新型功能高分子材料的制备及其在生物目标物识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能高分子材料学是研究功能高分子材料规律的一门学科,是高分子材料学领域发展最为迅速,并与化学、物理、生物等紧密联系的一门学科。按照性质和功能可以划分为以下几类,即化学高分子分离材料、高分子膜材、活性高分子材料(光活性、电活性、生物活性高分子材料)、高分子液晶材料、以及高分子智能材料几种。本论文着重研究高分子分离材料,并制备了四种新型功能高分子材料,并对其在生物目标物(磷酸化蛋白质、环境微生物以及蛋白质结晶)的应用进行探索,主要研究结果如下:
     (1)在水相中制备得到一种新型以聚乙烯醇为原料的固定钛离子亲和色谱材料(Ti4+-IMAC),采用扫描电子显微镜和红外光谱对材料的合成过程进行追踪表征。通过优化上样缓冲液的组成以及pH值提升材料从样品中富集磷酸化多肽的能力。研究发现,最佳上样缓冲液体系为邻苯二甲酸氢钾-盐酸缓冲液(pH2.5)。最后将优化后的体系应用在盐胁迫条件下的农大108玉米叶片组织磷酸化蛋白质研究中,首次发现多个与盐胁迫相关的磷酸化蛋白质,这些研究为更好地认识植物抵抗外界盐胁迫的机理提供了证据。
     (2)采用沉淀聚合的方法合成了一种新型的分子印迹聚合物(MIPs),该聚合物以苯基磷酸作为模板,钛离子固定乙二醇甲基丙烯酸磷酸酯作为功能单体,聚乙二醇丙烯酸酯和N,N-亚甲基双丙烯酰胺作为交联剂,去离子水作为致孔剂。首先通过苯基磷酸再吸附试验考察材料对模板分子的吸附能力,之后通过引入干扰物苯甲酸,验证材料对模板分子的选择性。结果表明,材料对苯基磷酸的印迹因子高达2.04,而对苯甲酸的仅有0.24,展现了优异的选择性和特异性。此外,通过对比发现,该MIPs对酪氨酸磷酸化多肽的吸附量和选择性均高于商业化的二氧化钛。最后,该MIPs被成功用于从复杂样品中选择性地分离酪氨酸磷酸化多肽。
     (3)采用聚乙二醇、蓖麻油和六亚甲基二异氰酸酯作为原料,以两种模式甲烷氧化菌作为模板分子,合成了新型的甲烷氧化菌印迹薄膜材料(PU-MIF),通过实验证明其具有良好的生物相容性、选择性以及低吸水性,可以被应用在甲烷氧化菌的筛选研究中。
     (4)将传统分子印迹技术和沉淀剂相结合,合成新型固定沉淀剂分子的印迹聚合物(piMIPs)。在五种标准蛋白质的结晶实验中,piMIPs可以快速的促进高质量晶体的产生,而且也可以促进其它成核剂难以诱导结晶出现的蛋白质(过氧化氢酶)产生晶体。研究结果表明,当MIPs上固定的沉淀剂种类和溶液里游离的沉淀剂种类一致时,piMIPs在促进蛋白质结晶中的表现最佳。通过这种方法,结构未知的脆性X智力缺陷蛋白质片段被成功结晶,并且在其结构中首次发现全新的KH-KHO结构域和分子间二硫键。
Functional polymer materials science is the fastest developed areas of polymer materials, which integrated the disciplines of chemistry, physics, and biology and so on. According to the nature and functions, functional polymer materials could be divided into the following branches, namely, separation polymer materials, polymer membranes, the active polymer materials (photoactive, electro-active and bioactive polymer), polymer liquid crystal materials, and smart polymer materials. The present work focuses on the separation polymer materials, and four types of functional polymer materials were prepared and applied in plant phosphorylation proteomics, protein crystallization and environmental microbiology respectively. The main findings were as follows:
     (1) A novel immobilized titanium ion affinity chromatography material (Ti4+-IMAC) was prepared in the aqueous environment using polyvinyl alcohol as raw material. SEM and IR spectroscopy were used to monitor the synthesis process. The selectivity for phosphopeptide enrichment from sample was improved by optimizing the pH and components of the loading buffer, and the optimal buffer system was found to be potassium hydrogen phthalate/HCl (pH2.5) solution. The final optimized protocol was adapted to salt-stressed maize leaves of Nongda108for phosphoproteome analysis, and numerous phosphorylated proteins/peptides related with salt stress were found for the first time. Thses research would provide solid evidence for comprehensive understanding of the mechanism of plant response to external salinity stress.
     (2) Molecularly imprinted polymer (MIPs) for tyrosine-phosphorylated peptides was synthesized by precipitation polymerization method using phenyl phosphate (PPA) as a template, Ti4+-immobilized ethylene glycol methacrylate phosphate as functional monomer, poly(ethylene glycol) diacrylate and N,N-methylene bisacrylamide as crosslinker, deionized water as porogen. The performance of MIPs was firstly evaluated by rebinding PPA, and then a competition experiment was conducted to assess the selectivity and specificity for PPA when mixed with benzoic acid, a structural analogue. The imprinting factor of the MIPs was up to2.04, compared with just0.24for benzoic acid, suggesting this kind of MIPs held superior selectivity and specificity. The selectivity and capacity of the MIPs for pTyr peptides from a mixture of peptides were considerably higher than that of commercial TiO2. Finally, MIPs were used for pTyr enrichment from a complex sample containing pTyr peptide and tryptic digestion of β-casein, where it demonstrated a clear preference for the pTyr peptide over ones containing phosphorylated serine.
     (3) Molecularly imprinted film based on polyurethane (PU-MIF) was obtained by the reaction among polyethylene glycol, castor oil and hexamethylene diisocyanate using methanotroph bacteria as template. PU-MIF was firstly characterized by biocompatibility test, selectivity and water retention capacity. Finally, PU-MIF was applied in the cell sorting of methanotroph bacteria.
     (4) Precipitant-immobilized molecularly imprinted polymers (piMIPs) were obtained by the combination of traditional molecularly imprinted technique and precipitating agent. For five model proteins, piMIPs facilitated better and faster crystals formation compared to conventional nucleants. piMIPs also can grow crystals which were missed using other nucleants, such as catalase. And results demonstrated if the type of immobilized precipitant was consistent with free one in solution, cognate piMIPs performed best in producing larger crystals and higher diffraction resolution. By this method, high-quality single crystal of a highly flexible and unsolved segment of Fragile X Mental Retardation Protein, whose absence causes the most common inherited mental retardation in human, was obtained without changing its structure. A novel KH domain-KHO and an intermolecular disulfide bond were identified for the first time.
引文
Adelani, P.O., Albrecht-Schmitt, T.E. Syntheses of uranyl diphosphonate compounds using encapsulated cations as structure directing agents. Cryst. Growth Des.2011,11,4227-4237.
    Agrawal, G.K., Iwahashi, H., Rakwal, R. Rice MAPKs. Biochem. Biophys. Res. Commun.2003,302, 171-180.
    Aherne, A., Alexander, C., Payne, M.J., et al. Bacteria-mediated lithography of polymer surfaces. J. Am. Chem. Soc.1996,118,8771-8772.
    Alexander, C., Andersson, H.S., Andersson, L.I., et al. Molecular imprinting science and technology, a survey of the literature for the years up to and including 2003. J. Mol. Recognit.2006,19,106-180.
    Alexandrov, N.N., Brover, V.V., Freidin, S., et al. Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol. Biol.2009,69,179-194.
    Alpert, A.J. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal. Chem.2008,80,62-76.
    Andersson, L., Porath, J. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal. Biochem.1986,154,250-254.
    Aryal, U.K., Krochko, J.E., Ross, A.R.S. Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry. J. Proteome Res.2012,11,425-437.
    Aryal, U.K., Ross, A.R.S. Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry. Rapid Commun. Mass Spectrom.2010,24,219-231.
    Ascano, M.J., Mukherjee, N., Bandaru, P., et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 2012,492,382-388.
    Ashburner, M., Ball, C.A., Blake, J.A., et al. Gene ontology:tool for the unification of biology. Nat. Genet.2000,25,25-29.
    Astoul, E., Laurence, A.D., Totty, N., et al. Approaches to define antigen receptor-induced serine kinase signal transduction pathways. J. Biol. Chem.2003,278,9267-9275.
    Baggiani, C., Giovannoli, C., Anfossi, L., et al. A connection between the binding properties of imprinted and nonimprinted polymers:A change of perspective in molecular imprinting. J. Am. Chem. Soc.2012,134,1513-1518.
    Baker, M.I., Walsh, S.P., Schwartz, Z., et al. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. Part B 2012,100B,1451-1457.
    Beal, E.J., House, C.H., Orphan, V.J. Manganese and iron-dependent marine methane oxidation. Science 2009,325,184-187.
    Beausoleil, S.A., Jedrychowski, M., Schwartz, D., et al. Large-scale characterization of Hela cell nuclear phosphoproteins. Proc. Natl. Acad. Sci.2004,101,12130-12135.
    Bedard, C., Knowles, R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev.1989,53,68-84.
    Beltran, A., Marce, R.M., Cormack, P.A.G., et al. Synthesis by precipitation polymerisation of molecularly imprinted polymer microspheres for the selective extraction of carbamazepine and oxcarbazepine from human urine. J. Chromatogr. A 2009,1216,2248-2253.
    Bergfors, T. M. Protein crystallization techniques, strategies and tips, La Jolla, CA:International University Line,1999, p.39.
    Bi, Y.D., Wang, H.X., Lu, T.C., et al. Large-scale analysis of phosphorylated proteins in maize leaf. Planta 2011,233,383-392.
    Bodenmiller, B., Mueller, L.N., Mueller, M., et al. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Methods 2007,4,231-237.
    Bolisay, L.D., Culver, J.N., Kofinas, P. Molecularly imprinted polymers for tobacco mosaic virus recognition. Biomater.2006,27,4165-4168.
    Boschker, H.T.S., Nold, S.C., Wellsbury, P., et al. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 1998,392,801-805.
    Byrne, M.E., Park, K., Peppas, N.A. Molecular imprinting within hydrogels. Adv. Drug Deliv. Rev. 2002,54,149-161.
    Cantin, G.T., Shock, T.R., Park, S.K., et al. Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry. Anal. Chem.2007,79,4666-4673.
    Caro, E., Masque, N., Marce, R.M., et al. Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples. J. Chromatogr. A 2002,963,169-178
    Chayen, N.E., Saridakis, E. Protein crystallization:from purified protein to diffraction-quality crystal Nat. Methods 2008,5,147-153.
    Chayen, N.E., Saridakis, E., El-Bahar, R., et al. Porous silicon:An effective nucleation-inducing material for protein crystallization. J. Mol. Biol.2001,312,591-595.
    Chayen, N.E., Saridakis, E., Sear, R.P. Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium. Proc. Natl. Acad. Sci. USA 2006,103,597-601.
    Chen, C., Tao, S.M., Qiu, X.Y., et al. Long-alkane-chain modified N-phthaloyl chitosan membranes with controlled permeability. Carbohydr. Polym.2013,91,269-276.
    Chen, C.T., Chen, W.Y., Tsai, P.J., et al. Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis. J. Proteome Res.2007,6,316-325.
    Chen, L.X., Xu, S.F., Li, J.H. Recent advances in molecular imprinting technology:current status, challenges and highlighted applications. Chem. Soc. Rev.2011,40,2922-2942.
    Chen, Y.M., Hoehenwarter, W., Weckwerth, W. Comparative analysis of phytohormone-responsive phosphoproteins in Abrabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. Plant J.2010,63,1-17.
    Chinnusamy, V., Zhu, J., Zhu, J.K., Salt stress signaling and mechanisms of plant salt tolerance. Genet. Eng. NY 2006,27,141-177.
    Chitteti, B.R., Peng, Z.H. Proteome and phosphoproteome differential expression under salinity stress in Rice (Oryza sativa) roots. J. Proteome Res.2007,6,1718-1727.
    Collins, M.O., Yu, L., Choudhary, J.S. Analysis of protein phosphorylation on a proteome-scale. Proteomics 2007,7,2751-2768.
    Conrad R. Soil microorganisms oxidizing atmospheric trace gases (CH4, CO, H2, NO). Indian J. Microbiol.1999,39,193-203.
    De la Fuente van Bentem, S., Hirt, H. Using phosphoproteomics to reveal signaling dynamics in plants. Trends plant Sci.2007,12,404-411.
    Dunfield, P.F., Yuryev, A., Senin, P., et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 2007,450,879-882.
    Emgenbroich, M., Borrelli, C., Shinde, S., et al. A phosphotyrosine-imprinted polymer receptor for the recognition of tyrosine phosphorylated peptides. Chem. Eur. J.2008,14,9516-9529.
    Feng, S., Pan, C., Jiang, X.N., et al. Fe3+ immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis. Proteomics 2007,7,351-360.
    Feng, S., Ye, M.L., Zhou, H.J., et al. Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol. Cell. Proteomics 2007,6, 1656-1665.
    Fermani, S., Falini, G., Minnucci, M., et al. Protein crystallization on polymeric film surfaces. J. Cryst. Growth 2001,224,327-334.
    Feuerstein, L., Morandell, S., Stecher, G., et al. Phosphoproteomic analysis using immobilized metal ion affinity chromatography on the basis of cellulose powder. Proteomics 2005,5,46-54.
    Ficarro, S.B., Mcleland, M.L., Stukenberg, P.T., et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol.2002,20,301-305.
    Flavin, K., Resmini, M. Imprinted nanomaterials:a new class of synthetic receptors. Anal. Bioanal. Chem.2009,393,437-444.
    Foroughi, L.M., Kang, Y., Matzger, A.J. Polymer-induced heteronucleation for protein single crystal growth:structural elucidation of bovine liver catalase and concanavalin a forms. Cryst. Growth Des.2011,11,1294-1298.
    Gaberc-Porekar, V., Menart, V. Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods 2001,49,335-360.
    Galkin, O., Vekilov, P.G. Are nucleation kinetics of protein crystals similar to those of liquid droplets? J. Am. Chem. Soc.2000,122,156-163.
    Georgieva, D.G., Kuil, M.E., Oosterkamp, T.H., et al. Heterogeneous nucleation of three-dimensional protein nanocrystals. Acta Crystallogr., Sect. D:Biol. Crystallogr.2007,63,564-570.
    Gerdts, C.J., Tereshko, V., Yadav, M.K., et al. Time-controlled microfluidic seeding in nL-volume droplets to separate nucleation and growth stages of protein crystallization. Angew. Chem. Int. Ed. 2006,45,8156-8160.
    Grimsrud, P.A., den Os, D., Wenger, C.D., et al. Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol.2010,152, 19-28.
    Gutierrez, R., Martin del Valle, E.M., Galan, M.A. Immobilized metal-ion affinity chromatography: status and trends. Sep. Purif. Rev.2007,36,71-111.
    Haginaka, J., Tabo, H., Matsunaga, H. Preparation of molecularly imprinted polymers for organophosphates and their application to the recognition of organophosphorus compounds and phosphopeptides. Anal. Chim. Acta 2012,748,1-8.
    Han, L.J., Han, C.Y., Bian, J.J., et al. Preparation and characteristics of a novel nano-sized calcium carbonate (nano-CaCO3)-supported nucleating agent of poly (L-lactide). Polym. Eng. Sci.2012,52, 1474-1484.
    Hanson, R.S. Ecology and diversity of methanotrophic organisms. Adv. Appl. Microbiol.1980,26, 3-39.
    Hanson, R.S., Hanson, T. Methanotrophic bacteria. Microbiol. Rev.1996,60,439-471.
    Hantash, J., Bartlett, A., Oldfield, P., et al. Use of an on-line imprinted polymer pre-column, for the liquid chromatographic-UV absorbance determination of carbaryl and its metabolite in complex matrices. J. Chromatogr. A 2006,1125,104-111.
    Hart, B.R., Shea, K.J. Synthetic peptide receptors:molecularly imprinted polymers for the recognition of peptides using peptide-metal interactions. J. Am. Chem. Soc.2001,123,2072-2073.
    Harvey, S.D., Mong, G.M., Ozanich, R.M., et al. Preparation and evaluation of spore-specific affinity-augmented bio-imprinted beads. Anal. Bioanal. Chem.2006,386,211-219.
    Hayden, O., Dickert, F.L. Selective microorganism detection with cell surface imprinted polymers. Adv. Mater.2001,13,1480-1483.
    Hayden, O., Mann, K.J., Krassnig, S., et al. Biomimetic ABO blood-group typing. Angew. Chem. Int. Ed.2006,45,2626-2629.
    Helling, S., Shinde, S., Brosseron, F., et al. Ultratrace enrichment of tyrosine phosphorylated peptides on an imprinted polymer. Anal. Chem.2011,83,1862-1865.
    Hemdan, E.S., Zhao, Y.J., Sulkowski, E., et al. Surface topography of histidine residues:a facile probe by immobilized metal ion affinity chromatography. Proc. Natl. Acad. Sci. USA 1989,86, 1811-1815.
    Heyer, J., Malashenko, Y., Berger, U., et al. Vertreitung methanotropher oligotrochen See (Stechlinsee). Limnologia 1984,16,267-276.
    Hilt, J.Z., Byrne, M.E. Configurational biomimesis in drug delivery:molecular imprinting of biologically significant molecules. Adv. Drug Deliv. Rev.2004,56,1599-1620.
    Holmes, A.J., Costello, A., Lidstrom, M.E., et al. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett.1995,132, 203-208.
    Holmes, A.J., Owens, N.J.P., Murrell, J.C. Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment. Appl. Environ. Microbiol.1995,141, 1947-1955.
    Holmes, A.J., Roslev, P., McDonald, I.R., et al. Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl. Environ. Microbiol.1999,65, 3312-3318.
    Horz, H.P., Rich, V., Avrahami, S., et al. Methane-oxidizing bacteria in a California upland grassland soil:diversity and response to simulated global change. Appl. Environ. Microbiol.2005,71, 2642-2652.
    Hou, S.B., Makarova, K.S., Saw, J.H., et al. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol. Direct 2008,3,26-50.
    Hu, L.H., Zhou, H.J., Li, Y.H., et al. Profiling of endogenous serum phosphorylated peptides by titanium immobilized mesoporous silica particles enrichment and MALDI-TOF MS detection. Anal. Chem.2009,81,94-104.
    Hu, Y.F., Guo, S.X., Li, X.X., et al. Comparative analysis of salt-responsive phosphoproteins in maize leaves using Ti4+-MAC enrichment and ESI-Q-TOF MS. Electrophoresis 2013,34,485-492.
    Huang, Y.P., Liu, Z.S., Zheng, C., et al. Recent developments of molecularly imprinted polymer in CEC. Electrophoresis 2009,30,155-162.
    Hunter, T. Signaling-2000 and beyond. Cell 2000,100,113-127.
    Imanishi, S.Y., Kochin, V., Eriksson, J.E. Optimization of phosphopeptide elution conditions in immobilized Fe affinity chromatography. Proteomics 2007,7,174-176.
    Imanishi, S.Y., Kochin, V., Ferraris, S.E., et al. Reference-facilitated Phosphoproteomics fast and reliable phosphopeptide validation by μLC-ESI-Q-TOF MS/MS. Mol. Cell. Proteomics 2007,6, 1380-1391.
    Imanishi, S.Y., Kouvonen, P., Smatt, J.H., et al. Phosphopeptides enrichment with stable spatial coordination on a titanium dioxide coated glass slide. Rapid Commun. Mass Spectrom,2009,23, 3661-3667.
    Islam, T., Jensen, S., Reigstad, L.J., et al. Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc. Natl. Acad. Sci. USA 2008,105,300-304.
    Jensen, S.S., Larsen, M.R. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun. Mass Spectrom.2007,21,3635-3645.
    Jiang, G.C., Tuo, X.L., Wang, D.R., et al. Synthesis and properties novel polyurethane-hexafluorobutyl methacrylate copolymers. J. Mater. Sci.:Mater. Med.2012,23,1867-1877.
    Jin, Y, Jiang, M., Shi, Y, et al. Narrowly dispersed molecularly imprinted microspheres prepared by a modified precipitation polymerization method. Anal. Chim. Acta 2008,612,105-113.
    Jing, T., Gao, X., Wang, P., et al. Determination of trace tetracycline antibiotics in foodstuffs by liquid chromatography-tandem mass spectrometry coupled with selective molecular-imprinted solid-phase extraction. Anal. Bioanal. Chem.2009,393,2009-2018.
    Kallio, J.M., Hakulinen, N., Kallio, J.P., et al. The contribution of polystyrene nanospheres towards the crystallization of protein. PLoS One 2009,4, e4198-e4204.
    Kane, S., Sano, H., Liu, S.C.H., et al. A method to identify serine kinase substrates:Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J. Biol. Chem. 2002,277,22115-22118.
    Karlsson, B.C.G., Mahony, J.O, Karlsson, J.G., et al. Structure and Dynamics of Monomer-Template Complexation:An Explanation for Molecularly Imprinted Polymer Recognition Site Heterogeneity. J. Am. Chem. Soc.2009,131,13297-13304.
    Kempe, H., Kempe, M. Development and Evaluation of Spherical Molecularly Imprinted Polymer Beads. Anal. Chem.2006,78,3659-3666.
    Kersten, B., Agrawal, G.K., Durek, P., et al. Plant phosphoproteomics:An update. Proteomics 2009,9, 964-988.
    Kersten, B., Agrawal, G.K., Iwahashi, H., et al. Plant phosphoproteomics:A long road ahead. Proteomics 2006,6,5517-5528.
    Knief, C., Lipski, A., Dunfield, P.F. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol.2003,69,6703-6714.
    Kokubu, M., Ishihama, Y, Sato, T., et al. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal. Chem.2005,77, 5144-5154.
    Kolb S. The quest for atmospheric methane oxidizers in forest soils. Environ. Microbiol. Rep.2009,1, 336-346.
    Kryscio, D.R., Peppas, N.A. Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater.2012,8,461-473.
    Kugimiya, A., Babe, F. Phosphate ion sensing using molecularly imprinted artificial polymer receptor. Polym. Bull.2011,67,2017-2024.
    Kugimiya, A., Takei, H. Preparation of molecularly imprinted polymers with thiourea group for phosphate. Anal. Chim. Acta 2006,564,179-183.
    Kugimiya, A., Takei, H. Selective recovery of phosphate from river water using molecularly imprinted polymers. Anal. Lett.2008,41,302-311.
    Larsen, M.R., Thingholm, T.E., Jensen, O.N., et al. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics 2005, 4,873-886.
    Laugesen, S., Bergoin, A., Rossignol, M. Deciphering the plant phosphoproteome:tools and strategies for a challenging task. Plant Physiol. Biochem.2004,42,929-936.
    Lee, J., Xu, Y.D., Chen, Y., et al. Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS. Mol. Cell. Proteomics 2007,6,669-676.
    Lee, W.C., Cheng, C.H., Pan, H.H., et al. Chromatographic characterization of molecularly imprinted polymers. Anal. Bioanal. Chem.2008,390,1101-1109
    Lemeer, S., Ruijtenbeek, R., Pinkse, M.W.H., et al. Endogenous phosphotyrosine signaling in zebrafish embryos. Mol. Cell. Proteomics 2007,6,2088-2099.
    Li, S., Dass, C. Iron (Ⅲ)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal. Biochem.1999,270,9-14.
    Li, Y., Lin, H.Q., Deng, C.H., et al. Highly selective and rapid enrichment of phosphorylated peptides using gallium oxide-coated magnetic microspheres for MALDI-TOF-MS and nano-LC-ESI-MS/MS/MS analysis. Proteomics 2008,8,238-249.
    Lin, C.C., Anseth, K.S. Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing β-cell function. Proc. Natl. Acad. Sci. USA 2011,108,6380-6385.
    Little, C.D., Palumbo, A.V., Herbes, S.E., et al. Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microbiol.1988,54,951-956.
    Liu, Y.Q., Hoshina, K., Haginaka, J. Monodispersed, molecularly imprinted polymers for cinchonidine by precipitation polymerization. Talanta 2010,80,1713-1718.
    Lo, C.Y., Chen, W.Y., Chen, C.T., et al. Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. J. Proteome Res.2007,6,887-893.
    Long, C., Mai, Z., Yang, Y, et al. Determination of multi-residue for malachite green, gentian violet and their metabolites in aquatic products by high-performance liquid chromatography coupled with molecularly imprinted solid-phase extraction. J. Chromatogr. A 2009,1216,2275-2281.
    Lopez, G.P., Ratner, B.D., Tidwell, C.D., et al. Glow discharge plasma deposition of tetraethylene glycol dimethyl ether for fouling-resistant biomaterial surfaces. J. Biomed. Mater. Res.1992,26, 415-439.
    Mahajan, S., Pandey, G.K., Tuteja, N. Calciium-and salt-stress signaling in plants:shedding light on SOS pathway. Arch. Biochem. Biophys.2008,471,146-158.
    Maier, N.M., Lindner, W. Chiral recognition applications of molecularly imprinted polymers:a critical review. Anal. Bioanal. Chem.2007,389,377-397.
    McDonal, I.R., Hall, G.H., Pickup, R.W., et al. Methane oxidation potential and preliminary analysis of methanotrophs in blanket bog peat using molecular ecology techniques. FEMS Microbiol. Ecol. 1996,21,197-211.
    McDonald, I.R., Kenna, E.M., Murrell, J.C. Detection of methanotrophic bacteria in environmental samples with the PCR. Appl. Environ. Microbiol.1995,61,116-121.
    Mcfarland, M.J., Vogel, C.M., Spain, J.C. Methanotrophic cometabolism of trichloroethylene (Tce) in a 2 stage bioreactor system. Water Res.1992,26,259-265.
    McLachlin, D.T., Chait, B.T. Improved beta-elimination-based affinity purification strategy for enrichment of phosphopeptides. Anal. Chem.2003,75,6826-6836.
    McPherson, A., Shlichta, P. Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces. Science 1988,239,385-387.
    Mer, J.L., Roger, P. Production, oxidation, emission and consumption of methane by soils:A review. Europ. J. Soil Biol.2001,37,25-50.
    Miao, S., Wang, P., Su, Z., et al. Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater.2014,10,1692-1704.
    Musco, G., Stier, G., Joseph, C., et al. Three-dimensional structure and stability of the KH domain: molecular insights into the fragile X syndrome. Cell 1996,35,237-245.
    Nakagami, H., Sugiyama, N., Mochida, K., et al. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol.2010,153,1161-1174.
    Nuhse, T.S., Stensballe, A., Jensen, O.N., et al. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol. Cell. Proteomics 2003,2,1234-1243.
    Oda, Y., Nagasu, T., Chait, B.T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol.2001,19,379-382.
    Oprea, S. Synthesis and properties of polyurethane elastomers with castor oil as crosslinker. J. Am. Oil Chem. Soc.2010,87,313-320.
    Ozturk, Z.N., Talame, V, Deyholos, M., et al. Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol. Biol.2002,48,551-573.
    Pandey, A., Podtelejnikov, A.V., Blagoev, B., et al. Analysis of receptor signaling pathways by mass spectrometry:identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl. Acad. Sci. USA 2000,97,179-184.
    Paradela, A., Albar, J.P. Advances in the analysis of protein phosphorylation. J. Proteome Res.2008,7, 1809-1818.
    Parker, R., Flowers, T.J., Moore, A.L., et al. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J. Exp. Bot.2006,57,1109-1118.
    Peck, S.C. Analysis of protein phosphorylation:methods and strategies for studying kinases and substrates. Plant J.2006a,45,512-522.
    Peck, S.C. Phosphoproteomics in Arabidopsis:moving from empirical to predictive science. J. Exp. Bot. 2006b,57,1523-1527.
    Phan, A.T., Kuryavyi, V., Darnell, J.C., et al. Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nat. Struct. Mol. Biol.2011,18,796-805.
    Pinkse, M.W.H., Uitto, P.M., Hilhorst, M.J., et al. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem.2004,76,3935-3943.
    Pitann, B., Zorb, C., Muhling, K.H. Comparative proteome analysis of maize (Zea mays L.) expansins under salinity. J. Plant Nutr. Soil Sci.2009,172,75-77.
    Pol, A., Heijmans, K., Harhangi, H.R., et al. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 2007,450,874-878.
    Polyakov, M.V. Adsorption properties and structure of silica gel. Zhur. Fiz. Khim.1931,2,799-805.
    Porath, J. and Olin, B. Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials:serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry 1983,22,1621-1630.
    Porath, J. Immobilized metal ion affinity chromatography. Prot. Express. Purif.1992,3,263-281.
    Price, C.P., Grzesiak, A.L., Matzger, A.J. Crystalline polymorph selection and discovery with polymer heteronuclei. J. Am. Chem. Soc.2005,127,5512-5517.
    Qi, D.W., Lu, J., Deng, C.H., et al. Development of core-shell structure Fe3O4@Ta2O5 microspheres for selective enrichment of phosphopeptides for mass spectrometry analysis. J. Chromatogr. A 2009a, 1216,5533-5539.
    Qi, D.W., Lu, J., Deng, C.H., et al. Magnetically responsive Fe3O4@C@SnO2 core-shell microspheres: synthesis, characterization and application in phosphoproteomics. J. Phys. Chem. C 2009b,113, 15854-15861.
    Qi, D.W., Mao, Y., Lu, J., et al. Phosphate-functionalized magnetic microspheres for immobilization of Zr4+ ions for selective enrichment of the phosphopeptides. J. Chromatogr. A 2010,1217, 2606-2617.
    Rachkov, A., Minoura, N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochim. Biophys. Acta 2001,1544,255-266.
    Ramadan, N., Porath, J. Fe3+-hydroxamate as immobilized metal affinity-adsorbent for protein chromatography. J. Chromatogr.1985,321,93-104.
    Ramos, A., Hollingworth, D., Adinolfi, S., et al. The structure of the N-terminal domain of the fragile X mental retardation protein:a platform for protein-protein interaction. Structure 2006,14,21-31.
    Reddy, S.M., Phan, Q.T., El-Sharif, H., et al. Protein crystallization and biosensor applications of hydrogel-based molecularly imprinted polymers. Biomacromolecules 2012,13,3959-3965.
    Reinders, J., Sickmann, A. State-of-the-art in phosphoproteomics. Proteomics 2005,5,4052-4061.
    Saridakis, E., Chayen, N.E. Imprinted polymers assisting protein crystallization. Trends Biotechnol. 2013,31,515-520.
    Saridakis, E., Chayen, N.E. Towards a 'universal' nucleant for protein crystallization.Trends Biotechnol. 2009,27,99-106.
    Saridakis, E., Khurshid, S., Govada, L., et al. Protein crystallization facilitated by molecularly imprinted polymers. Proc. Natl. Acad. Sci. USA 2011,108,11081-11086.
    Sato, S., Kotani, H., Nakamura, Y., et al. Structural analysis of Arabidopsis thaliana chromosome 5. I. Sequence features of the 1.6 Mb regions covered by twenty physically assigned P1 clones. DNA Res.1997,4,215-230.
    Schirhagl, R., Hall, E.W., Fuereder, I., et al. Separation of bacteria with imprinted polymeric films. Analyst 2012,137,1495-1499.
    Seidler, K., Lieberzeit, P.A., Dickert, F.L. Application of yeast imprinting in biotechnology and process control. Analyst 2009,134,361-366.
    Shah, U.V., Williams, D.R., Heng, J.Y.Y. Selective crystallization of proteins using engineered nanonucleants. Cryst. Growth Des.2012,12,1362-1369.
    Shen, F., Hu, Y.F., Guan, P., et al. Facile preparation of titanium phosphate-modified chitosan for selective capture of phosphopeptides. J. Sep. Sci.2013,36,540-547.
    Shen, F., Hu, Y.F., Guan, P., et al. Ti4+-phosphate functionalized cellulose for phosphopeptides enrichment and its application in rice phosphoproteome analysis. J. Chromatogr. B 2012,902, 108-115.
    Shen, X.T., Zhou, T.C., Ye, L. Molecular imprinting of protein in pickering emulsion. Chem. Commun. 2012,48,8198-8200.
    Smemo, K.A., Yavitt, J.B. Evidence for anaerobic CH4 oxidation in freshwater peatlands. Geomicrobiol. J.2007,24,583-597.
    Spivak, D.A., Shea, K.J. Investigation into the scope and limitations of molecularimprinting with DNA molecules. Anal. Chim. Acta 2001,435,65-74.
    Steen, H., Kuster, B., Fernandez, M., et al. Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem.2002,277,1031-1039.
    Stensballe, A., Andersen, S., Jensen, O.N. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe affinity chromatography with off-line mass spectrometry analysis. Proteomics 2001,1,207-222.
    Stensballe, A., Jensen, O.N. Phosphoric acid enhances the performance of Fe affinity chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for recovery, detection and sequencing of phosphopeptides. Rapid Commun. Mass Spectrom.2004,18,1721-1730.
    Sugahara, M., Asada, Y., Morikawa, Y., et al. Nucleant-mediated protein crystallization with the application of microporous synthetic zeolites. Acta Crystallogr., Sect. D:Biol. Crystallogr.2008, 64,686-695.
    Sugiyama, N., Nakagami, H., Mochida, K., et al. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol. Syst. Biol.2008,4,193-199.
    Sulkowski, E. Immobilized metal-ion affinity chromatography:imidazole proton pump and chromatographic sequelae:Ⅰ. Proton pump. J. Mol. Recog.1996a,9,389-393.
    Sulkowski, E. Immobilized metal-ion affinity chromatography:imidazole proton pump and chromatographic sequelae:Ⅱ. Chromatographic sequelae. J. Mol. Recog.1996b,9,494-498.
    Sulkowski, E. Purification of proteins by IMAC. Trends Biotechnol.1985,3,1-7.
    Sulkowski, E. The saga of IMAC and MIT. Bioessays 1989,10,170-175.
    Takatsy, A., Vegvari, A., Hjerten, S., et al. Universal method for synthesis of artificial gel antibodies by the imprinting approach combined with a unique electrophoresis technique for detection of minute structural differences of proteins, viruses and cells (bacteria). 1b. Gel antibodies against proteins (hemoglobins). Electrophoresis 2007,28,2345-2350.
    Takehara, M., Ino, K., Takakusagi, Y., et al. Use of layer silicate for protein crystallization:Effects of micromica and chlorite powders in hanging drops. Anal. Biochem.2008,373,322-329.
    Tamayo, F.G., Casillas, J.L., Martin-Esteban, A. Evaluation of new selective molecularly imprinted polymers prepared by precipitation polymerisation for the extraction of phenylurea herbicides. J. Chromatogr. A 2005,1069,173-181.
    Tan, F., Zhang, Y.J., Mi, W., et al. Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver. J. Proteome Res.2008,7,1078-1087.
    Teepe, R., Brumme, B., Beese, F., et al. Nitrous oxide emission and methane consumption following compaction of forest soils. J. Am. Oil Chem. Soc.2004,68,605-611.
    The International Brachypodium Initiative, Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010,463,763-768.
    Thingholm, T.E., Jensen, O.N., Larsen, M.R. Enrichment and separation of nano- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis. Methods. Mol. Bio.2009,527,67-78.
    Thingholm, T.E., Jensen, O.N., Robinson, P.J., et al. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol. Cell. Proteomics 2008,7,661-671.
    Thingholm, T.E., Jorgensen, T.J., Jensen, O.N., et al. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protocols 2006,1,1929-1935.
    Topp E., Hanson R.S. Metabolism of radiatively important trace gases by methane-oxidizing bacteria. J. E Rogers, W. B Whitman (Eds.),1991:71-90.
    Tsai, C.F., Wang, Y.T., Chen, Y.R., et al. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J. Proteome Res.2008,7, 4058-4069.
    Tsekova, D., Popova, S., Nanev, C. Nucleation rate determination by a concentration pulse technique: application on ferritin crystals to show the effect of surface treatment of a substrate. Acta Crystallogr., Sect. D Biol. Crystallogr.2002,58,1588-1592.
    Valverde, R., Pozdnyakova, L, Kajander, T., et al. Fragile X mental retardation syndrome:structure of the KH1-KH2 domains of Fragile X mental retardation protein. Structure 2007,15,1090-1098.
    van Nostrum, C.F. Molecular imprinting:a new tool for drug innovation. Drug Discov. Today:Technol. 2005,2,119-124.
    Verheyen, E., Schillemans, J.P., van Wijk, M.V., et al. Challenges for the effective molecular imprinting of proteins. Biomaterials 2011,32,3008-3020.
    Villen, J., Gygi, S.P. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protocols 2008,3,1630-1638.
    Wang, M.C., Peng, Z.Y., Li, C.L., et al. Proteomic analysis on a high salt tolerance introression strain of Triticum aestivuml thinopyrum ponticum. Proteomics 2008,8,1470-1489.
    Wang, W., Vinocur, B., Altman, A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 2003,218,1-14.
    Wang, X.Q., Yang, P.F., Gao, Q., et al. Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. Planta 2008,228,167-177.
    Whitcombe, M.J. Smart hydrogel crystal gardens. Nat. Chem.2011,3,657-658.
    Wise, M.G., McArthur, J.V., Shimkets, L.J. Methanotroph diversity in landfill soil:isolation of novel type Ⅰ and type Ⅱ methanotrophs whose presence was suggested by culture -independent 16S ribosomal DNA analysis. Appl. Environ. Microbiol.1999,65,4887-4897.
    Xin, H.L., Jiang, X.Y., Gu, J.J., et al. Angiopep-conjugated poly (ethylene glycol)-co-poly (s-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 2011,32,4293-4305.
    Xu, L., Hu, Y.F., Shen, F., et al. Polymer-induced heteronucleation for protein single crystal growth: structural elucidation of bovine liver catalase and concanavalin a forms. J. Chromatogr. A 2013, 1293,85-91.
    Xu, S.Y., Whitin, J.C., Yu, T.T.S., et al. Capture of phosphopeptides using zirconium phosphate nanoplatelets. Anal. Chem.2008,80,5542-5549.
    Yan, H.Y., Wang, F., Wang, H., et al. Miniaturized molecularly imprinted matrix solid-phase dispersion coupled with high performance liquid chromatography for rapid determination of auxins in orange samples. J. Chromatogr. A 2012,1256,1-8.
    Ye, J.Y., Zhang, X.M., Young, C., et al. Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples. J. Proteome Res.2010,9,3561-3573.
    Ye, L., Mosbach, K. The technique of molecular imprinting-principle, state of the art, and future aspects. J. Incl. Phen. Macrocycl. Chem.2001,41,107-113.
    Yeung, Y.G., Wang, Y., Einstein, D.B., et al. Colony-stimulating factor-1 stimulates the formation of multimeric cytosolic complexes of signaling proteins and cytoskeletal components in macrophages. J. Biol. Chem.1998,273,17128-17137.
    Zamora, O., Paniagua, E.E., Cacho, C., et al. Determination of benzimidazole fungicides in water samples by on-line MISPE-HPLC. Anal. Bioanal. Chem.2009,393,1745-1753.
    Zeng, Z., Hoshino, Y., Rodriguez, A., et al. Synthetic Polymer Nanoparticles with Antibody-like Affinity for a Hydrophilic Peptide. ACS Nano 2010,4,199-204.
    Zhan, F.L., Liu, M.Z., Guo, M.Y., et al. Preparation of superabsorbent polymer with slow-release phosphate fertilizer. J. Appl. Polym. Sci.2004,92,3417-3421.
    Zhang, H., Han, B., Wang, T., et al. Mechanisms of plant salt response:insights from proteomics. J. Proteome Res.2012,11,49-67.
    Zhang, M.Q., Wang, Q.Q., Huang, Y.Q. Fragile X mental retardation protein FMRP and the RNA export factor NXF2 associate with and destabilize Nxfl mRNA in neuronal cells. Proc. Natl. Acad. Sci. USA 2007,104,10057-10062.
    Zhang, T.L., Liu, F., Chen, W., et al. Influence of intramolecular hydrogen bond of templates on molecular recognition of molecularly imprinted polymers. Anal. Chim. Acta 2001,450,53-61.
    Zhao, P.X., Zhao, Y., Guo, X.F., et al. Isolation of phosphopeptides using zirconium-chlorophosphonazo chelate-modified silica nanoparticles. J. Chromatogr. A 2012,1218, 2528-2539.
    Zheng, B., Tice, J.D., Roach, L.S., et al. A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew. Chem. Int. Ed.2004,43,2508-2511.
    Zhou, H.J., Watts, J.D., Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol.2001,19,375-378.
    Zhou, H.J., Ye, M.L., Dong, J., et al. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J. Proteome Res.2008,7, 3957-3967.
    Zorb, C., Schmitt, S., Muhling, K.H. Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 2010,10,4441-4449.
    Zorb, C., Schmitt, S., Neeb, A., et al. The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci.2004,167, 91-100.
    Zorb, S., Herbst, R., Forreiter, C., et al. Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics 2009,9,4209-4220.
    怀其勇,杨俊佼,雷荣,等.用于分子识别的分子印迹聚合物固定相.分析测试学报,2001,20,84-89.
    赖家平,何锡文,郭洪生,等.分子印迹技术的回顾、现状与展望.分析化学研究报告,2001,29,836-844.
    刘炼,魏志勇,高军,等.生物可降解聚酯类的合成及应用.中国组织工程研究与临床康复,2008,12,2735-2738.
    谭天伟.分子印迹技术及应用.北京:化学工业出版社,2010,6.
    陶战.我国不同地区稻田甲烷排放量及控制措施研究.农业环境保护,1998,17,1-7.
    张丹.大气甲烷的微生物产生与消耗.沈阳教育学院学报,2009,11,108-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700