镉/钛基纳米复合半导体材料的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米半导体材料由于其独特的光、磁、电等特性,在化工、医药、电子和环境保护等领域得到广泛的应用,成为目前最热门的研究材料之一,其中以硒化镉(CdSe).硫化镉(CdS)、二氧化钛(TiO2)为代表的光催化材料研究居多。但是由于CdS、CdSe极易光腐蚀,光稳定性差;而TiO2的光吸收阈值局限在紫外光区,太阳光利用率低,这些不足极大地限制了它们性能的发挥,针对以上问题,对CdSe、CdS和TiO2进行有目的的改性,以提高其稳定性及光催化性能显得尤为重要。
     本文分别利用负载、复合、掺杂及表面修饰等多种手段对纳米半导体材料(CdSe、CdS、TiO2)改性,制备了各种CdSe、CdS、TiO2复合光催化剂,结合X-射线衍射仪(XRD)、固体紫外可见漫反射(UV-vis DRS)、傅立叶红外光谱仪(FT-IR)、透射电子显微镜(TEM)、X-光电子能谱分析(XPS)、光致发射光谱分析(PL)、电子扫描显微镜(SEM)、拉曼光谱分析(Raman)、热重分析(TG)等多种表征,系统的考查了复合光催化剂的结构、形貌、晶相、吸光特性等理化性能。成功构建了CdSe、CdS、TiO2复合光催化剂光催化降解抗生素的体系,并阐述了可能的降解机理和构效关系。
     本工作主要包括以下三个方面的内容:
     1、硒化镉及其复合光催化剂的制备及其对抗生素废水的光降解行为和机理的研究
     (1)以3-巯基丙酸为稳定剂采用水热法合成结晶度良好的CdSe量子点光催化剂。通过XRD、UV-vis DRS、FT-IR、TEM和XPS等表征手段对CdSe量子点的结构、形貌等进行表征。通过TEM照片知,合成的CdSe量子点颗粒大小均一,分散性好,它们的直径大约在5nm左右。并以头孢氨苄抗生素溶液为模拟废水进行光催化降解实验,探究了各种条件对光催化降解效果的影响,结果表明:当Se/Cd的摩尔比为5/4,以氯化镉为镉源合成的CdSe量子点具有较高的光催化活性。在最优条件下经紫外光照射,CdSe量子点对头孢氨苄废水的降解率达到70.34%。
     (2)以CdSe量子点为敏化剂,采用多步水热法合成了量子点敏化的硒化镉-钨酸铋(CdSe-Bi2WO6)复合光催化剂。利用XRD、SEM、PL、UV-vis DRS等手段对制备的光催化剂进行表征;通过PL分析可知,CdSe-Bi2WO6复合光催化剂的荧光强度比纯Bi2WO6有所减弱,这预示着CdSe-Bi2WO6复合光催化剂的光催化活性将有所提高。实验中以四环素废水为研究对象,考查了复合光催化剂的光催化活性,研究结果表明CdSe的负载量对CdSe-Bi2WO6复合光催化剂的光催化活性有一定的影响,光催化性能随CdSe负载量的增加先增强后减弱,当CdSe的负载量为15%时达到最佳效果。光催化再生实验表明,经量子点敏化的CdSe-Bi2WO6复合光催化剂具有良好的稳定性,5次循环实验后仍保持较高的光催化活性。
     2、硫化镉量子点复合光催化剂的制备及其对抗生素废水的降解效率研究
     (1)以碳纳米管(CNTs)为载体,采用水热法合成了碳纳米管表面负载CdS量子点的复合光催化剂CdS/CNTs。利用XRD、TEM、Raman、UV-vis DRS、PL等手段对制备的光催化剂的形貌、结构进行了表征;考查了不同条件如催化剂中CNTs的含量对CdS/CNTs复合光催化剂光催化降解四环素模拟废水活性的影响,并深入讨论了光催化降解的动力学行为。结果表明,95%-CdS-5%-CNTs复合光催化剂具有较高的光催化活性,降解率达到81.2%。且降解过程符合一级动力学行为。
     (2)采用水热法将CdS量子点与三氧化钨(WO3)半导体材料复合,构建能带交错的异质结复合光催化剂CdS-WO3,通过XRD、SEM、STEM、TEM、 UV-vis DRS、PL等手段对光催化剂的形貌、结构进行表征。以环丙沙星抗生素水溶液为模拟废水进行光催化降解实验,考查了催化剂中CdS的复合量对光催化降解环丙沙星活性的影响。结果显示,30%-CdS-70%-WO3的光催化剂对环丙沙星废水的降解率最高,为88.85%,其活性是相同实验条件下纯W03对环丙沙星废水降解率的3倍。
     3、二氧化钛复合光催化剂的制备及其对抗生素废水的降解行为和选择性研究
     (1)选取氯化钠(NaCl)为氯源,采用固相合成法合成了氯掺杂的Ti02复合光催化剂。通过XRD、SEM、TEM、XPS、UV-vis DRS等对催化剂的晶相、表面结构、形貌、掺杂及吸光特性进行了表征,结合降解实验考查了不同氯源和不同煅烧温度对合成复合光催化剂光催化降解环丙沙星抗生素废水活性的影响。结果表明,以NaCl为氯源掺杂TiO2的复合光催化活性最高,对环丙沙星抗生素废水的降解率达到87.71%。
     (2)以环丙沙星(CIP)为模板分子,以丙烯酰胺(AM)、三羟甲基丙烷丙烯酸酯(TMPTA)、偶氮二异丁腈(AIBN)分别为功能单体、交联剂和引发剂,采用光引发的方式合成了表面分子印迹氯掺杂TiO2光催化剂。利用XRD、SEM、TEM、FT-IR、TG、UV-vis DRS等对制备的表面分子印迹光催化剂的结构、形貌进行表征。考查了不同功能单体、以及不同模板分子与功能单体的摩尔比对表面分子印迹光催化剂降解环丙沙星模拟废水活性的影响。结果显示:当以AM为功能单体,模板分子、功能单体、交联剂三者的摩尔比为1:2:6时,表面分子印迹光催化剂在可见光下对环丙沙星的降解效果最佳,降解率为70.9%。同时结合对不同目标物的对比降解实验,说明了制备的分子印迹光催化剂对环丙沙星具有较好的选择性降解能力。
     (3)以四环素(TC)为模板分子,分别以4-乙烯基吡啶(4-VP)、TMPTA、 AIBN和甲苯作为功能单体、交联剂、引发剂和溶剂,采用微波加热方式合成了表面分子印迹氯掺杂TiO2光催化剂。利用XRD、SEM、TEM、FT-IR、UV-vis DRS等对制备的表面分子印迹光催化剂进行表征,利用降解实验考查了不同溶剂、反应时间以及模板分子与功能单体的不同比例对所制备的表面分子印迹光催化剂光催化降解TC模拟废水活性的影响。结果表明,当模板分子、功能单体、交联剂三者的摩尔比等于1:4:6,微波加热功率为600W,加热时间为90min时得到的表面分子印迹光催化剂对15mg/L的TC溶液的降解达到最佳效果,降解率为72.35%。对不同污染物的降解对比实验表明,表面分子印迹光催化剂对目标污染物TC具有较好的选择性降解能力;并用液质联用等手段阐述了四环素的光催化降解过程。
Semiconductor nano materials have been widely used in chemical, pharmaceutical, electronics, military, aerospace and other fields due to its unique electric, optical, magnetic properties, which have been one of the most popular research materials at present. Among the semiconductor materials, CdSe, CdS, TiO2are the most in-depth study because of the excellent photoelectric properties. But, the CdSe and CdS photocatalysts are easily photocorrosion during the process of photodegradation, and the TiO2is limited by the visible light, so it is need to modified the photocatalysts to improve the photocatalytic activity.
     In this paper, the CdSe, CdS and TiO2were modified by loading, compositing, etc to construct the composite photocatalyst to increase the photocatalytic activity. The samples were characterized with XRD, UV-vis DRS, FT-IR, TEM, XPS, SEM and PL.
     This paper mainly includes the following three aspects:
     1. Preparation and research on the mechanism and photodegradation of antibiotic with CdSe and their composite photocatalysts.
     (1) CdSe nanocrystals were synthesized with3-Mercaptopropionic acid as a stabilizer by hydrothermal method. The structure and properties of CdSe quantum dot will be characterized by XRD, UV-vis DRS, FT-IR, TEM and XPS data. According to the photocatalytic degradation of Cefalexin wastewater, the effect and mechanism of various conditions were discussed. The results show that:theCdSe quantum dots with cadmium chloride as the Cd source, in the molar ratio of Se/Cd to5/4have the highest photocatalytic activity and the degradation ratio of Cefalexin wastewater reached70.34%under the UV light.
     (2) The CdSe-Bi2WO6composite photocatalyst was synthesized by multi-step hydrothermal method via selecting the CdSe nanocrystals as a sensitizer, which is applied to the research on photocatalytic degradation of Ttetracycline wastewater under visible light. The prepared photocatalyst was characterized by XRD, SEM, PL and UV-vis DRS. The content of CdSe has certain effect on the photocatalytic activity of CdSe-Bi2WO6composite photocatalysts. When the load of CdSe was15%, the photocatalytic activity was highest. The CdSe-Bi2WO6composite photocatalyst has good stability and keep high activity after5times of repeated experiments.
     2. Preparation and Research on the photodegradation of antibiotic with CdS composite photocatalyst.
     (1) Carbon nanotubes (CNTs) as a carrier, the CdS/CNTs composite photocatalyst were synthesized by hydrothermal method. The structure and performance of photocatalysts were characterized by XRD, TEM, Raman, UV-vis, DRS, PL etc, and discussed the activity and kinetics of photodegradation. From the results,95%-CdS-5%-CNTs conposite photocatalyst has high photocatalytic activity, the degradation ratio of Tetracycline is81.2%. Moreover, the process of degradation adhere to the first-order kinetic.
     (2) CdS-WO3photocatalyst with heterojunction structure were prepared via the hydrothermal method. The structure and properties of the photocatalyst were characterized by XRD, SEM, STEM, TEM, UV-vis, DRS, PL, etc. The photocatalytic degradation experiments on Ciprofloxacin antibiotic solution was tested. Effects on the photocatalytic activity of different concertration of CdS was investigated and the results show that30%-CdS-70%-WO3composite photocatalyst on degradation of Ciprofloxacin waste water reached88.85%, which is3times of pure WO3.
     3. Preparation and Research on the photodegradation and selection of antibiotic with TiO2composit photocatalyst
     (1) The Cl doped TiO2composite photocatalyst were prepared via a solid-state method with NaCl as the source of chlorine. The crystal phase, surface structure, morphology, doped and optical properties of the photocatalysts were characterized by XRD, SEM, TEM, XPS, UV-vis, DRS, etc. Through doped with different ion and synthesised with different calcination temperature, we can find that the photocatalytic activity of Cl doped TiO2is highest and the degradation ratio of Ciprofloxacin antibiotic waste water reached87.71%.
     (2) The surface molecular imprinted Cl doped TiO2photocatalyst was synthesized by surface molecular imprinted technology using Ciprofloxacin (CEP) as the molecular template. The acrylamide (AM), Trimethylolpropaneacrylate (TMPTA), and2,2-azobisisobutyronitrile (AIBN) were considered to functional monomer, cross-linking and initiate, respectively. The structure, morphology and properties of the imprinted photocatalyst were characterized by XRD, SEM, TEM, FT-IR, TG, UV-vis and DRS, etc. Effects of different functional monomers and different ratio on imprinted photocatalyst were investigated. From the results, when the molecular imprinted photocatalyst with the proportion of molecular template and functional monomer was1:2:6and the AM as the functional monomers, the degradation ratio of Ciprofloxacin under visible light reached70.9%. From the photodegradation experiments with different targets, we can find that the photocatalyst prepared by molecular imprinting technique has better selectivity.
     (3) The Cl doped TiO2imprinted photocatalyst was prepared via surface molecular imprinted technology with a facile microwave-assisted method with Tetracycline (TC) as the molecular template.4-vinyl pyridine (4-VP), Trimethylolpropaneacrylate (TMPTA), and2,2-azobisisobutyronitrile (AIBN) were considered to functional monomer, cross-linking agent and initiate, respectively. The molecular imprinted photocatalyst was characterized by XRD, SEM, TEM, FT-IR, UV-vis, DRS etc. Photocatalytic activity of the surface imprinted photocatalyst with different ratios and different solvents, reaction time, the kind of template molecule and functional monomer is discussed. From the results, we can see that When the template molecule: functional monomer:crosslinking is1:4:6, power of microwave heating is600W, the heating time is90min, the surface imprinted photocatalyst on degradation of TC solution with15mg/L reached to72.35%. At the same time, the mechanism of photocatalytic degradation with surface molecular imprinting Cl doped TiO2photocatalyst were studied.
引文
[1]Palominos R, Mondaca M, Giraldo A, et al. Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions[J]. Catal. Today,2009, 144(1):100-105.
    [2]Xekoukoulotakis N, Xinidis N, Chroni M, et al. UV-A/TiO2 photocatalytic decomposition of erythromycin in water:Factors affecting mineralization and antibiotic activity[J]. Catal. Today,2010,151(1):29-33.
    [3]Brigante M, Schulz P. Remotion of the antibiotic tetracycline by titania and titania-silica composed materials[J]. J. Hazard. Mater.,2011,192(3):1597-1608.
    [4]Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. [J]. Chem. Soc. Rev.,2009,38:253-278.
    [5]Shrestha S, Mills C, Lewington J, et al. Modified Rare Earth Semiconductor Oxide As a New Nucleotide Probe[J]. J. Phys. Chem. B,2006,110:25633-25637.
    [6]Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena[J]. Surf. Sci. Rep.,2008,63(12):515-582.
    [7]Zeng H, Cai W, Liu P, et al. ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal- semiconductor interface, improvement of blue emission and photocatalysis[J]. ACS Nano,2008,2(8):1661-1670.
    [8]Leary R, Westwood A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis[J]. Carbon,2011,49(3):741-772.
    [9]Seery M, George R, Floris P, et al. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis[J]. J. Photochem. Photobiol., A,2007, 189(2):258-263.
    [10]Zheng Y, Zheng L, Zhan Y, et al. Ag/ZnO heterostructure nanocrystals:synthesis, characterization, and photocatalysis[J]. Inorg. Chem.,2007,46(17):6980-6986.
    [11]Chen C, Ma W, Zhao J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chem. Soc. Rev.,2010,39:4206-4219.
    [12]Goswami D. A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes[J]. J. Sol.Energy Eng., 1997,119(5):101-113.
    [13]夏璐.光催化敏化降解含氯有机废水及动力学模拟[D].广西大学,2005.
    [14]唐玉朝,胡春,王怡中.TiO2光催化反应机理及动力学研究进展[J].化学进展,2002,14(3):192-199.
    [15]Davis A, Huang C. A kinetic model describing photocatalytic oxidation using illuminated semiconductors[J]. Chemosphere,1993,26:1119-1135.
    [16]Bhargava R, Gallagher D, Hong X, et al. Optical properties of manganese-doped nanocrystals of ZnS[J]. Phys. Rev. Lett.,1994,72(3):416.
    [17]Elidrissi B, Addou M, Regragui M, et al. Structure, composition and optical properties of ZnS thin films prepared by spray pyrolysis[J]. Mater. Chem. Phys., 2001,68(1):175-179.
    [18]Monroy E, Omnes F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors[J]. Semicond. Sci. Technol.,2003,18(4):R33.
    [19]Park W, King J, Neff C, et al. ZnS-Based Photonic Crystals[J]. Phys. Status Solidi B,2002,229(2):949-960.
    [20]Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNxpowders[J]. J. Phys. Chem. B,2003,107(23): 5483-5486.
    [21]Anderson C, Bard A. An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis[J]. J. Phys. Chem.,1995,99(24):9882-9885.
    [22]Diwald O, Thompson T, Zubkov T, et al. Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light[J]. J. Phys. Chem. B,2004, 108(19):6004-6008.
    [23]Ni M, Leung M, Leung D, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production[J]. Renewable Sustainable Energy Rev.,2007,11(3):401-425.
    [24]Zhang Z, Wang C, Zakaria R, et al. Role of particle size in nanocrystalline TiO2-based photocatalysts[J]. J. Phys. Chem. B,1998,102(52):10871-10878.
    [25]Yu J, Yu J, Ho W, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J]. Chem. Mater.,2002,14(9): 3808-3816.
    [26]Shangguan W, Yoshida A. Synthesis and photocatalytic properties of CdS-intercalated metal oxides[J]. Sol. Energy Mater. Sol. Cells,2001,69(2): 189-194.
    [27]Jang J, Kim H, Joshi U, et al. Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation[J]. Int. J. Hydrogen Energy,2008,33(21):5975-5980.
    [28]Sakthivel S, Geissen S, Bahnemann D, et al. Enhancement of photocatalytic activity by semiconductor heterojunctions:a-Fe2O3, WO3 and CdS deposited on ZnO[J]. J. Photochem. Photobiol., A,2002,148(1):283-293.
    [29]Jing D, Guo L. A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure[J]. J. Phys. Chem. B,2006, 110(23):11139-11145.
    [30]Li G, Zhang D, Yu J. A new visible-light photocatalyst:CdS quantum dots embedded mesoporous TiO2[J]. Environ. Sci. Technol.,2009,43(18):7079-7085.
    [31]Yao W, Yu S, Liu S, et al. Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property[J]. J. Phys. Chem. B,2006, 110(24):11704-11710.
    [32]Lo S, Lin C, Wu C, et al. Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol[J]. J. Hazard. Mater.,2004,114(1):183-190.
    [33]Ho W, Yu J. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles[J]. J. Mol. Catal. A:Chem.,2006,247(1): 268-274.
    [34]刘浩.CdS微晶掺杂玻璃的制备与二阶非线性光学性能研究[D].武汉理工大学,2007.
    [35]田乐成.CdSe微纳结构的制备及其光电性能研究[D].吉林大学,2013.
    [36]谢闯.CdSe纳米晶体的研究[D].天津大学,2007.
    [37]霍鹏伟.基于有机废水降解的表面修饰型空心微珠负载Ti02复合光催化剂 的制备及降解行为和机理研究[D].江苏大学,2011.
    [38]Jankulovska M, Barcelo I, Lana-Villarreal T, et al. Improving the photoelectrochemical response of TiO2 nanotubes upon decoration with quantum-sized anatase nanowires[J]. J. Phys. Chem. C,2013,117:4024-4031.
    [39]Luo T, Cui J, Hu S, et al. Arsenic removal and recovery from copper smelting waste water using TiO2[J]. Environ. Sci. Technol.,2010,44:9094-9098.
    [40]Sun W, Zhou S, You B, et al. Facile fabrication and high photoelectric properties of hierarchically ordered porous TiO2[J]. Chemistry of Materials,2012,24: 3800-3810.
    [41]Tsuchiya H, Macak J, Taveira L, et al. Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes [J]. Electrochem. Commun.,2005,7:576-580.
    [42]Aziz A, Yau Y, Puma G, et al. Highly efficient magnetically separable TiO2-graphene oxide supported SrFe12O19 for direct sunlight-driven photoactivity.[J]. Chem. Eng. J.,2014,235:264-274.
    [43]Ge L, Xu M, Sun M, et al. Fabrication and characterization of nano TiO2 thin films at low temperature[J]. Mater. Res. Bull.,2006,41:1596-1603.
    [44]Parilti N, Akten D. Optimization of TiO2/Fe (III)/solar UV conditions for the removal of organic contaminants in pulp mill effluents[J]. Desalination,2011, 265:37-42.
    [45]Luan X, Chen L, Zhang J, et al. Electrophoretic deposition of reduced graphene oxide nanosheets on TiO2 nanotube arrays for dye-sensitized solar cells. [J]. Electrochim. Acta,2013,30:216-222.
    [46]Shankar K, Mor G, Prakasam H, et al. Highly-ordered TiO2 nanotube arrays up to 220 μm in length:use in water photoelectrolysis and dye-sensitized solar cells[J]. Nanotechnol.,2007,18:065707-065717.
    [47]Hayden S, Allam N, El-Sayed M. TiO2 nanotube/CdS hybrid electrodes: extraordinary enhancement in the inactivation of Escherichia coli [J]. J. Am. Chem. Soc.,2010,132:14406-14408.
    [48]Pan A, Wang S, Liu R, et al. Thermal stability and lasing of CdS nanoweires coated by amorphous silica[J]. Small,2005,1(11):1058-1062.
    [49]Su B, Choy K. Electrostatic assisted aerosol jet deposition of CdS, CdSe and ZnS thin films[J]. Thin Solid Films,2000,361-362:102-106.
    [50]Li X, Xiong Y, Li Z, et al. Large-scale fabrication of TiO2 hierarchical hollow spheres[J]. Inorg. Chem.,2006,45(9):3493-3495.
    [51]Xu D, Liu Z, Liang J, et al. Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol[J]. J. Phys. Chem. B,2005, 109(30):14344-14349.
    [52]Bessekhouad Y, Robert D, Weber J V. Synthesis of photocatalytic TiO2 nanoparticles:optimization of the preparation conditions[J]. J. Photochem. Photobiol., A,2003,157(1):47-53.
    [53]Nam H, Amemiya T, Murabayashi M, et al. Photocatalytic activity of sol-gel TiO2 thin films on various kinds of glass substrates:the effects of Na+and primary particle size[J]. J. Phys. Chem. B,2004,108(24):8254-8259.
    [54]Hattori A, Yamamoto M, Tada H, et al. A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films[J]. Chem. Lett.,1998 (8): 707-708.
    [55]Antonelli D, Ying J. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method[J]. Angew. Chem., Int. Ed. Engl.,1995,34(18): 2014-2017.
    [56]Chang C, Lee Y. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells[J]. Appl. Phys. Lett.,2007,91(5):053503-053503-053503.
    [57]Niitsoo O, Sarkar S, Pejoux C, et al. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells[J]. J. Photochem. Photobiol., A, 2006,181(2):306-313.
    [58]Tachibana Y, Umekita K, Otsuka Y, et al. Charge recombination kinetics at an in situ chemical bath-deposited CdS/nanocrystalline TiO2 interface[J]. J. Phys. Chem. C,2009,113(16):6852-6858.
    [59]Linuner S, Seraji S, Wu Y. Template-based growth of various oxide naorods by sol-gel electrphoresis[J]. Ayd.Funct.Maert,2002,12:59-64.
    [60]Linuner S, Seraji S, Forbess M. Electrophoretic growth of lead zirconate titanate nanordos[J].Ady.Mater.,2001,13:1269-1272.
    [61]Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization[J]. Nature,1999,402: 393-395.
    [62]Xiong Y, Xie Y, Yang J. In situ micelle-template-interface reaction route to CdS nanotubes and nanowires[J]. J.Mater.Chem.,2002,12:3712-3716.
    [63]Patel J, Mighri F, Ajji A, et al. Fatty acid-assisted synthesis of CdS microspheres: physicochemical properties and photocatalytic activity[J]. Mater. Lett.,2013,110: 94-97.
    [64]Xiong S, Xi B, Qian Y. CdS Hierarchical Nanostructures with Tunable Morphologies:Preparation and Photocatalytic Properties[J]. J. Phys. Chem. C, 2010,114:14029-14035.
    [65]Eskandari P, Kazemi F, Zand Z. Photocatalytic reduction of aromatic nitro compounds using CdS nanostructure under blue LED irradiation[J]. J. Photochem. Photobiol., A,2014,274:7-12.
    [66]Zhang B, Yao W, Huang C, et al. Shape effects of CdS photocatalysts on hydrogen production[J]. Int. J. Hydrogen Energy,2013,38(18):7224-7231.
    [67]Jang J S, Joshi U A, Lee J S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production[J]. J. Phys. Chem. C,2007, 111(35):13280-13287.
    [68]Bao N, Shen L, Takata T, et al. Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light[J]. Chem. Mater.,2008,20:110-117.
    [69]Lin G, Zheng J, Xu R. Template-free synthesis of uniform CdS hollow nanospheres and their photocatalytic activities[J]. J. Phys. Chem. C,2008, 112(19):7363-7370.
    [70]Yang J, Yu J, Fan J, et al. Biotemplated preparation of CdS nanoparticles/acterial cellulose hybrid nanofibers for photocatalysis application[J]. J. Hazard. Mater., 2011,189(1):377-383.
    [71]Wang J, Li B, Chen J, et al. Diethylenetriamine-assisted synthesis of CdS nanorods under reflux condition and their photocatalytic performance[J]. J. Alloys Compd.,2012,535:15-20.
    [72]Chen F, Cao Y, Jia D, et al. Facile synthesis of CdS nanoparticles photocatalyst with high performance[J]. Ceram. Int.,2013,39(2):1511-1517.
    [73]Jing D, Guo L. A Novel Method for the Preparation of a Highly Stable and Active CdS Photocatalyst with a Special Surface Nanostructure[J]. J. Phys. Chem. B, 2006,110:11139-11145.
    [74]Hao Q, Xu J, Zhuang X, et al. Template-free synthesis and photocatalytic activity of CdS nanorings[J]. Mater. Lett.,2013,100:141-144.
    [75]Hernandez-Gordillo A, Tzompantzi F, Oros-Ruiz S, et al. Enhanced blue-light photocatalytic H2 production using CdS nanofiber[J]. Catalysis Communications, 2014,45:139-143.
    [76]Wang X, Liu M, Chen Q, et al. Synthesis of CdS/CNTs photocatalysts and study of hydrogen production by photocatalytic water splitting[J]. Int. J. Hydrogen Energy,2013,38(29):13091-13096.
    [77]Wang C, Cao M, Wang P, et al. Preparation, characterization of CdS-deposited graphene-carbon nanotubes hybrid photocatalysts with enhanced photocatalytic activity[J]. Mater. Lett.,2013,108:336-339.
    [78]Aazam E. Environmental remediation of cyanide solutions by photocatalytic oxidation using Au/CdS nanoparticles[J]. J. Ind. Eng. Chem.,2013.
    [79]Wang Q, Li J, An N, et al. Preparation of a novel recyclable cocatalyst wool-Pd for enhancement of photocatalytic H2 evolution on CdS[J]. Int. J. Hydrogen Energy,2013,38(25):10761-10767.
    [80]Li G, Zhang D, Yu J. A New Visible-Light Photocatalyst:CdS Quantum Dots Embedded Mesoporous TiO2[J]. Environ. Sci. Technol.,2009,43:7079-7085.
    [81]Liu X, Pan L, Lv T, et al. CdS sensitized TiO2 film for photocatalytic reduction of Cr(VI) by microwave-assisted chemical bath deposition method[J]. J. Alloys Compd.,2014,583:390-395.
    [82]Wei Z, Li Y, Luo S, et al. Hierarchical heterostructure of CdS nanoparticles sensitized electrospun TiO2 nanofibers with enhanced photocatalytic activity[J]. Sep. Purif. Technol.,2014,122:60-66.
    [83]Chen Z, Xu Y. Ultrathin TiO2 layer coated-CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity[J]. ACS Appl. Mater. Interfaces,2013, 5(24):13353-13363.
    [84]Yang G, Yang B, Xiao T, et al. One-step solvothermal synthesis of hierarchically porous nanostructured CdS/TiO2 heterojunction with higher visible light photocatalytic activity[J]. Appl. Surf. Sci.,2013,283:402-410.
    [85]Wang Q, Li J, Bai Y, et al. Photodegradation of textile dye Rhodamine B over a novel biopolymer-metal complex wool-Pd/CdS photocatalysts under visible light irradiation[J]. J Photochem Photobiol B,2013,126:47-54.
    [86]Lv T, Pan L, Liu X,et al. Visible-light photocatalytic degradation of methyl orange by CdS-TiO2-Au composites synthesized via microwave-assisted reaction[J]. Electrochim. Acta,2012,83:216-220.
    [87]Kahane S V, Sasikala R, Vishwanadh B, et al. CdO-CdS nanocomposites with enhanced photocatalytic activity for hydrogen generation from water[J]. Int. J. Hydrogen Energy,2013,38(35):15012-15018.
    [88]Kim H-i, Kim J, Kim W, et al. Enhanced Photocatalytic and Photoelectrochemical Activity in the Ternary Hybrid of CdS/TiO2WO3 through the Cascadal Electron Transfer[J]. J. Phys. Chem. C,2011,115(19):9797-9805.
    [89]Brus L. Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state[J]. J. Chem. Phys.,1984,80:4403-4409.
    [90]Brus L. Electronic Wave Functions in Semiconductor Clusters:Experiment and Theory[J]. J. Phys. Chem.,1986,90:2555-2560.
    [91]Jr. M, Moronne M, Gin P, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels[J]. Science,1998,281:2013-2015.
    [92]Poznyak S, Talapin D, Shevchenko E, et al. Quantum Dot Chemiluminescence[J]. Nano Lett.,2004,4:693-698.
    [93]Warren C, Chan S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J]. Science,1998,281:2015-2018.
    [94]Chen M, Meng Z, Zhu L, et al. Synthesis of carbon nanomaterials-CdSe composites and their photocatalytic activity for degradation of methylene blue[J]. J. Nanomater.,2012,2012:21.
    [95]Liu X, Ma C, Yan Y, et al. Hydrothermal Synthesis of CdSe Quantum Dots and Their Photocatalytic Activity on Degradation of Cefalexin[J]. hid. Eng. Chem. Res.,2013,52:15015-15023.
    [96]Robel I, Subramanian V, Kuno M, et al. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films[J]. J. Am. Chem. Soc.,2006,128:2385-2393.
    [97]Kambe S, Fujii M, Kawai T, et al. Photocatalytic hydrogen production with Cd(S,Se) solid solution particles:determining factors for the highly efficient photocatlyst[J]. Chem. Phys. Lett.,1984,109:105-109.
    [98]Andrew Frame F, Carroll E, Larsen D, et al. First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light[J]. Chem. Commun.,2008 (19):2206-2208.
    [99]Holmes M, Townsend T, Osterloh F. Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals[J]. Chem. Commun.,2012,48(3):371-373.
    [100]Maeda K, Domen K. New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light[J]. J. Phys. Chem. C,2007,111:7851-7861.
    [101]Liu X, Ma C, Yan Y, et al. Hydrothermal Synthesis of CdSe Quantum Dots and Their Photocatalytic Activity on Degradation of Cefalexin[J]. Ind. Eng. Chem. Res.,2013,52(43):15015-15023.
    [102]Khataee A, Khataee A, Fathinia M, et al. Kinetics and Mechanism of Enhanced Photocatalytic Activity under Visible Light Using Synthesized PrxCdi-xSe Nanoparticles[J]. Ind. Eng. Chem. Res.,2013,52(37):13357-13369.
    [103]Costi R, Saunders A, Elmalem E, et al. Visible Light-Induced Charge Retention and Photocatalysis with Hybrid CdSe-Au Nanodumbbells[J]. Nano Lett.,2008,8: 637-641.
    [104]Frame F, Osterloh F. CdSe-MoS2:A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light[J]. J. Phys. Chem. C,2010, 114:10628-10633.
    [105]Bang J, Lee S, Jang J, et al. Geometric Effect of Single or Double Metal-Tipped CdSe Nanorods on Photocatalytic H2 Generation[J]. J. Phys. Chem. lett.,2012, 3(24):3781-3785.
    [106]Meng Z, Zhu L, Oh W. Preparation and high visible-light-induced photocatalytic activity of CdSe and CdSe-C60 nanoparticles[J]. J. Ind. Eng. Chem.,2012,18(6): 2004-2009.
    [107]Ghosh T, Cho K, Ullah K, et al. High photonic effect of organic dye degradation by CdSe-graphene-TiO2 particles[J]. J. Ind. Eng. Chem.,2013,19(3):797-805.
    [108]Wu Y, Xu F, Guo D, et al. Synthesis of ZnO/CdSe hierarchical heterostructure with improved visible photocatalytic efficiency[J]. Appl. Surf. Sci.,2013,274: 39-44.
    [109]Biswal N, Parida K. Enhanced hydrogen production over CdSe QD/ZTP composite under visible light irradiation without using co-catalyst[J]. Int. J. Hydrogen Energy,2013,38(3):1267-1277.
    [110]Wang C, Thompson R, Baltrus J, et al. Visible Light Photoreduction of CO2 Using CdSe/Pt/Ti02Heterostructured Catalysts[J]. J. Phys. Chem. Lett.,2010,1: 48-53.
    [111]Ho W, Yu J C. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles[J]. J. Mol. Catal. A:Chem.,2006,247(1-2): 268-274.
    [112]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature,1972,238:37-38.
    [113]Carey J, Lawrence J, Tosine H. Photodechloination of PCB'S in the Presence of Titanium Dioxide in Aqueous Suspension[J]. Bulletin of Environmental Contamination & Toxicology,1976,16:697-701.
    [114]Zheng Y, Cai J, Lv K, et al. Hydrogen peroxide assisted rapid synthesis of TiO2 hollow microspheres with enhanced photocatalytic activity[J]. Appl. Catal., B, 2014,147:789-795.
    [115]Andersson M, Osterlund L, Ljungstroem S, et al. Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol[J]. J. Phys. Chem. B,2002,106(41): 10674-10679.
    [116]Testino A, Bellobono I, Buscaglia V, et al. Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach[J]. J. Am. Chem. Soc.,2007,129(12): 3564-3575.
    [117]Wang R, Cai X, Shen F. Preparation of TiO2 hollow microspheres by a novel vesicle template method and their enhanced photocatalytic properties[J]. Ceram. Int.,2013,39(8):9465-9470.
    [118]Lakshminarasimhan N, Bae E, Choi W. Enhanced photocatalytic production of H2 on mesoporous TiO2 prepared by template-free method:role of interparticle charge transfer[J]. J. Phys. Chem. C,2007,111(42):15244-15250.
    [119]He F, Li J, Li T, et al. Solvothermal synthesis of mesoporous TiO2:The effect of morphology, size and calcination progress on photocatalytic activity in the degradation of gaseous benzene[J]. Chem. Eng. J.,2014,237:312-321.
    [120]Yang H, Liu G, Qiao S, et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant{001} facets[J]. J. Am. Chem. Soc.,2009, 131(11):4078-4083.
    [121]Liao J, Shi L, Yuan S, et al. Solvothermal synthesis of TiO2 nanocrystal colloids from peroxotitanate complex solution and their photocatalytic activities[J]. J. Phys. Chem. C,2009,113(43):18778-18783.
    [122]Nagaveni K, Hegde M, Ravishankar N, et al. Synthesis and Structure of Nanocrystalline T1O2 with Lower Band Gap Showing High Photocatalytic Activity[J]. Langmuir,2004,20:2900-2907.
    [123]Zhang X, Wang D, Lopez D, et al. Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment[J]. Chem. Eng.J.,2014,236:314-322.
    [124]Gomathi D, Kottam N, Narasimha M, et al. Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light[J]. Journal of Molecular Catalysis A:Chemical,2010,328:44-52.
    [125]Hou X, Ma J, Liu A, et al. Visible light active TiO2 films prepared by electron beam deposition of noble metals[J]. Nuclear Instruments and Methods in Physics Research B,2010,268:550-554.
    [126]Li J, Ma X, Sun M, et al. Fabrication of nitrogen-doped mesoporous TiO2 layer with higher visible photocatalytic activity by plasma-based ion implantation[J]. Thin Solid Films,2010,519:101-105.
    [127]Kim H, Kim S, Kang J, et al. Graphene oxide embedded into TiO2 nanofiber: Effective hybrid photocatalyst for solar conversion[J]. J. Catal.,2014,309:49-57.
    [128]Chen K, Hu R, Feng X, et al. Bi4Ti3O12/TiO2 heterostructure:Synthesis, characterization and enhanced photocatalytic activity[J]. Ceram. Int.,2013,39(8): 9109-9114.
    [129]Liu C, Yang D, Jiao Y, et al. Biomimetic synthesis of TiO2-SiO2-Ag nanocomposites with enhanced visible-light photocatalytic activity [J]. ACS Appl Mater Interfaces,2013,5(9):3824-3832.
    [130]Chatterjee D, Mahata A. Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface[J]. J. Photochem. Photobiol., A,2002, 153:199-204.
    [131]Yao Z, Jiang Y, Jiang Z, et al. Calcination acid-activation treatment of an anodic oxidation TiO2 Ti film catalyst[J]. Rare Met.,2009,28:428-433.
    [132]Wu W, Liu G, Xie Q, et al. A simple and highly efficient route for the preparation of p-phenylenediamine by reducing 4-nitroaniline over commercial CdS visible light-driven photocatalyst in water[J]. Green Chemistry,2012,14(6):1705-1709.
    [133]Yang L, Yu L, Ray M. Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis[J]. Water Research,2008,42(13):3480-3488.
    [134]Mendez-Arriaga F, Esplugas S, Gimenez J. Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation[J]. Water research,2008,42(3):585-594.
    [135]Li J, Ni Y, Liu J, et al. Preparation, conversion, and comparison of the photocatalytic property of Cd(OH)2, CdO, CdS and CdSe[J]. J. Phys. Chem. Solids,2009,70(9):1285-1289.
    [136]Lhomme L, Brosillon S, Wolbert D. Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media[J]. Chemosphere,2008,70(3):381-386.
    [137]Zhu H, Jiang R, Xiao L, et al. Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation[J]. J. Hazard. Mater.,2009,169(1):933-940.
    [138]Warrier M, Lo M, Monbouquette H, et al. Photocatalytic reduction of aromatic azides to amines using CdS and CdSe nanoparticles[J]. Photochemical & Photo-biological Sciences,2004,3(9):859-863.
    [139]Wang J, Li C, Zhuang H, et al. Photocatalytic degradation of methylene blue and inactivation of Gram-negative bacteria by TiO2 nanoparticles in aqueous suspension[J]. Food Control,2013,34(2):372-377.
    [140]Barakat M, Chen Y, Huang C. Removal of toxic cyanide and Cu (Ⅱ) Ions from water by illuminated TiO2 catalyst[J]. Appl. Catal., B,2004,53(1):13-20.
    [141]Li X, Chen J, Li H, et al. Photoreduction of CO2 to methanol over Bi2 S3/CdS photocatalyst under visible light irradiation[J]. Journal of Natural Gas Chemistry, 2011,20(4):413-417.
    [142]Kalousek V, Tschirch J, Bahnemann D, et al. Mesoporous layers of TiO2 as highly efficient photocatalysts for the purification of air[J]. Superlattices Microstruct., 2008,44(4):506-513.
    [143]Liu B, Torimoto T, Yoneyama H. Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents[J]. J. Photochem. Photobiol., A,1998,113(1):93-97.
    [144]何锡阳,钟俊波,冯发美,等.超声波制备TiO2光催化降解气相苯的研究 [J].四川理工学院学报:自然科学版,2010,23(3):306-308.
    [145]柳丽芬,赵世博,杨凤林.聚苯胺/Ti02-SiO2复合催化剂去除空气中甲醛的研究[J].中国环境科学,2009(4):362-367.
    [146]Jang J, Joshi U, Lee J. Solvothermal Synthesis of CdS Nanowires for Photocatalytic Hydrogen and Electricity Production[J]. J. Phys. Chem. C,2007, 111:13280-13287.
    [147]Yan H, Yang J, Ma G, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J]. J. Catal., 2009,266(2):165-168.
    [148]Thibert A, Frame F, Busby E, et al. Sequestering high-energy electrons to facilitate photocatalytic hydrogen generation in CdSe/CdS nanocrystals[J]. J. Phys. Chem. lett.,2011,2(21):2688-2694.
    [149]闫永胜,潘建明,霍鹏伟.分子印迹技术及其研究进展[D].吉林大学出版社2013.
    [150]Wulff G, Sarhan A. The use of polymers with enzymeanalogues structures for the resolution of racemates.[J]. Angew.Chem.Int.Ed.Engl.,1972,11:341-344.
    [151]Vlatakis G, Andersson L I, Muller R, et al. Drug assay using antibody mimics made by molecular imprinting[J]. Nature,1993,361:645-647.
    [152]Ghosh-Mukerji S, Haick H, Schvartzman M, et al. Selective Photocatalysis by Means of Molecular Recognition[J]. J. Am. Chem. Soc.,2001,123: 10776-10777.
    [153]Paz Y. Preferential photodegradation-why and how?[J]. C. R. Chimie,2006,9: 774-787.
    [154]Shen X, Zhu L, Lia J, et al. Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity[J]. Chem. Commun.,2007,11:1163-1165.
    [155]Shen X, Zhu L, Liu G, et al. Enhanced Photocatalytic Degradation and Selective Removal of Nitrophenols by Using Surface Molecular Imprinted Titania[J]. Environ. Sci. Technol.,2008,42:1687-1692.
    [156]Lu N, Chen S, Wang H, et al. Synthesis of molecular imprinted polymer modified TiO2 nanotube array electrode and their photoelectrocatalytic activity[J]. J. Solid State Chem.,2008,181:2852-2858.
    [157]Fernandez-Alvareza P, Noir M, Guieysse B. Removal and destruction of endocrine disrupting contaminants by adsorption with molecularly imprinted polymers followed by simultaneous extraction and phototreatment[J]. J. Hazard. Mater.,2009,163:1107-1112.
    [158]Yu C, Chen S, Quan X, et al. Separation of Phthalocyanine-like Substances from Humic Acids Using a Molecular Imprinting Method and Their Photochemical Activity under Simulated Sunlight Irradiation[J]. J. Agric. Food Chem.,2009,57: 6927-6931.
    [159]Sharabi D, Paz Y. Preferential photodegradation of contaminants by molecular imprinting on titanium dioxide[J]. Appl. Catal., B,2010,95:169-178.
    [160]Shiraishi Y, Suzuki T, Hirai T. Selective photooxidation of chlorophenols with molecularly imprinted polymers containing a photosensitizer[J]. New J. Chem., 2010,4:714-717.
    [161]Deng F, Li Y, Luo X, et al. Preparation of conductive polypyrrole/TiO2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation[J]. Colloids Surf., A,2012,395(5): 183-189.
    [162]Tang H, Zhu L, Yu C, et al. Selective photocatalysis mediated by magnetic molecularly imprinted polymers[J]. Sep. Purif. Technol.,2012,95:165-171.
    [163]Liu Y, Liu R, Liu C, et al. Enhanced photocatalysis on TiO2 nanotube arrays modified with molecularly imprinted TiO2 thin film[J]. J. Hazard. Mater.,2010, 182:912-918.
    [164]Lee S, Byeon K, Park H, et al. Enhancement of light extraction efficiency of GaN-based light-emitting diode using ZnO sol-gel direct imprinting[J]. Microelectron. Eng.,2011,88:3278-3281.
    [165]Shi L, Paoli V D, Rosenzweig N, et al. Synthesis and Application of Quantum Dots FRET-Based Protease Sensors[J]. J. Am. Chem. Soc.,2006,128: 10378-10379.
    [166]Ying G, Kookana R S, Ru Y. Occurrence and fate of hormone steroids in the environment. [J]. Colloids Surf., B,2002,28:545-551.
    [167]Lagerholm B, Wang M, Ernst L, et al. Multicolor Coding of Cells with Cationic Peptide Coated Quantum Dots[J]. Nano Lett.,2004,4:2019-2022.
    [168]Todaro M, Giorgi M, Tasco V, et al.1.31 Om InGaAs quantum dot light-emitting diodes grown directly in a GaAs matrix by metalorganic chemical-vapor deposition.[J]. Appl. Phys. Lett.,2004,84:2482-2484.
    [169]Jiang J, Tsao S, O'Sullivan T, et al. High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition[J]. Appl. Phys. Lett.,2004,84:2166-2168.
    [170]Tongying P, Plashnitsa V V, Petchsang N, et al. Photocatalytic Hydrogen Generation Efficiencies in One-Dimensional CdSe Heterostructures.[J]. J. Phys. Chem. Lett.,2012,3:3234-3240.
    [171]刘晔.水溶性CdTe量子点的制备,应用及其生物安全性的初步研究[D].厦门大学,2007.
    [172]Wang Y, Mo Y, Zhou L. Synthesis of CdSe quantum dots using selenium dioxide as selenium source and its interaction with pepsin[J]. Spectrochim. Acta, Part A, 2011,79(5):1311-1315.
    [173]Sharma S, Vats T, Dhenadhayalan N, et al. Ligand-dependent transient absorption studies of hybrid polymer:CdSe quantum dot composites[J]. Sol. Energy Mater. Sol. Cells,2012,100:6-15.
    [174]Hamizi N, Johan M. Synthesis and size dependent optical studies in CdSe quantum dots via inverse micelle technique[J]. Mater. Chem. Phys.,2010,124(1): 395-398.
    [175]Etxeberria H, Kortaberria G, Zalakain I, et al. Effect of different aqueous synthesis parameters on the size of CdSe nanocrystals[J]. J. Mater. Sci.,2012, 47(20):7167-7174.
    [176]Yu J, Yu H, Cheng B, et al. The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition[J]. J. Phys. Chem. B,2003,107:13871-13879.
    [177]Li F, Li X. Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment[J]. Appl. Catal., A,2002,228:15-27.
    [178]Aldeek F, Mustin C, Balan L, et al. Enhanced Photostability from CdSe(S)/ZnO Core/Shell Quantum Dots and Their Use in Biolabeling[J]. Eur. J. Inorg. Chem., 2011,2011(6):794-801.
    [179]Yang Q, Tang K, Wang F, et al. A (?)-irradiation reduction route to nanocrystalline CdE (E=Se, Te) at room temperature[J]. Mater. Lett.,2003,57:3508-3512.
    [180]Tan G, Du J, Zhang Q. Structural evolution and optical properties of CdSe nanocrystals prepared by mechanical alloying[J]. J. Alloys Compd.,2009,468: 421-431.
    [181]Warman P. The effect of Amprolium and Aureomycin antibiotic on the nitrification of poultry manure-amended soil[J]. Soil Sci. Soc. Am. J.,1980,44: 1333-1334.
    [182]Baquero F, Martinez J L, Canton R. Antibiotics and antibiotic resistance in water environments[J]. Curr. Opin. Biotechnol.,2008,19(3):260-265.
    [183]Ni Y, Li S, Kokot S. Simultaneous voltammetric analysis of tetracycline antibiotics in foods[J]. Food Chem.,2011,124(3):1157-1163.
    [184]Tao R, Ying G, Su H, et al. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China[J]. Environ. Pollut.,2010,158(6):2101-2109.
    [185]Brigante M, Schulz P. Remotion of the antibiotic tetracycline by titania and titania-silica composed materials[J]. J. Hazard. Mater.,2011,192:1597-1608.
    [186]Palominos R, Mondaca M, Giraldo A, et al. Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions[J]. Catal. Today,2009, 144(1-2):100-105.
    [187]Xekoukoulotakis N, Xinidis N, Chroni M, et al. UV-A/TiO2 photocatalytic decomposition of erythromycin in water:Factors affecting mineralization and antibiotic activity[J]. Catal. Today,2010,151:29-33.
    [188]Zhang L, Wang H, Chen Z, et al. Bi2WO6 micro/nano-structures:Synthesis, modifications and visible-light-driven photocatalytic applications[J]. Appl. Catal., B,2011.
    [189]Obregon S, Colon G Erbium doped TiO2-Bi2WO6 heterostructure with improved photocatalytic activity under sun-like irradiation[J]. Appl. Catal., B,2013, 140-141:299-305.
    [190]Zhang J, Huang Z, Xu Y, et al. Hydrothermal Synthesis of Graphene/Bi2WO6 Composite with High Adsorptivity and Photoactivity for Azo Dyes[J]. Journal of the American Ceramic Society,2013,96(5):1562-1569.
    [191]Alivisatos A P. Semiconductor Clusters, Nanocrystals,and Quantum Dots[J]. Science,1996,271:933-937.
    [192]Lin Y, Hsieh M, Liu C, et al. Photoassisted Synthesis of CdSe and Core-Shell CdSe/CdS Quantum Dots[J]. Langmuir,2005,21:728-734.
    [193]Ge L, Liu J. Synthesis and photocatalytic performance of novel CdS quantum dots sensitized Bi2WOe photocatalysts[J]. Mater. Lett.,2011,65:1828-1831.
    [194]Zhang L, Wong K, Chen Z, et al. AgBr-Ag-Bi2WO6 nanojunction system:A novel and efficient photocatalyst with double visible-light active components[J]. Appl. Catal., A,2009,363(1-2):221-229.
    [195]Ke D, Liu S, Dai K, et al. CdS/Regenerated Cellulose Nanocomposite Films for Highly Efficient Photocatalytic H2 Production under Visible Light Irradiation[J]. J. Phys. Chem. C,2009,113:16021-16026.
    [196]Olek M, Bulsgen T, Hilgendorff M, et al. Quantum Dot Modified Multiwall Carbon Nanotubes[J]. J. Phys. Chem. B,2006,110:12901-12904.
    [197]Li X, Jia Y, Cao A. Tailored Single-Walled Carbon NanotubeCdS Nanoparticle Hybrids for Tunable Optoelectronic Devices[J]. ACS Nano,2010,4:506-512.
    [198]Yang H, Wu S, Duan Y, et al. Surface modification of CNTs and enhanced photocatalytic activity of TiO2 coated on hydrophilically modified CNTs[J]. Appl. Surf. Sci.,2012,258(7):3012-3018.
    [199]Jie G, Li L, Chen C, et al. Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay[J]. Biosens. Bioelectron.,2009,24(11):3352-3358.
    [200]Zhu L, Zhou L, Li H, et al. One-pot growth of free-standing CNTs/TiO2 nanofiber membrane for enhanced photocatalysis[J]. Mater. Lett.,2013,95:13-16.
    [201]Jiang S, Song S. Enhancing the performance of CO3O4/CNTS for the catalytic combustion of toluene by tuning the surface structures of CNTs[J]. Appl. Catal., B,2013,140-141:1-8.
    [202]Zhai T, Fang X, Yoshio Bando, et al. Morphology-Dependent Stimulated Emission and Field Emission of Ordered CdS Nanostructure Arrays[J]. ACS Nano,2009,3:949-959.
    [203]Thostenson E, Li C, Chou T. Nanocomposites in context[J]. Compos. Sci. Technol.,2005,65(3-4):491-516.
    [204]Fang J, Xu L, Zhang Z, et al. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation[J]. ACS Appl. Mater. Interfaces,2013, 5(16):8088-8092.
    [205]Tang Z, Yin X, Zhang Y, et al. Synthesis of Titanate Nanotube-CdS Nanocomposites with Enhanced Visible Light Photocatalytic Activity[J]. Inorg. Chem.,2013,52(20):11758-11766.
    [206]Zhu G, Pan L, Xu T, et al. One-step synthesis of CdS sensitized TiO2 photoanodes for quantum dot-sensitized solar cells by microwave assisted chemical bath deposition method[J]. ACS Appl Mater Interfaces,2011,3(5):1472-1478.
    [207]Liu Y, Yu Y, Zhang W. MoS2/CdS Heterojunction with High Photoelectrochemical Activity for H2 Evolution under Visible Light:The Role of MoS2[J]. J. Phys. Chem. C,2013,117(25):12949-12957.
    [208]Jana T, Pal A, Chatterjee K. Self assembled flower like CdS-ZnO nanocomposite and its photo catalytic activity[J]. J. Alloys Compd.,2014,583:510-515.
    [209]Wang L, Wei H, Fan Y, et al. One-Dimensional CdS/r-Fe2O3 and CdS/Fe3O4 Heterostructures:Epitaxial and Nonepitaxial Growth and Photocatalytic Activity[J]. J. Phys. Chem. C,2009,113:14119-14125.
    [210]McDanie H, Shim M. Size and Growth Rate Dependent Structural Diversification of Fe3O4/CdS Anisotropic Nanocrystal Heterostructures[J]. ACS Nano,2009,3: 434-440.
    [211]Liu X, Hu Q, Zhang X, et al. Generalized and Facile Synthesis of Fe3O4/MS (M) Zn, Cd, Hg, Pb, Co, and Ni) Nanocomposites[J]. J. Phys. Chem. C,2008,112: 12728-12735.
    [212]Li H, Zhang X, Huo Y, et al. Supercritical Preparation of a Highly Active S-Doped TiO2 Photocatalyst for Methylene Blue Mineralization[J]. Environ. Sci. Technol.,2007,41:4410-4414.
    [213]Xie J, Lv X, Chen M, et al. The synthesis, characterization and photocatalytic activity of V(V), Pb(II), Ag(I) and Co(II)-doped Bi2O3[J]. Dyes Pigm.,2008, 77(1):43-47.
    [214]Li X, Li F. Study of Au/Au3+-TiO2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment J]. Environ. Sci. Technol.,2001,35: 2381-2387.
    [215]Yamashita H, Ichihashi Y, Zhang S, et al. Photocatalytic decomposition of NO at 275 K on titanium oxide catalysts anchored within zeolite cavities and framework[J]. Appl. Surf. Sci.,1997,121-122:305-309.
    [216]Li F, Li X. Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment[J]. Appl. Catal., A,2002,228:15-27.
    [217]Dong G, Zhang L. Porous structure dependent photoreactivity of graphitic carbon nitride under visible light[J]. J. Mater. Chem.,2012,22:1160-1166.
    [218]Carey J, Lawrence J, Tosine H. Photodechloination of PCB'S in the Presence of Titanium Dioxide in Aqueous Suspension[J]. Bull. Environ. Contain. Toxicol., 1976,16:697-701.
    [219]Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen Doped Titanium Oxides[J]. Science,2001,293:269-271.
    [220]Deng F, Li Y, Luo X, et al. Preparation of conductive polypyrrole/TiO2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation[J]. Colloids Surf., A,2012,395: 183-189.
    [221]Huo P, Lu Z, Liu X, et al. Preparation molecular/ions imprinted photocatalysts of La3+@POPD/TiO2/fly-ash cenospheres:Preferential photodegradation of TCs antibiotics[J]. Chem. Eng. J.,2012,198-199:73-80.
    [222]Huo P, Lu Z, Liu X, et al. Preparation photocatalyst of selected photodegradation antibiotics by molecular imprinting technology onto TiO2/fly-ash cenospheres[J]. Chem. Eng. J.,2012,189-190:75-83.
    [223]Jiao S, Zheng S, Yin D, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria[J]. Chemosphere,2008,73(3): 377-382.
    [224]Gobel A, Thomsen A, Mcardell C, et al. Occurrence and Sorption Behavior of Sulfonamides, Macrolides, and Trimethoprim in Activated Sludge Treatment[J]. Environ. Sci. Technol.,2005,39:3981-3989.
    [225]Vasconcelos T, Henriques D, Konig A, et al. Photo-degradation of the antimicrobial ciprofloxacin at high pH:identification and biodegradability assessment of the primary by-products[J]. Chemosphere,2009,76(4):487-493.
    [226]Xu H, Zheng Z, Zhang L, et al. Hierarchical chlorine-doped rutile TiO2 spherical clusters of nanorods:Large-scale synthesis and high photocatalytic activity [J]. J. Solid State Chem.,2008,181(9):2516-2522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700