandte Chemie-International Edition, in press
    [108]唐志文.核酸片段检测系统(NTFS)的构建及其在生命科学中的重要应用. [博士学位论文],长沙:湖南大学化学化工学院, 2004
    [109] Tang Z W, Wang K M, Tan W H, et al. Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons. Nucleic Acids Research, 2003, 31(23): e148
    [110] Tang Z W, Wang K M, Tan W H, et al. Real-time investigation of nucleic acids phosphorylation process using molecular beacons. Nucleic Acids Research, 2005, 33(11): e97
    [111] Ma C B, Tang Z W, Wang K M, et al. Real-time monitoring of nucleic acids dephosphorylation process using molecular beacons. ChemBioChem, 2007, 8(13): 1487-1490
    [112] Liu L F, Tang Z W, Wang K M, et al. Using molecular beacon to monitor activity of E. coli DNA ligase. Analyst, 2005, 130(3): 350-357
    [113] Ma C B, Tang Z W, Wang K M, et al. Real-time monitoring of DNA polymerase activity using molecular beacon. Analytical Biochemistry, 2006, 353(1): 141-143
    [114] Ma C B, Tang Z W, Wang K M, et al. Real-time monitoring of restriction endonuclease activity using molecular beacon. Analytical Biochemistry, 2007, 363(2): 294-296
    [115]孟祥贤,唐志文,王柯敏,等.分子信标连接体系用于核酶切割产物的超灵敏检测,科学通报, 2006, 51(23): 2733-2737
    [116] Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins. Analytical Biochemistry, 2001, 294(2): 126-131
    [117] Fang X H, Sen A, Tan W H, et al. Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay. ChemBioChem, 2003, 4(9): 829-834
    [118] Li J J, Fang X H, Tan W H. Molecular aptamer beacons for real-time protein recognition. Biochemical and Biophysical Research Communications, 2002, 292(1): 31-40
    [119] Vicens M C, Sen A, Vanderlaan A, et al. Investigation of molecular beacon aptamer-based bioassay for platelet-derived growth factor detection. ChemBioChem 2005, 6(5), 900-907
    [120] Nutiu R, Li Y. Structure-switching signaling aptmers. Journal of American Chemical Society, 2003, 125(16): 4771-4778
    [121] Nutiu R, Li Y. Structure-switching signaling aptamers: transducing molecular recognition into fluorescence singaling. Chemistry-A European Journal, 2004, 10: 1868-1876
    [122] Nutiu R, Li Y. Aptamers with fluorescence-signaling properties. Methods, 2005, 37(1): 16-25
    [123] Nutiu R, Yu J M, Li Y. Signaling aptamers for monitoring enzymatic activity and for inhibitor screening. ChemBioChem, 2004, 5(8): 1139-1144
    [124] Shen Y T, Mackey G, Rupcich N, et al. Entrapment of fluorescence signaling DNA enzymes in sol-gel-derived materials for metal ion sensing. Analytical Chemistry, 2007, 79(9): 3494-3503
    [125] Nutiu R, Li Y F. In vitro selection of structure-switching signaling aptamers. Angewandte Chemie International Edition,2005, 44(7): 1061-1065
    [126] Tang Z W, Mallikaratchy P, Yang R H, et al. Aptamer switch probe based on intramolecular displacement. Journal of American Chemical Society, 2008, 130(34): 11268-11269
    [127] Nagatoishi S, Nojima T, Juskowiak B, et al. A pyrene-labeled G-quadruplex oligonucleotide as a fluorescent probe for potassium ion detection in biological applications. Angewandte Chemie-International Edition, 2005, 44(32): 5067-5070
    [128] Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of theNational Academy of Sciences of the United States of America, 2005, 102(48): 17278-17283
    [129] Stojanovic M N, Kolpashchikov D M. Modular aptameric sensors. Journal of American Chemical Society, 2004, 126(30): 9266-9270
    [130] Stojanovic M N, Landry D W. Aptamer-based colorimetric probe for cocaine. Journal of American Chemical Society, 2002, 124(33): 9678-9679
    [131] Jiang Y X, Fang X H, Bai C L. Signaling aptamer/protein binding by a molecular light switch complex. Analytical Chemistry, 2004, 76(27): 5230-5235
    [132] Wang J, Jiang Y X, Zhou C S, et al. Aptamer-based ATP assay using a luminescent light switching complex. Analytical Chemistry, 2005, 77(11): 3542-3546
    [133] Zhou C S, Jiang Y X, Ma B C, et al. Detection of oncoprotein platelet-derived growth factor using fluorescent signaling complex of aptamer and TOTO. Analytical & Bioanalytical Chemistry, 2006, 384(5): 1175-1180
    [134] Li B, Wei H, Dong S. Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch. Chemical Communications, 2007, 29(1): 73-75
    [135] Ho H A, Leclerc M. Optical sensors based on hybrid aptamer/conjugated polymer complexes. Journal of the American Chemical Society, 2004, 126(5): 1384-1387
    [136] Guerrier-Takada C, Gardiner K, Marsh T, et al. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 1983, 35: 849-857
    [137] Breaker R R, Joyce G F. A DNA enzyme that cleaves RNA. Chemistry & Biology, 1994, 1(4): 223-229
    [138] Liu J W, Lu Y. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Analytical Chemistry, 2004, 76(6):1627-1632
    [139] Li D, Shlyahovsky B, Elbaz J, et al. Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. Journal of the American Chemical Society, 2007, 129(18): 5804-5805
    [140] Higuchi A, Siao Y D, Yang S T, et al. Preparation of a DNA aptamer-Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombinantibodies. Analytical Chemistry, 2008, 80 (17): 6580-6586
    [141] Hartig J S, Najafi-Shoushtari S H, Grüne I, et al. Protein-dependent ribozymes report molecular interactions in real time. Nature Biotechnology, 2003, 20 (7): 717-722
    [142] Seetharaman S, Zivarts M, Sudarsan N, et al. Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nature Biotechnology, 2001, 19(4): 336-341
    [143] Fredriksson S, Gullberg M, Landegren U, et al. Protein detection using proximity-dependent DNA ligation assays. Nature Biotechnology, 2002, 20(5): 473-477
    [144] Yang L, Fung C W, Cho E J, et al. Real-time rolling circle amplification for protein detection. Analytical Chemistry, 2007, 79(9): 3320-3329
    [145] Di Giusto D A, Wlassoff W A, Gooding J J, et al. Proximity extension of circular DNA aptamers with real-time protein detection. Nucleic Acids Research, 2005, 33(6): e64
    [146] Cho E J, Yang L, Levy M, et al. Using a deoxyrbozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. Journal of American Chemical Society, 2005, 127(7): 2022-2023
    [147] Shlyahovsky B, Li D, Weizmann Y, et al. Spotlighting of cocaine by an autonomous aptamer-based machine. Journal of American Chemical Society, 2007, 129(13): 3814-3815
    [148]郭秋平,羊小海,王柯敏,等.基于聚合酶反应和发夹型核酸适体的蛋白质荧光检测新方法.高等学校化学学报, 2008, 29(1): 37-40
    [149]羊小海,王蕾,王柯敏,等.基于接近效应聚合反应与核酸适体的蛋白质检测新方法.科学通报, 2007, 52(20): 2363-2366
    [150] Davis J J, Tkac J, Laurenson S, et al. Peptide aptamers in label-free protein detection: 1. Characterization of the immobilized scaffold. Analytical Chemistry, 2007, 79(3): 1089-109
    [151] Donald I V R, Sundararajan V. Real-time kinetics of HIV-1 Rev-Rev response elment interaction. Journal of Biological Chemistry, 1999, 274(25): 17452-17463
    [152] Murphy M B, Herbert C J, Aggerbeck L P. An improved method for the in vitro evolution of aptamers and application in protein detection and purification. Nucleic Acid Research, 2003, 31(18): e110
    [153] Li Y, Lee H J, Corn R M. Detection of protein biomarkers using RNA aptamermicroarrays and enzymatically amplified surface plasmon resonance imaging. Analytical Chemistry, 2007, 79(3): 1082-1088
    [154] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society, 2004, 126(38): 11768-11769
    [155] Huang C C, Huang Y F, Cao Z, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet t-derived growth factors and their receptors. Analytical Chemistry, 2005, 77(17): 5735-5741
    [156] Wang L, Liu X, Hu X, et al. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chemical Communications, 2006, 28(36): 3780-3782
    [157] Zhao W, Chiuman W, Brook M A, et al. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem, 2007, 8(7): 727-731
    [158] Xu D K, Xu D W, Yu X B, et al. Label-free electrochemical detection for aptamer-based array electrodes. Analytical Chemistry, 2005, 77(16): 5107-5113
    [159] Le Floch F, Ho H A, Leclerc M. Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer. Analytical Chemistry, 2006, 78(13): 4727-4731
    [160] Zayats M, Huang Y, Gill R, et al Label-free and reagentless aptamers-based sensors for small molecules. Journal of American Chemical Society, 2006, 128(42): 13666-13667
    [161] Maehashi K, Katsura T, Kerman K, et al. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Analytical Chemistry, 2007, 79(2): 782-787
    [162] So H, Won K, Kim Y H, et al. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. Journal of American Chemical Society, 2005, 127(34): 11906-11907
    [163] He P L, Shen L, Cao Y H, et al. Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes. Analytical Chemistry, 2007, 79(21): 8024-8029
    [164] Polsky R, Gill R, Kaganovsky L, et al. Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry, 2006, 78(7): 2268-2271
    [165] Lai R Y, Plaxco K W, Heeger A J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Analytical Chemistry, 2007, 79(1): 229-233
    [166] Wu Z, Guo M, Zhang S, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Analytical Chemistry, 2007, 79(7): 2933-2939
    [167] Zhang Y L, Huang Y, Jiang J H, et al. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein dtection. Journal of American Chemical Society, 2007, 129(50): 15448-15449
    [168] Centi S, Tombelli S, Minunni M, et al. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Analytical Chemistry, 2007, 7(4): 1466-1473
    [169] Hansen J A, Wang J, Kawde A, et al. Quantum-dot/aptamers-based ultrasensitive multi-analyteelectrochemical biosensor. Journal of American Chemical Society, 2006, 128(7): 2228-2229
    [170] Liss M, Petersen B, Wolf H, et al. An aptamer-based quartz crystal protein biosensor. Analytical Chemistry, 2002, 74(17): 4488-4495
    [171] Bini A, Minunni M, Tombelli S, et al. Analytical performances of aptamer-based sensing for thrombin detection. Analytical Chemistry, 2007, 79(7): 3016-3019
    [172] Tombelli S, Minunni M, Luzi E, et al. Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry, 2005, 67(2): 135-141
    [173]金燕,王柯敏,金容,等.基于原子力显微镜微探针的新型超灵敏传感器.自然科学进展, 2005, 15(6): 662-668
    [174] Basnar B, Elnathan R, Willner I. Following aptamer-thrombin binding by force measurements. Analytical Chemistry, 2006, 78(11): 3638-3642
    [175] Nobile V, Russo N, Hu G F, et al. Inhibition of human angiogenin by DNA aptamers: nuclear colocalization of an angiogenin-inhibitor complex. Biochemistry, 1998, 37(19): 6857-6863
    [176] Fett J, Strydom D, Lobb R, et al. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry, 1985, 24(20), 5480-5486
    [177] Shapiro R, Strydom D J, Olson K A, et al. Isolation of angiogenin from normal human plasma. Biochemistry, 1987, 26(16): 5141-5146
    [178] Bond M D, Vallee B L. Isolation of bovine angiogenin using a placental ribonuclease inhibitor binding assay. Biochemistry, 1988, 27(17): 6282-6287
    [179] Bond M D, Strydom D J, Vallee B L. Characterization and sequencing of rabbit, pig and mouse angiogenins: discernment of functionally important residues and regions. Biochimica et Biophysica Acta, 1993, 1162(1-2): 177-186
    [180] Strydom D J, Fett J W, Lobb R R, et al. Amino acid sequence of human tumor derived angiogenin. Biochemistry 1985, 24(20): 5486-5494
    [181] Kurachi K, Davie E W, Strydom D J, et al. Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry, 1985, 24(20): 5494-5499
    [182] Saxena S K, Rybak S M, Davey R T, et al. Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily. The Journal of Biological Chemistry, 1992, 267(30): 21982-21986
    [183] Shapiro R, Riordan J F, Vallee B L. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry, 1986, 25(12): 3521-3532
    [184] Folkman J, Klagsbrun M. Angiogenic factors. Science, 1987, 235(4787): 442-447
    [185] Soncin F. Angiogenin supports endothelial and fibroblast cell adhesion. Proceedings of National Academy of Sciences of the United States of America, 1992, 89(6): 2232-2236
    [186] Moroianu J, Riordan J F. Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proceedings of National Academy of Sciences of the United States of America, 1994, 91(5): 1677-1681
    [187] Shapiro R, Fox E A, Riordan J F. Role of lysines in human angiogenin: chemical modification and site-directed mutagenesis. Biochemistry, 1989, 28(4): 1726-1732
    [188] Shapiro R, Vallee B L. Site-directed mutagenesis of histidine-13 and histidine-114 of human angiogenin. Alanine derivatives inhibit angiogenin-induced angiogenesis. Biochemistry, 1989, 28(18): 7401-7408
    [189] Shapiro R, Vallee B L. Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities ofangiogenin. Proceedings of National Academy of Sciences of the United States of America, 1987, 94(8): 2238-2241
    [190] Hu G F, Chang S I, Riordan J F, et al. An angiogenin-binging protein fromendothelial cell. Proceedings of National Academy of Sciences of the United States of America, 1991, 88(6): 2227-2231
    [191] Hu G F, Strydom D J, Fett J W, et al. Actin is a binding protein for angiogenin. Proceedings of National Academy of Sciences of the United States of America, 1993, 90(4): 1217-1221
    [192] Moroianu J, Fett J W, Riordan J F, et al. Actin is a surface component of calf pulmonary artery endothelial cells in culture. Proceedings of National Academy of Sciences of the United States of America, 1993, 90(9): 3815-3819
    [193] Hu G F, Riordan J F, Vallee B L. Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities. Proceedings of National Academy of Sciences of the United States of America, 1994, 91(25): 12096-12100
    [194] Adams S A, Subramanian V. The angiogenesis: An emerging family of ribonuclease related proteins with diverse cellular functions. Angiogenesis, 1999, 3(3): 189-199
    [195] Hu G F, Riordan J F, Vallee B L. A putative angiogenin receptor in angiogenin-responsive human endothelial cells. Proceedings of National Academy of Sciences of the United States of America, 1997, 94(6): 2204-2209
    [196] Li R S, Riordan J F, Hu G F. Nuclear translocation of human angiogenin in cultured human umbilical artery endothelial cells is microtubule and lysosome independent. Biochemical and Biophysical Research Communications, 1997, 238(2): 305-312
    [197] Hu G F, Xu C J, Riordan J F. Human angiogenin is rapidly translocated to the nucleus of human umbilical vein endothelial cells and binds to DNA. Journal of Celluar Biochemistry, 2000, 76(3): 452-462
    [198] Xu Z P, Tsuji T, Riordan J F, et al. Identificantion and characterization of anangiogenin-binding DNA sequence that stimulates luciferase reporter gene expression. Biochemistry, 2003, 42 (1): 121-128
    [199] Liu S M, Yu D H, Xu Z P, et al. Angiogenin activates Erk1/2 in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 2001, 287(1): 305-310
    [200] Bicknell R, Vallee B L. Angiogenin stimulates endothelial cell prostacyclin secretion by activation of phospholipase A2. Proceedings of National Academy of Sciences of the United States of America, 1989, 86(5): 1573-1577
    [201] Kao R Y T, Jenkins J L, Olson K A, et al.A small-molecule inhibitor of theribonucleolytic activity of human angiogenin that possesses antitumor activity. Proceedings of National Academy of Sciences of the United States of America, 2002, 99(15): 10066-10071
    [202] Yoshioka N, Wang L, Kishimoto K, et al. A therapeutic target for prostate cancer based on angiogenin-stimulated angiogenesis and cancer cell proliferation. Proceedings of National Academy of Sciences of the United States of America, 2006, 103(39): 14519-14524
    [203] Weiner H L, Weiner L H, Swain J L. Tissue distribution and development expression of messenger RNA encoding angiogenin. Science, 1987, 237(4812): 280-282
    [204] Shimoyama S, Kaminishi M. Increased angiogenin expression in gastric cancer correlated with cancer progression. Journal of Cancer Research and Clinical Oncology, 2000, 126: 468-474
    [205] Etoh T, Shibuta K, Barnard G F, et al. Angiogenin expression in human colorectal cancer: the role of focal macrophage infiltration. Clinical Cancer Research, 2000, 6(9): 3545-3551
    [206] Montero S, Guzman C, Cortes-Funes H, et al. Angiogenin expression and prognosis in primary breast carcinoma. Clinical Cancer Research, 1998, 4(9): 2161-2168
    [207] Hisai H, Kato J, Kobune M, et al. Increased expression of angiogenin in hepatocellular carcinoma in correlation with tumor vascularity. Clinical Cancer Research, 2003, 9(13): 4852-4859
    [208] Li D, Bell J, Brown A, et al. The observation of angiogenin and basic fibroblast growth factor gene expression in human colonic adenocarcinomas. The Journal of Pathology, 1994, 172(2): 171-175
    [209] Hartmann A, Kunz M, Kostlin S, et al. Hypoxia induced up-regulation of angiogenin in human malignant melanoma. Cancer Research, 1999, 59(7): 1578-1583
    [210] Choopra V, Dinh T V, Hannigan E V. Serum levels of interleukins, growth factors and angiogenin in patients with endometrial cancer. Journal of Cancer Research and Clinical Oncology, 1997, 123(3): 167-172
    [211] Shimoyama S, Yamasaki K, Kawahara M, et al. Increased serum angiogenin concentrations in colorectal cancer is correlated with cancer progression. Clinical Cancer Research, 1999, 5(5): 1125-1130
    [212] Miyake H, Hara I, Yamanaka K, et al. Increased angiogenin expression in thetumor tissue and serum of urothelial carcinoma patients is related to disease progression and recurrence. Cancer, 1999, 86(2): 316-324
    [213] Verstovsek S, Kantarjian H, Aguayo A, et al. Significance of angiogenin plasma concentrations in patients with acute myeloid leukemia and advanced myelodysplastic syndrome. British Journal of Haematology, 2001, 114(2): 290-295
    [214] Katona T M, Neubauer B L, Iversen P W, et al. Elevated expression of angiogenin in prostate cancer and its precursors. Clinical Cancer Research, 2005, 11(23): 8358-8363
    [215] Malamitsi-Puchner A, Sarandakou A, Dafogianni C, et al. Serum angiogenin levels in children and adolescents with insulin-dependent diabetes mellitus. Pediatr Research, 1998, 43(6): 798-800
    [216] Shaarawy M, El-Mallah S Y, Sheiba M. Angiogenin and gestational trophoblastic tumors, a promising prognostic marker. Clinical Chemistry and Laboratory Medicine, 2003, 41(3): 306-310
    [217] Shimoyama S, Gansauge F, Gansauge S, et al. Increased angiogenin expression in pancreatic cancer is related to cancer aggressiveness. Cancer Research, 1996, 56(12): 2703-2706
    [218] Shimoyama S, Kaminishi M. Angiogeninin sera as an independent prognostic factor in gastric cancer. Journal of Cancer Research and Clinical Oncology, 2003, 129(4): 239-244
    [219] Barton D P J, Cai A, Wendt K, et al. Angiogenic protein expression in advanced epithelial ovarian cancer. Clinical Cancer Research, 1997, 3(9): 1579-1586
    [220] Friedman A E, Chambron J-C, Barton J K, et al. Molecular“light switch”for DNA: Ru(bpy)2(dppz)2+. Journal of the American Chemical Society, 1990, 112(12): 4960-4962
    [221] Jenkins Y, Barton J K. A sequence-specific molecular light switch tethering of an oligonucleotide to a dipyridophenazine complex of ruthenium (Π). Journal of the American Chemical Society, 1992, 114(22): 8738-8739
    [222] Olson E J C, Hu D, Ho1rmann A, et al. First observation of the key intermediate in the“light-switch”mechanism of [Ru(phen)2dppz]2+. Journal of the American Chemical Society, 1997, 119(47): 11458-11467
    [223] Turro C, Bossmann S H, Jenkins Y, et al. Proton transfer quenching of the MLCT excited state of Ru(phen)2dppz2+ in homogeneous solution and bound toDNA. Journal of the American Chemical Society, 1995, 117(35): 9026-9032
    [224] Nair R M, Cullum B M, Murphy C J. Optical properties of [Ru(phen)2dppz]2+ as a function of nonaqueous environment. Inorganic Chemistry, 1997, 36(6): 962-965
    [225] Arkin M R, Stemp E D A, Turro C, et al. Luminescence quenching in supramolecular systems: A comparison of DNA- and SDS micelle-mediated photoinduced electron transfer between metal complexes. Journal of the American Chemical Society, 1996, 118(9): 2267-2274
    [226] Hiort C, Lincoln P, Norden B. DNA Binding ofΔ- andΛ- [Ru(phen)2DPPZ]2+. Journal of the American Chemical Society, 1993, 115(9): 3448-3454
    [227] Stemp E D A, Arkin M R, Barton J K. Bound to DNA: spectral identification of the transient intermediate. Journal of the American Chemical Society, 1995, 117(8): 2375-2376
    [228] Jenkins Y, Friedman A E, Turro N J, et al. Characterization of dipyridophneazine complexes of ruthenium (II): The light switch effect as a function of nucleic acid sequence and conformation. Biochemistry, 1992, 31(44): 10809-10816
    [229] Dupureur C M, Barton J K. Use of selective deuteration and 1H NMR in demonstrating major groove binding ofΔ-[Ru(phen)2dppz]2+ to d(GTCGAC)2. Journal of the American Chemical Society, 1994, 116(22): 10286-10287
    [230] Dupureur C M, Barton J K. Structural studies ofΔ- andΛ-[Ru(phen)2dppz]2+ bound to d(GTCGAC)2: Characterization of enantioselective intercalation. Inorganic Chemistrey, 1997, 36(1): 33-43
    [231] Holmlin R E, Stemp E D A, Barton J K. Ru(phen)2dppz2+ Luminescence: Dependence on DNA sequences and groove-binding agents. Inorganic Chemistry, 1998, 37(1): 29-34
    [232]凌连生,何治柯,吴风武,等.核酸分子“光开关”的研究进展.高等学校化学学报, 2000, 21(4): 527-531
    [233] Jackson B A, Barton J K. Recognition of DNA base mismatches by a rhodium intercalator. Journal of the American Chemical Society, 1997, 119(5252): 12986-12987
    [234]周翠松,江雅新,汪俊,等.信号核酸识体用于药物托普霉素的高灵敏度检测.高等学校化学学报, 2006, 27(5): 826-829
    [235] Perrin F. The fluorescence of solutions: molecular induction, polarization and duration of emission and photochemistry. Annals of Physics, 1929, 12: 169-176
    [236] Thompson R B, Maliwal B P, Feliccia V L, et al. Determination of picomolar concentrations of metal ions using fluorescence anisotropy: biosensing with a "reagentless" enzyme transducer. Analytical Chemistry, 1998, 70(22): 4717-4723
    [237] Weber G. Polarization of fluorescence of macromolecules 1, Theory and experimental method. Biochemical Journal, 1952, 51(2): 145-154
    [238] Weber G. Polarization of fluorescence of macromolecules 3. Fluorescent conjugates of ovalbum in and bovine serum. Biochemical Journal, 1952, 51(2): 155-167
    [239] Canet D, Doering K, Dobson C M, et al. High-sensitivity fluorescence anisotropy detection of protein-folding events: application to alpha-lactalbumin. Biophysical Journal, 2001, 80(4): 1996-2003
    [240] Deng T, Li J S, Jiang J H, et al. A sensitive fluorescence anisotropy method for point mutation detection using core-shell fluorescent nanoparticles and high-fidelity DNA ligase. Chemistry-A European Journal, 2007, 13(27): 7725-7730
    [241] Deng T, Li J S, Jiang J H, et al. Preparation of near-IR fluorescent nanoparticles for fluorescence: Anisotropy-based immunoagglutination assay in whole blood. Advanced Functional Materials, 2006, 16(16): 2147-2155
    [242] Lin M, Nielsen K. Binding of the brucella abortus lipopolysaccharide o-chain fragment to a monoclonal antibody. Journal of Biological Chemistry, 1997, 272(5): 2821-2827
    [243] Hey T, Lipps G, Krauss G. Binding of XPA and RPA to damaged DNA investigated by fluorescence anisotropy. Biochemistry, 2001, 40(9): 2901-2910
    [244] LeTilly V, Royer C A. Fluorescence anisotropy assays implicate protein-protein interactions in regulating trp repressor DNA binding. Biochemistry, 1993, 32(30): 7753-7758
    [245] Huff S, Matsuka Y V, McGavin M J, et al. Interaction of N-terminal fragments of fibronectin with synthetic and recombinant D motifs from its binding protein on Staphylococcus aureus studied using fluorescence anisotropy. Journal of Biological Chemistry, 1994, 269(22): 15563-15670
    [246] Leland P A, Staniszewski K E, Park C, et al. The ribonucleolytic activity of angiogenin. Biochemistry, 2002, 41(4): 1343-1350
    [247] F?rster T. Intramolecular energy migration and fluorescence. Annal Physics, 1948, 2: 55-75
    [248] Wang L, Gaigalas A K, Blasic J, et al. Fluorescence resonance energy transfer between donor-acceptor pair on two oligonucleotides hybridized adjacently to DNA template. Biopolymers, 2003, 72(6): 401-412
    [249] Donia D, Divizia M, Pana A. Use of armored RNA as a standard to construct a calibration curve for real-time RT-PCR. Journal of Virology Methods, Journal of Virological Methods, 2005, 126(1-2): 157-163
    [250] Mouritsen C L, Wittwer C T, Reed G, et al. Detection of Epstein-Barr viral DNA in serum using rapid-cycle PCR. Biochemical Molecular Medecine, 1997, 60(2): 161-168
    [251] Mhlanga M M, Vargas D Y, Fung C W, et al. tRNA-linked molecular beacons for imaging mRNAs in the cytoplasm of living cells. Nucleic Acids Research, 2005, 33(6): 1902-1912
    [252] Peng X H, Cao Z H, Xia J T, et al Real-time detection of gene expression in cancer cells using molecular beacon imaging: new strategies for cancer research. Cancer Research, 2005, 65(5): 1909-1917
    [253] Marras S A E, Kramer F R, Tyagi S. Effciencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Research, 2002, 30(21): e122
    [254] Lakowicz, J. R. Principles of fluorescent spectroscopy. Kluwer Academic Plenum, New York, 1999
    [255] Masuko M, Ohtani H, Ebata K, et al. Optimization of excimer-forming two-probe nucleic acid hybrization method with pyrene as a fluorophore. Nucleic Acids Research, 1998, 26(23): 5409-5416
    [256] Paris P L, Langenhan J M, Kool E T. Probing DNA sequences in solution with a monomer-excimer fluorescence color change. Nucleic Acids Research, 1998, 26(16): 3789-3793
    [257] Fujimoto K, Shimizu H, Inouye M. Unambiguous detection of target DNAs by excimer-monomer switching molecular beacons. Journal of Organic Chemistry, 2004, 69(10): 3271-3275
    [258] Conlon P, Yang C J, Wu Y R, et al. Pyrene excimer signaling molecular beacons for probing nucleic acids. Journal of American Chemical Society, 2008, 130(1): 336-342
    [259] Kostenko E, Dobrikov M, Pyshnyi D, et al. 5’-bis-pyrenylated oligonucleotides displaying excimer fluorescence provide sensitive probes of RNA sequence and structure. Nucleic Acids Research, 2001, 29(17): 3611-3620
    [260] Smalley M K, Silverman S K. Fluorescence of covalently attached pyrene as a general RNA folding probe. Nucleic Acids Research, 2006, 34(1): 152-166
    [261] Lang P, Yeow K, Nichols A, et al. Cellular imaging in drug discovery. Nature Reviews Drug Discovery, 2006, 5: 343-356
    [262] Sako Y, Minoghchi S, Yanagida T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nature Cell Biology, 2000, 2: 168-172
    [263] Ke S, Wen X, Gurfinkel M, et al. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Research, 2003, 63(22): 7870-7875
    [264] Nishi M, Ogawa H, Ito T, et al. Dynamic changes in subcellular localization of mineralocorticoid receptor in living cells: In comparison with glucocorticoid receptor using dual-color labeling with green fluorescent protein spectral variants. Molecular Endocrinology, 2001, 15(7): 1077-1092
    [265] Leonhardt H, Rahn H-P, Weinzierl P, et al. Dynamics of DNA replication factories in living cells. Journal of Cell Biology, 2000, 149 (2): 271-279
    [266] Rajan S S, Vu T Q. Quantum dots monitor TrkA receptor dynamics in the interior of neural PC12 cells. Nano Letters, 2006, 6 (9): 2049-2059
    [267] Liu C. Immunofluorescent technic: application in the study and diagnosis of infectious diseases. Clinical Pediatrics, 1963, 2(9): 490-497
    [268] El-Ganzoury A L A. Evaluation of the fluorescent antibody technique for the diagnosis of smallpox. Journal of Clinical Pathology, 1967, 20(6): 879-882
    [269] Maeia T P, Elizabeth B, Franics T B, et al. Fluorescent-antibody techniques for the identification of group D streptococci: Direct staining method. Applied Microbiology, 1972, 23(3): 571-577
    [270] Xiao Z Y, Shangguan D H, Cao Z H, et al. Cell-specific internalization study of an aptamer from whole cell selection. Chemistry-A European Journal, 2008, 14(9): 1769-1775
    [271] Farokhzad O C, Jon S, Khademhosseini A, et al. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Research, 2004, 64(21): 7668-7672
    [272] Bagalkot V, Farokhzad O C, Langer R, et al. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angewandte Chemie-International Edition, 2006, 118(48): 8329-8332
    [273] Farokhzad O C, Cheng J, Teply B A, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proceedings of NationalAcademy of Sciences of the United States of America, 2006, 103(16): 6315-6320
    [274] Bagalkot V, Zhang L, Farokhzad O C, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letter, 2007, 7(10): 3065-3070
    [275] Moroianu J, Riordan J F. Identification of the nucleolar target signal of human angiogenin. Biochemical and Biophysical Research Communications, 1994, 203(3): 1765-1772
    [276] Tsuji T, Sun Y, Kishimoto K, et al. Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Research, 2005, 65(4): 1352-1360
    [277] Loke S L, Stein C A, Zhang X H, et al. Characterization of oligonucleotide transport into living cells. Proceedings of National Academy of Sciences of the United States of America, 1989, 86(10): 3474-3478
    [278] Diesbach P D, Berens C, N’Kuli F, et al. Identification, purification and partial characterisation of an oligonucleotide receptor in membranes of HepG2 cells. Nucleic Acids Research, 2000, 28(4): 868-874

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700