经济快速发展区域碳排放机制与低碳发展策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
福建省位处我国东南沿海,是经济快速发展区域,也是全球气候变化敏感区域之一。本文以福建省改革开放三十三年社会经济快速发展历程为背景,利用社会经济统计资料,对福建省社会经济系统碳排放量进行计算,并分析其变化特征;运用LMDI分解分析法对能源碳强度、能源结构、能源强度、人均GDP、人口规模等五个因素进行分解分析;运用STIRPAT扩展模型着重就人口与消费对碳排放的影响进行分析。在此基础上,对照2009年中国在哥本哈根气候大会上提出的减排目标,结合福建省森林和海洋碳汇估算,预测2020年福建省减排压力,并提出福建省未来低碳发展策略。研究主要结论有:
     (1)1978-2010年间,福建省社会经济系统碳排放总量由1978年的449.21万t递增到2010年的8988.88万t,年均增长9.8%。其中,能源消费碳排放由383.26万t增加到5817.10万t,年均增长8.87%;水泥碳排放由65.95万t上升到3171.78万t,年均增长率为12.45%。在碳排放总量构成中,能源消费碳排放居主导地位,但比重呈下降趋势,2010年占64.71%;水泥生产碳排放比重呈上升趋势,2010年占35.29%。能源消费碳排放主要来自煤炭消费,平均比重超过75%,但总体呈下降趋势,2010年为73.67%;其次是石油消费,比重约11.94-24.92%;天然气消费碳排放比重最低,不到3%。能源消费强度持续下降,从6.67t/万元降至2.28t/万元,降幅为57.39%。
     (2)从产业结构、经济增长和居民消费三个角度分析福建省能源消费碳排放变化特征,发现:从产业结构来看,第二产业碳排放的比重最大,约76.45-81.09%且第三产业次之(27.53-34.83%),第一产业最低(2.76-3.89%),第二产业碳排放的比重有继续上升趋势,且碳排放强度最大。可见,第二产业碳排放是福建省碳排放增加的主要原因之一。从经济增长与碳排放的关系看,1978-2010年间,福建省经济增长与碳排放呈二次方关系,但特征不明显,经济增长仍将是促进福建省碳排放增大的一个原因,但经济增量与能源消费碳排放增量的关系已出现回落的拐点。从居民消费碳排放情况看,2000-2010年,福建省居民消费产生的碳排放量显著增长,这与经济快速发展和城镇化快速推进带来的消费水平、消费结构变化有关,未来几十年,居民消费有可能成为驱动福建省碳排放增加的另一重要原因。
     (3)通过LMDI分解分析福建省能源消费碳排放驱动机制,发现:经济规模(CY)是促进福建省碳排放量的主导因素,贡献率达184.74%,效应系数为0.6089;人口规模(CP)具有一定的推动作用,贡献率达15.26%,效应系数为0.0503;能源强度(CI)具有显著的抑制作用,贡献率-101.70%,效应系数为-0.3352;能源结构(CN)变化对碳排放也有比较明显的影响,但总体作用微弱,这与改革开放以来福建省一次能源结构变化不明显有关。因此,本文认为,在保持经济持续快速发展的情况下,促进技术进步、提高能源利用效率、降低能源强度、优化能源结构福建省未来低碳发展的重要方向。
     (4)通过LMDI分解分析,能源碳强度效应(CF)在1978-1989年经历了较大波动后,1990年起在0左右小幅度波动。本文分析认为,能源碳强度反映的是单位能源的碳排放量,与能源消费结构和能源碳排放系数密切相关,改革开放以来,福建省能源消费结构总体变化不明显,能源碳排放系数相对稳定,因此,其对能源消费碳排放的解释力十分有限。
     (5)通过STIRPAT扩展模型,从人口规模、人口结构、经济发展水平、技术进步四个方面对福建省总碳排放的人口相关因素进行分析,其中人口结构分别用人口城镇化率、劳动年龄人口比重、居民家庭户规模表征,发现:居民消费水平变化对碳排放的影响力比重(35.56%-38.38%)超过了模型考查的其他因子,有可能成为福建省未来碳排放的新的增长点,这对福建省考虑未来低碳发展策略具有重要的启示。人口结构变化对碳排放的影响力比重为21.68%-38.25%,超过人口规模(22.80%-28.84%)的影响力,其中,家庭户规模变化的影响力比重为33.88%,具有最显著的表现;人口年龄结构变化的影响力比重为29.83%,是人口结构中的第二大影响因素;人口城镇化对碳排放的影响力的比重达21.68%,也有重要的影响。以碳排放强度为指标的技术进步因素对福建省1978-2010年总碳排放的解释力(1.82%-9.01%)远低于模型所考察的其他变量。本文认为,CO2强度反映的是单位GDP的碳排放量,即经济增长与碳排放的关系,具有某些技术进步的意义,但远不止于此,在以高碳能源消耗为特征的经济快速发展区域,其解释力远不及能源强度表征的技术进步因素。
     (6)根据2009年哥本哈根大会上中国提出的减排目标,本文设定2020年福建省减排目标为碳排放强度比2005年降低40%,并计算得出2020年碳排放量预测值与目标值之间尚有5110.06万吨差额,即使扣除森林和海洋碳汇,还有4616万吨减排压力。因此,未来福建省面临的减排形势十分严峻。
     (7)综上研究,从减排和增汇两方面提出福建省未来低碳发展策略,减排策略是:规划引领,重点把握好4个关键领域的低碳发展规划;观念先行,着力构建全民低碳宣传教育体系;科技支撑,在坚持自主创新的同时,加大对外交流与合作。在增汇方面,提出应着力于发挥山海优势,提高碳汇能力。
As one of the sensitive areas for global climate change, located in China's southeast coast, Fujian Province is undergoing a period of rapid economic development since1978. In this paper, we calculated carbon emissions of the socio-economic system of Fujian Province, and analyzed the characteristics of carbon emission of Fujian Province though the method of LMDI, also we focused on the impact of demographic factors affecting the carbon emissions by STIRPAT model. We aimed to get the target that was proposed in the climate conference in Copenhagen in2009, to predicted carbon emissions of Fujian Province in2020, and to find low-carbon development strategies. The main conclusions were:
     (1) From1978to2010, the total carbon emissions of socio-economic system of Fujian Province increased from4,492,100tons to89,888,800tons, and the rate of average annual increase was9.8%; The carbon emissions of energy consumption from8,171,000tons to3,832,600tons with the average annual growth rate of8.87%; The cement carbon emissions increased from659,500tons rose to1,717,800tons, and the average annual growth rate turned out to be12.45%. All of the total carbon emissions, the energy consumption and the produce dominant carbon emissions increased. The coal consumption in energy consumption cabon emissions accounted for more than75%, and the oil consumption accounted for11.94-24.92%. The proportion of carbon emissions of natural gas consumption was the lowest one; the intensity of energy consumption decreased from6.67to of2.28with an amplitude of57.39%.
     (2) The characteristics of carbon emissions of Fujian Province as follows:The second industrial carbon emissions had the largest proportion (76.45-81.09%), and first industry was the lowest one (2.76-3.89%), besides, the proportion of secondary industry carbon emissions continue to increase. Carbon intensity of the second industrial carbon emissions is one of the main causes for the increase of carbon emissions in Fujian Province. From the relationship between economic growth and carbon emissions ranged from1978to2010, Fujian economic growth and carbon emissions are not adapted to the EKC curve, and the economic growth will promote Fujian carbon emissions in the future. From2000to2010, the consumer of carbon emissions significant increased and may be another important reason driving the increase of carbon emissions in Fujian Province.
     (3) Economies of scale (CY) is the dominant factor to promote Fujian Province carbon emissions, the contribution rate was184.74%, the effect coefficient was0.6089; the population size(CP) had a particularly positive effect, and the effect coefficient was0.0503; the energy intensity (CI) has a significant effect, the contribution rate was-101.70%, the effect coefficient tend to be-0.3352. In conclusion, the intensity of carbon dioxide, Energy Structure (CN) had smaller impacts on carbon emissions, and to improve energy efficiency is a key factor affecting the effectiveness of energy conservation in Fujian Province.
     (4) Energy carbon intensity (CF) had been undergoing a large variation range form1978to1989, then keeped around zero since1990. As a indicator of unit energy carbon emission, Energy carbon intensity is closely related to both energy consumption structure and energy coefficient, Because the changes of the energy consumption structure and energy carbon emission coefficient of fujian province were not obvious, energy carbon intensity's explanatory power for energy consumption carbon emissions is very limited.
     (5) We used a STIRPAT model to research the effects of population size and structure, level of economic development and technological advance on carbon emission in Fujian Province, and the population structure was characterized by population urbanization rate, age distribution of working population and resident household size. The results showed that the effects of household consumption on carbon emission exceed the single effect of population size on carbon emission and trend to be a new increment for the carbon emission in Fujian Province. The influence of demographic change on carbon emissions accounted for21.68%-38.25%, which was higher than the influence of the size of the population (22.80%-28.84%), while the population urbanization influence on carbon emissions accounted for38.25%; Besides the most influential population urbanization effect, the household size changes gained a proportion of33.88%within the whole factors and trended to be the second largest influencing factors in population structure; Beyond that, changes in the age structure of the population also accounted for29.83%. Carbon intensity indicators technological progress in Fujian Province in1978-2010explained only1.82%-9.01%variations, which was much lower than the other variables examined in the model. This paper argue that the CO2intensity (CO2/GDP) reflacts the relationship of economic growth and carbon emissions, it has certain significance of technological. But in the area of economic development rapidly, To explain the impact of technological progress on carbon emissions, the energy intensity could be a readily factor rather than the carbon intensity.
     (6) According to the emission reduction targets drew on the Copenhagen Conference (2009), we assumed that the carbon intensity could be40%lower than the intensity of the year2005, and the emission gross to the year2020may still maintain a gap of about51,100,600tons. Moreover, there is a budget of about46.16million tons for emission reduction even with the carbon sink of forest and ocean exclude. The emission reduction situation trends to be grim future for Fujian Province.
     (7) In summary, taking emission reduction and carbon sequestration increasing into account, the low-carbon strategies in Fujian Province should be as follows:focusing on the outline of low-carbon economy and building a good low-carbon promotion system; Moreover, it is significant to strengthen the technical innovation, to address the low-carbon lifestyle, and to strengthen the international and domestic cooperation. To increase the carbon sequestration, we also highlighted the importance of taking advantage of the forest and ocean for improving the capacity of carbon sink.
引文
Ang B W, Zhang F. A survey of index decomposition analysis in energy and environmental studies [J]. Energy,2000,25(12):1149-1176.
    Ang B, Zhang F and Choi K-H. Factorizing changes in energy and environmental indicators through decomposition[J]. Energy,1998,23(6):489-495.
    Ang B. Decomposition analysis for policymaking in energy:which is the preferred method?[J]. Energy policy,2004,32(9):1131-1139.
    Bin S and Dowlatabadi H. Consumer lifestyle approach to US energy use and the related CO2 emissions[J]. Energy policy,2005,33(2):197-208.
    Birdsall N. Another look at population and global warming, World Bank Publications,1992.
    Bongaarts J. Population growth and global warming [J]. Population and Development Review, 1992,18(2):299-319.
    Brown S L, Schroeder P and Kern J S. Spatial distribution of biomass in forests of the eastern USA[J]. Forest Ecology and Management,1999,123(1):81-90.
    Carson R T, Jeon Y and McCubbin D R. The relationship between air pollution emissions and income:US data[J]. Environment and Development Economics,1997,2(04):433-450.
    Casler S D and Rose A. Carbon dioxide emissions in the US economy:A structural decomposition analysis[J]. Environmental and resource economics,1998,11(3):349-363.
    Chapin III S, McFarland J, David McGuire A, et al. The changing global carbon cycle:linking plant-soil carbon dynamics to global consequences[J]. Journal of Ecology,2009,97(5): 840-850.
    Choate A, Freed R, Gibbs M, et al. California's Greenhouse Gas Emissions and Trends over the Past Decade.
    Chung H S and Rhee H C. A residual-free decomposition of the sources of carbon dioxide emissions:a case of the Korean industries[J]. Energy,2001,26(1):15-30.
    Churkina G. Modeling the carbon cycle of urban systems[J]. Ecological Modelling,2008,216(2): 107-113.
    Cole M A. Trade, the pollution haven hypothesis and the environmental Kuznets curve:examining the linkages[J]. Ecological Economics,2004,48(1):71-81.
    Conant R and Paustian K. Spatial variability of soil organic carbon in grasslands:implications for detecting change at different scales[J]. Environmental Pollution,2002,116:S127-S135.
    Dalton M, Kannan H and Kozyrakis C (2007). Raksha:a flexible information flow architecture for software security. ACM SIGARCH Computer Architecture News, ACM.
    Dalton M, O'Neill B, Prskawetz A, et al. Population aging and future carbon emissions in the United States[J]. Energy Economics,2008,30(2):642-675.
    Dhakal S. Urban energy use and carbon emissions from cities in China and policy implications [J]. Energy policy,2009,37(11):4208-4219.
    Dietz T, Rosa, E.A. Rethinking the environmental impacts of population, affluence and technology [J], Human Ecology Review,1994(1):277-300.
    Ehrlich P R, Holdren J P. Impact of population growth[J]. Science,1971,171(3977):1212-1217.
    Filippini M and Pachauri S. Elasticities of electricity demand in urban Indian households [J]. Energy policy,2004,32(3):429-436.
    Focacci A. Empirical analysis of the environmental and energy policies in some developing countries using widely employed macroeconomic indicators:the cases of Brazil, China and India[J]. Energy Policy,2005,33(4):543-554.
    Friedl B, Getzner M. Determinants of CO2 emissions in a small open economy[J]. Ecological Economics,2003,45(1):133-148.
    Guan D, Hubacek K, Weber C L, et al. The drivers of Chinese CO2 emissions from 1980 to 2030[J]. Global Environmental Change,2008,18(4):626-634.
    Hatzigeorgiou E, Polatidis H and Haralambopoulos D. CO2 emissions in Greece for 1990-2002:A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques[J]. Energy,2008,33(3):492-499.
    Heil M T and Selden T M. Carbon emissions and economic development:future trajectories based on historical experience[J]. Environment and Development Economics,2001,6(1):63-83.
    Hoekstra R and Van den Bergh J C. Comparing structural decomposition analysis and index [J]. Energy Economics,2003,25(1):39-64.
    Hoerl A E and Kennard R. W. Ridge regression:biased estimation for nonorthogonal problems[J]. Technometrics,2000,42(1):80-86.
    Holtz-Eakin D, Selden T M. Stoking the fires? CO2 emissions and economic growth[J]. Journal of public economics,1995,57(1):85-101.
    IPCC.2007 IPCC Fourth Assessment Report: Climate Change 2007 (AR4) [R/OL]. http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml.
    IPCC.2001 IPCC Third Assessment Report:Climate Change 2001 (TAR)[R/OL]. http://www.grida.no/publications/other/ipcc tar/.
    Ipek Tunc G, Turiit-Asik S and Akbostanci E. A decomposition analysis of CO2 emissions from energy use:Turkish case[J]. Energy policy,2009,37(11):4689-4699.
    Jiang L and Hardee K. How do recent population trends matter to climate change?, Population Action International Washington, DC,2009.
    Jiang L and O'Neill B C. The energy transition in rural China[J]. International Journal of Global Energy Issues,2004,21(1):2-26.
    Jiang P and Keith Tovey N. Opportunities for low carbon sustainability in large commercial buildings in China[J]. Energy policy,2009,37(11):4949-4958.
    Jianguo L. Countermeasures for Shield Tunneling in Hard and Soft Mixed Strata of Shenzhen Subway[J]. Modern Tunnelling Technology,2010,5:0-15.
    Kim J H. Changes in consumption patterns and environmental degradation in Korea[J]. Structural Change and Economic Dynamics,2002,13(1):1-48.
    Knapp T and Mookerjee R. Population growth and global CO2 emissions:A secular perspective[J]. Energy policy,1996,24(1):31-37.
    Kumbaroglu G, Karali N, Ankan Y. CO2, GDP and RET:An aggregate economic equilibrium analysis for Turkey[J]. Energy Policy,2008,36(7):2694-2708.
    Kurz W A, Dymond C, Stinson G, et al. Mountain pine beetle and forest carbon feedback to climate change[J]. Nature,2008,452(7190):987-990.
    Lantz V and Feng Q. Assessing income, population, and technology impacts on CO2 emissions in Canada:Where's the EKC?[J]. Ecological Economics,2006,57(2):229-238.
    Lee K and Oh W. Analysis of CO2 emissions in APEC countries:A time-series and a cross-sectional decomposition using the log mean Divisia method[J]. Energy policy,2006, 34(17):2779-2787.
    Levine M D and Aden N T. Global carbon emissions in the coming decades:the case of China[J]. Annual Review of Environment and Resources,2008,33:19-38.
    Liao H, Fan Y, Wei Y M. What induced China's energy intensity to fluctuate:1997-2006?[J]. Energy Policy,2007,35(9):4640-4649.
    Liaskas K, Mavrotas G, Mandaraka M, et al. Decomposition of industrial CO2 emissions:The case of European Union[J]. Energy Economics,2000,22(4):383-394.
    Lin G-H, Kearney P E and Jiang T. Phylogenetic k-root and Steiner k-root. Algorithms and Computation, Springer,2000,539-551.
    Liu L C, Fan Y, Wu G, et al. Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use:An empirical analysis[J]. Energy policy,2007,35(11): 5892-5900.
    Martinez-Zarzoso I, Bengochea-Morancho A and Morales-Lage R. The impact of population on CO2 emissions:evidence from European countries[J]. Environmental and resource economics, 2007,38(4):497-512.
    Modigliani F and Brumberg R. Utility analysis and the consumption function:An interpretation of cross-section data[J]. Franco Modiglani,1954:1.
    Pani R and Mukhopadhyay U. Identifying the major players behind increasing global carbon dioxide emissions:a decomposition analysis[J]. The Environmentalist,2010,30(2):183-205.
    Parshall L, Gurney K, Hammer S A, et al. Modeling energy consumption and CO2 emissions at the urban scale:Methodological challenges and insights from the United States[J]. Energy policy,2010,38(9):4765-4782.
    Paul S and Bhattacharya R N. CO2 emission from energy use in India:a decomposition analysis [J]. Energy policy,2004,32(5):585-593.
    Preston, S. H. The effect of population growth on environmental quality[J]. Population Research and Policy Review,1996(15):95-108.
    Roberts J T, Grimes P E. Carbon intensity and economic development 1962-1991:a brief exploration of the environmental Kuznets curve[J]. World Development,1997,25(2):191-198.
    Satterthwaite D. Cities'contribution to global warming:notes on the allocation of greenhouse gas emissions[J]. Environment and Urbanization,2008,20(2):539-549.
    Satterthwaite D. The implications of population growth and urbanization for climate change [J]. Environment and Urbanization,2009,21(2):545-567.
    Schipper K. Commentary on earnings management[J]. Accounting horizons,1989,3(4):91-102.
    Schipper L, Murtishaw S, Khrushch M, et al. Carbon emissions from manufacturing energy use in 13 IEA countries:long-term trends through 1995[J]. Energy Policy,2001,29(9):667-688.
    Schmalensee R, Stoker T M, Judson R A. World carbon dioxide emissions:1950-2050[J]. Review of Economics and Statistics,1998,80(1):15-27.
    Shi A. The impact of population pressure on global carbon dioxide emissions,1975-1996: evidence from pooled cross-country data[J]. Ecological Economics,2003,44(1):2942.
    Sun J. The nature of CO2 emission Kuznets curve[J]. Energy policy,1999,27(12):691-694.
    Tester J W, Drake E M, Driscoll M J, et al. Sustainable energy:choosing among options, MIT press,2005.
    Torvanger A. Manufacturing sector carbon dioxide emissions in nine OECD countries,1973-87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities and international structure[J]. Energy Economics,1991,13(3): 168-186.
    Tucker M. Carbon dioxide emissions and global GDP[J]. Ecological Economics,1995,15(3): 215-223.
    Wang C, Chen J and Zou J. Decomposition of energy-related CO2 emission in China: 1957-2000[J]. Energy,2005,30(1):73-83.
    Wei Y M, Liu L C, Fan Y, et al. The impact of lifestyle on energy use and CO2 emission:An empirical analysis of China's residents[J]. Energy policy,2007,35(1):247-257.
    陈佳瑛和朱勤.家庭模式对碳排放影响的宏观实证分析[J].中国人口科学,2009,(005):68-78.
    陈明星,陆大道,刘慧.中国城市化与经济发展水平关系的省际格局[J].地理学报,2010,65(12).
    陈文颖,高鹏飞,何建坤.用MARKAL-MACRO模型研究碳减排对中国能源系统的影响[J].清华大学学报(自然科学版),2004,44(3):342-346.
    陈学军.福建省开放性经济发展状况及对策[J].重庆科技学院学报:社会科学版,2011,(15):78-80.
    陈婧.人口因素对碳排放的影响[J].西北人口,2011,2:006.
    程迁,莫兴国,王永芬等.羊草草原碳循环过程的模拟与验证[J].自然资源学报,2010.
    楚军红.家庭规模,家庭类型与市场需求分析[J].人口与经济,1997,5:23-26.
    戴民汉,翟惟东,鲁中明等.中国区域碳循环研究进展与展望[J].2004.
    杜婷婷,毛锋,罗锐.中国经济增长与CO2排放演化探析[J].中国人口.资源与环境,2007,17(2):94-99.
    方精云和陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973.
    福建省海洋与渔业厅,《福建省海洋功能区划(2011-2020年》[EB/OL]. http://www.fjof.gov.cn/_xxgk/tzgg/article.html?id=73571.
    福建省人民政府,福建省气象灾害防御规划(2011-2020年)[EB/OL]. http://www.fujian.gov.cn/zwgk/zxwj/szfwj/201301/t20130116_561519.htm.
    福建省人民政府.福建省“十二五”规划纲要[EB/OL].2010.http://www.fujian.gov.cn/zwgk/ghxx/ghjd/125guihua/.
    福建省人民政府.福建省“十二五”林业发展专项规划[EB/OL]2010.http://www.fujian.gov.cn/zwgk/zxwj/szfwj/201107/t20110706_371861.htm
    福建省统计局.《福建省统计年鉴2011》[Z,/OL].2012.http://www.stats-fj.gov.cn/tongjinianjian/dz2011/index-cn.htm
    福建省统计局.《福建省统计年鉴2012》[Z/OL].2013.http://www.stats-fj.gov.cn/tongjinianjian/dz2012/index-cn.htm
    福建省政府,福建省(1997-2010)土地利用总体规划[EB/OL]. http://www.mlr.gov.cn/tdsc/tdgh/200912/t20091210_129030.htm.
    福建省政府,福建省城镇体系规划2010-2030[EB/OL]. http://www.fjjs.gov.cn/Xsgl/Wzxs/tabid/156/ArticleID/28891/Default.aspx
    福建省政府,福建省十二五土地开发利用专项规划[EB/OL]. http://www.fjrd.gov.cn/fjrdww/Desktop.aspx?path=/Homepage/FjrdInfoView&gid=10627596-66cb-40af-8457-c962a50f2b5a.
    管应诚.闽北地区光皮桦不炼山造林试验研究[J].江西林业科技,2010(001):7-8.
    国家海洋局,2007年中国海洋环境质量公报[R/OL].http://www.coi.gov.cn/gongbao/huanjing/201107/t20110729_17483.html
    国家海洋局.2008年中国海洋环境质量公报[R/OL].http://www.coi.gov.cn/gongbao/huanjing/201107/t20110729_17484.html.
    国家统计局.中国统计年鉴2012[Z/OL].2013.http://www.stats.gov.cn/tjsj/ndsj/2012/indexch.htm
    胡初枝,黄贤金.区域碳排放及影响因素差异比较研究——以江苏省为例[J].第二届全国循环经济与生态工业学术研讨会暨中国生态经济学会工业生态经济与技术专业委员会2007年年会论文集,2007,155.
    胡初枝和黄贤金.江苏省碳排放及影响因素区域差异比较研究[A].中国地理学会2007年学术年会论文摘要集,2007.
    雷红鹏,庄贵阳,张楚.把脉中国低碳城市发展——策略与方法,北京:中国环境科学出版社,2011.
    李家洋,陈泮勤,葛全胜等.全球变化与人类活动的相互作用[J].地球科学进展,2005,20(4):371-377.
    李建新.论生育政策与中国人田老龄化[J].人口研究,2000,24(2):9-15.
    李齐云,商凯.二氧化碳排放的影响因素分析与碳税减排政策设计[J].财政研究,2009(10):41-44.
    李凯杰和曲如晓.技术进步对中国碳排放的影响——基于向量误差修正模型的实证研究[J].中国软科学,2012,6:0-8.
    李文星.论年龄结构与居民消费的经验关系[J].当代经济,2008,7:0-20.
    李秀花.福建省森林碳储量的区域分异研究[D],福建师范大学,2010.
    李政,付峰,高丹.中国特大城市客运交通能源需求变化的因素分析[J].清华大学学报:自然科学版,2009,48(11):1945-1948.
    林伯强,魏巍贤,李丕东.中国长期煤炭需求:影响与政策选择[J].经济研究,2007,2:48-58.
    林红和肖庆文.晋江市产业转型升级研究[J].中共福建省委党校学报,2010,(007):48-55.
    林筱文.福建家庭规模和结构类型转变对社会的影响[J].发展研究,1997,(6):30-31.
    刘慧,成升魁,张雷.人类经济活动影响碳排放的国际研究动态[J].地理科学进展,2002,21(5):420-429.
    刘兰翠.我国二氧化碳减排问题的政策建模与实证研究[D],合肥:中国科学技术大学,2006.
    刘永刚,胡光辉,闫争亮等.炼山与未炼山清理对2年生巨尾桉人工林林木生长量及其群落灌草层植物种类组成的影响[J].西部林业科学,2009,38(004):63-69.
    陆莹莹和赵旭.家庭能源消费研究述评[J].水电能源科学,2008,26(1):187-191.
    彭希哲和朱勤.我国人口态势与消费模式对碳排放的影响分析[J].人口研究,2010,(1):48-58.
    秦放鸣和师博.中国能源强度变动的指数分解研究:1980-2007[J].北京师范大学学报:社会科学版,2010,(2):118-126.
    宋德勇和卢忠宝.中国碳排放影响因素分解及其周期性波动研究[J].中国人口资源与环境,2009,19(3):18-24.
    佟金萍,马剑锋,仇蕾.中国能源强度变动的分解与影响因素[J].系统工程,2009,27(010):25-31.
    王琛.我国碳排放与经济增长的相关性分析[J].管理观察,2009,3(14):9-15.
    王俊松和贺灿飞.能源消费,经济增长与中国CO2排放量变化——基于LMDI方法的分解分析[J].长江流域资源与环境,2010,19(1):18-23.
    王中英,王礼茂.中国经济增长对碳排放的影响分析[J].安全与环境学报,2006,6(5):88-91.
    温景光.江苏省碳排放的因素分解模型及实证分析[J].华东经济管理,2010,24(2):29-32.
    武玉英和蒋正华.从各年龄组规模差异分析中国人口发展趋势[J].中国人口科学,1992,(3):30-31.
    徐德福,王让会,李映雪等.陆地生态系统碳收支及其主要影响因素分析[J].中国农业气象,2009,30(4):519-524.
    徐国泉,刘则渊,姜照华.中国碳排放的因素分解模型及实证分析:1995-2004[J].中国人口.资源与环境,2006,16(6):158-161.
    徐玉高,郭元.经济发展,碳排放和经济演化[J].环境科学进展,1999,7(2):54-64.
    杨凯,陈彬彬,陈家金等.福建省气候变化特征分析[J1.中国农学通报,2011,27(8):302-309.
    杨琰清.福建加快转变经济发展方式的必要性和紧迫性[J].科技和产业,2011,11(9):135-138.
    杨玉盛,何宗明,马祥庆,等.论炼山对杉木人工林生态系统影响的利弊及对策[J].自然资源学报,1997,12(2).
    杨玉盛,谢锦升,盛浩等.中亚热带山区土地利用变化对土壤有机碳储量和质量的影响[J].地理学报,2007,62(11):1123-1131.
    姚成胜,朱鹤健,吕晞等.土地利用变化的社会经济驱动因子对福建生态系统服务价值的影响[J].自然资源学报,2009,24(2).
    易丹辉.数据分析与Eviews应用,中国统计出版社,2002.
    袁道先和刘再华.碳循环与岩溶地质环境[M],2003,科学出版社.
    袁志刚和宋铮.人口年龄结构,养老保险制度与最优储蓄率[J].经济研究,2000,11:24-32.
    张雷.经济发展对碳排放的影响[J].地理学报,2003,58(4):629-637.
    张馨,牛叔文,赵春升等.中国城市化进程中的居民家庭能源消费及碳排放研究[J].中国软科学,2011,9:65-75.
    赵敏.上海碳源碳汇结构变化及其驱动机制研究[D].华东师范大学,2010.
    中国煤炭资源网.[EB/OL](2012)http://www.sxcoal.com/sn/2689575/articlenew.html.
    周纪昌.论消费—环境研究与人口—环境研究的融合[J].人口与经济,2006,(2):1-6.
    朱勤,彭希哲,陆志明等.人口与消费对碳排放影响的分析模型与实证[J].中国人口资源与环境,2010,(002):98-102.
    主春杰,马忠玉,王灿,等.中国能源消费导致的C02排放量的差异特征分析[J].生态环境,2006,15(5):1029-1034.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700