可酸碱调控的手性光学开关的设计及其化学传感性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性是自然界中普遍存在的一种现象,是生命过程的基本特征之一。最为人们熟知的是蛋白质的α-螺旋结构和DNA的双螺旋结构,它们的基本组成单元分别是左旋(L-型)氨基酸和右旋(D-型)核糖,但都具有右手螺旋的二级结构。设计、合成手性功能分子和手性功能聚合物吸引了化学、材料科学、生命科学等诸多学科的广泛关注。其中,手性分子开关因其在化学传感、对映体识别、分子器件及信息存储等领域的广阔应用前景而成为一个热点研究方向。
     手性光学开关是指手性体系在特定外界因素(光、电、热、pH等)刺激下其光学性质表现出可逆变化的过程。通常,以位阻烯烃、偶氮苯、联萘、螺吡喃为基本骨架的小分子光学开关机制基于π-键或σ-键的断裂与形成;超分子聚集体、螺旋聚合物、有机折叠体以及配体呈螺旋排列的金属配合物则通过非共价弱相互作用(氢键、π-π堆积、静电吸引等)的破坏和重组实现手光切换功能。尽管手性开关体系已有大量文献报道,但是,构筑结构简单、响应快速、高度可逆、长使用寿命的手性分子开关仍然极具挑战。
     本论文从模型分子入手,详细研究了手性水杨醛Schiff碱和水杨酰胺衍生物的光谱性质以及在酸-碱作用下的手光信号反转现象。研究发现,在两类手性化合物溶液中加入碱(TBA+OH-),导致CD光谱显著变化,其重要特征是Cotton效应红移、符号反转;若酸化则使该过程完全逆转,循环五次未见信号强度衰减,由此实现了可酸碱调控的手性光学开关。DFT分子构象分析和量子化学理论计算表明,在此脱质子/质子化过程中,伴随着分子内氢键的断裂与形成。基于TDDFT的ECD理论计算与实测CD曲线相当吻合;而且,由激子手性规则可准确预测脱质子前后的Cotton效应符号。此类手光反转源于C-C单键旋转所引起的两种相对稳定构象之间的转变,具有切换快速、高度可逆和无损输出等优点。
     上述发现为合理设计功能单体、手性聚合物基分子开关和化学传感器奠定了基础。按照这个思路,我们开展了以下研究工作:利用ATRP聚合技术和后修饰策略将手性邻羟亚苄胺基(SA)发色团引入聚合物侧链,成功合成了一类新型的手性聚甲基丙烯酸甲酯衍生物P(s-BAPM)s。结果表明,在酸碱诱导下,该聚合物在DMSO溶液中表现出与上述小分子手性开关相同的手光信号反转行为,获得了酸碱可控的聚合物基手性光学开关分子。作为CD/荧光双检测通道化学传感器,该聚合物可在Cl-、Br-、CH3CO2-和C6H5CO2-等多种阴离子共存时高选择性识别氟离子,而且对扁桃酸显示出良好的对映选择性识别效果。
     我们进一步设计了含手性亚胺结构单元的苯乙烯型功能单体(VNP),分别利用RAFT聚合技术和传统的自由基聚合方法制备了均聚物PVNP和共聚物Poly(HEMA-co-VNP)。研究发现,在常见的阴离子(F-、H2PO4-、AcO-、Cl-、Br-和I-)中,只有HSO4-能诱导聚合物的CD光谱发生独特的变化,在~382nm处出现新的(-)-Cotton效应,此外,还伴随荧光发射大大增强。因此这两种聚合物可作为双检测通道传感器高选择性识别硫酸氢根离子。由硫酸氢根诱导的聚合物光谱变化可被碱完全复原,当交替加入HSO4-和OH-时,可观察到CD信号以"ON"-"OFF"方式可逆转变,循环5次未见强度明显衰减。
     共聚物Poly(HEMA-co-VNP)具有优良的亲水性和成膜性,采用简单的旋涂法可在石英片上形成高质量的薄膜。将薄膜浸入NaHSO4水溶液1分钟后取出晾干,在荧光显微镜下观察到明亮的荧光发射。该薄膜探针对HSO4-的检测下限为50μM,比相应的溶液传感器更加灵敏。借助于普通的紫外灯光照可裸眼观察HSO4-试样形成的荧光斑点,经重复检测—纯水冲洗数次其检测效果保持稳定。这是迄今为止报道的第一例可用于检测水性介质中HSO4-离子的聚合物薄膜荧光传感器。
Chirality can be observed on various levels in nature, which is one of basic characteristics of living process. The well-known α-helix protein and double-helix DNA possess the right-handed second structure although the former and the latter consist of levorotatory amino acids and dextrorotatory ribose, respectively. Research related to chiral molecules and chiral polymers has been received increasing attention from different scientific fields including chemistry, materials and life science. Especially, chiroptical switches has become one of the most topics due to the potential applications in the chemosensing, enantioselective recognition, molecular device, data storage and so on.
     A chiral molecular switch is a molecule that can be reversibly shifted between two or more stable states with distinct chiroptical properties. The molecules may be shifted between the states in response to environmental stimuli, such as changes in pH, light, temperature, an electrical current, or in the presence of a ligand. Usually, chiral molecular switches based on the sterically overcrowded olefins, diarylethenes, and helicenes, the reversible and stereochemically controlled transformation of one optically pure diastereomer to another is realized through the cleavage and formation of a π-bond even of σ-bond. For chiral supramolecular aggregates, helical polymers, foldamers and metal complexes, the chiroptical switch is driven by the the cleavage and reorganization hydrogen-bonding, π-π stacking, electrostatic interaction or metal coordination. Although a lot of chiral switch systems have been reported, the development of a chiral molecular switch with structural simplicity, rapid responsiveness, high reversibility, and long lifetime is still challenging.
     Herein we describe a new approach to construct chiral molecular switches with the features of stimuli-controlled and reversible chiroptical inversion. Its fundamental concept involves an interchange of two conformations presenting diverse chiroptical properties by acid/base-mediated C-C single bond rotation. As a proof of principle, two simple chiral molecular switches have been established using N-salicylidene Schiff base and salicylamide as the peculiar skeleton motifs. Upon addition of base in solution, the circular dichroism (CD) spectra of these chiral compounds displayed unique changes featuring an inversion of the Cotton effect's signs, and the original CD profiles can be recoverd thoroughly by acidification. Various spectroscopic studies as well as the conformational analysis combining with time-dependent density functional theory (TDDFT) calculations allowed clear elucidation of the chiroptical inversion mechanism. Furthermore, such a chiroptical inversion may be interpreted in terms of the exciton chirality rule. Compared to the existing molecule-based chiral inversion systems, this promising new type of chiroptical switching molecule is relatively unique as it does not involve any covalent bond formation/breakage and thus possesses distinct advantages, such as fast switching rate, high reversibility and fatigue resistance, and the nondestructive readout. Such dynamic chiroptical inversion systems are expected to find potential applications in molecular recognition, chemosensors, or the construction of molecular-scale devices. More importantly, these findings suggest that the use of the conformational transition about a single bond may serve as the basis for designing chiroptical inversion systems.
     Thus, by using ATRP technique in combination with post-modification the stimuli-responsive chiral salicylidenimino (SA) motif was covalently attached to the pendant group of polymethacrylates to construct a new kind of acid/base-controlled polymeric chiroptical switches. As a chemosensor, the resulting polymer showed high selectivity for F-relative to other anions including Cl-, Br-, CH3CO2, and C6H5CO2in DMSO solution as judged from fluorescence and circular dichroism spectrophotometric titrations. Moreover, this dynamic chiroptical inversion system can be employed as an enantioselective chemosensor for a-hydroxy acids such as mandelic acid.
     In addition, we designed a new functional monomer containing chiral imine unit, N-{[2-(4-vinylbenzyloxy)-1-naphthyl]-methylene}-(,S)-2-phenylglycinol (VNP). The homopolymer PVNP and copolymer poly(HEMA-co-VNP) were synthesized through RAFT and conventional free radical polymerization, respectively. The two polymers showed a highly selective red-shifted emission and a unique chiroptical response upon HSO4-binding in organic solution. Interestingly, the HSO4--induced CD or fluorescence signal can be totally reversed with addition of base and eventually recovered the initial state, leading to a reproducible molecular switch with two distinguished "on" and "off' states. As expected, the copolymer has excellent hydrophilicity, flexibility and good film-forming properties. Thus, high-quality film probe could be easily fabricated on quartz plates through spin-casting techniques. The resultant polymeric films can recognize HSO4-ion among a series of common anions in aqueous solution with high selectivity and sensitivity; the detection limit determined based on the S/B criteria is ca.50μM. The promising new film probe for HSO4-has distinct characteristics such as rapid response, enough stability in aqueous media, and practicality. To the best of our knowledge, until now no similar reports on polymer-based fluorescent sensors, particularly polymeric film probe, have been made for the selective detection of bisulfate ions in aqueous media.
引文
1. Guo, P. Z.; Liu, M. H.; Zhao, X. S. Studies of chiroptical switch. Prog. Chem. 2008,20(5),644-649.
    2. Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Solvophobically driven folding of nonbiological oligomers. Science 1997,277(5333),1793-1796.
    3. Ueshima, R.; Asami, T. Single-gene speciation by left-right reversal-A land-snail species of polyphyletic origin results from chirality constraints on mating. Nature 2003,425(6959),679-679.
    4. Youatt, J. B.; Brown, R. D. Origins Of Chirality In Nature-a reassessment of the postulated role of bentonite. Science 1981,212(4499),1145-1146.
    5. Prins, L. J.; Huskens, J.; de Jong, F.; Timmerman, P.; Reinhoudt, D. N. Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly. Nature 1999,398(6727),498-502.
    6. Yashima, E.; Maeda, K.; Nishimura, T. Detection and amplification of chirality by helical polymers. Chem.Eur. J.2004,10(1),42-51.
    7. Asakawa, M.; Brancato, G.; Fanti, M.; Leigh, D. A.; Shimizu, T.; Slawin, A. M. Z.; Wong, J. K. Y.; Zerbetto, F.; Zhang, S. W. Switching "on" and "off' the expression of chirality in peptide rotaxanes.J. Am. Chem. Soc.2002,124(12),2939-2950.
    8. Wang, Z. Y.; Todd, E. K.; Meng, X. S.; Gao, J. P. Dual modulation of a molecular switch with exceptional chiroptical properties. J. Am. Chem. Soc.2005, 127(33), 11552-11553.
    9. Goto, H.; Yashima, E. Electron-induced switching of the supramolecular chirality of optically active polythiophene aggregates.J. Am. Chem. Soc.2002,124(27), 7943-7949.
    10. Zhu, Z. G.; Cui, J. X.; Zhang, J.; Wan, X. H. Hydrogen bonding of helical vinyl polymers containing alanine moieties:a stabilized interaction of helical conformation sensitive to solvents and pH. Polym. Chem.2012,3(3),668-678.
    11. Guo, P. Z.; Liu, M. H. Fabrication of chiral Langmuir-Schaefer films of achiral amphiphilic Schiff base derivatives through an interfacial organization. Langmuir 2005,21(8),3410-3412.
    12. Guo, P. Z.; Zhang, L.; Liu, M. H. A supramolecular chiroptical switch exclusively from an achiral amphiphile. Adv. Mater.2006,18(2),177-180.
    13. Miyake, H.; Tsukube, H. Coordination chemistry strategies for dynamic helicates: time-programmable chirality switching with labile and inert metal helicates. Chem. Soc, Rev.2012,41(21),6977-6991.
    14. Soloshonok, V. A.; Ueki, H.; Moore, J. L.; Ellis, T. K. Design and synthesis of molecules with switchable chirality via formation and cleavage of metal-ligand coordination bonds. J.Am. Chem. Soc.2007,129(12),3512-3513.
    15. Johnson, R. S.; Yamazaki, T.; Kovalenko, A.; Fenniri, H. Molecular basis for water-promoted supramolecular chirality inversion in helical Rosette nanotubes. J. Am. Chem. Soc.2007,129(17),5735-5743.
    16. Sakurai, S. I.; Okoshi, K.; Kumaki, J.; Yashima, E. Two-dimensional surface chirality control by solvent-induced helicity inversion of a helical polyacetylene on graphite. J. Am. Chem. Soc.2006,128(17),5650-5651.
    17. Cheuk, K. K. L.; Lam, J. W. Y.; Lai, L. M.; Dong, Y. P.; Tang, B. Z. Syntheses, hydrogen-bonding interactions, tunable chain helicities, and cooperative supramolecular associations and dissociations of poly(phenylacetylene)s bearing L-valine pendants:Toward the development of proteomimetic polyenes. Macromolecules 2003,36(26),9752-9762.
    18. Tang, H. Z.; Boyle, P. D.; Novak, B. M. Chiroptical switching polyguanidine synthesized by helix-sense-selective polymerization using [(R)-3,3'-dibromo-2,2'-binaphthoxy](di-tert-butoxy)titanium(IV) catalyst. J. Am. Chem. Soc.2005,127(7), 2136-2142.
    19. Langeveld-Voss, B. M. W.; Christiaans, M. P. T.; Janssen, R. A. J.; Meijer, E. W. Inversion of optical activity of chiral polythiophene aggregates by a change of solvent. Macromolecules 1998,31(19),6702-6704.
    20. Nakashima, H.; Koe, J. R.; Torimitsu, K.; Fujiki, M. Transfer and amplification of chiral molecular information to polysilylene aggregates. J. Am. Chem. Soc.2001, 123(20),4847-4848.
    21. Nakashima, H.; Fujiki, M.; Koe, J. R.; Motonaga, M. Solvent and temperature effects on the chiral aggregation of poly(alkylarylsilane)s bearing remote chiral groups. J. Am. Chem. Soc.2001,123(9),1963-1969.
    22. Fujiki, M.; Koe, J. R.; Motonaga, M.; Nakashima, H.; Terao, K.; Teramoto, A. Computing handedness:quantized and superposed switch and dynamic memory of helical polysilylene. J. Am. Chem. Soc.2001,123(26),6253-6261.
    23. Li, J.; Schuster, G. B.; Cheon, K. S.; Green, M. M.; Selinger, J. V. Switching a helical polymer between mirror images using circularly polarized light. J. Am. Chem. Soc.2000,122(11),2603-2612.
    24. Li, C. Z.; Jiang, X. K.; Li, Z. T.; Gao, X.; Wang, Q. R. Foldamer-based molecular recognition. Chinese J. Org. Chem.2007,27(2),188-196.
    25. Suk, J. M.; Naidu, V. R.; Liu, X. F.; Lah, M. S.; Jeonet, K. S. A Foldamer-based chiroptical molecular switch that displays complete inversion of the helical sense upon anion binding. J. Am. Chem. Soc.2011,133(35),13938-13941.
    26. Hou, J. L.; Yi, H. P.; Shao, X. B.; Li, C.; Wu, Z. Q.; Jiang, X. K.; Wu, L. Z.; Tung, C. H.; Li, Z. T. Helicity induction in hydrogen-bonding-driven zinc porphyrin foldamers by chiral C-60-incorporating histidines. Angew. Chem., Int. Ed.2006,45(5), 796-800.
    27. Waki, M.; Abe, H.; Inouye, M. Translation of mutarotation into induced circular dichroism signals through helix inversion of host polymers. Angew. Chem., Int. Ed. 2007,46(17),3059-3061.
    28. Maurizot, V.; Dolain, C.; Huc, I. Intramolecular versus intermolecular induction of helical handedness in pyridinedicarboxamide oligomers. Eur. J. Org. Chem.2005, 1293-1301.
    29. Inai, Y.; Ousaka, N.; Okabe, T. Mechanism for the noncovalent chiral domino effect:New paradigm for the chiral role of the N-terminal segment in a 3(10)-helix. J. Am. Chem. Soc.2003,125(27),8151-8162.
    30. Inai, Y; Tagawa, K.; Takasu, A.; Hirabayashi, T.; Oshikawa, T.; Yamashita, M. Induction of one-handed helical screw sense in achiral peptide through the domino effect based on interacting its N-terminal amino group with chiral carboxylic acid. J. Am. Chem. Soc.2000,122(47),11731-11732.
    31. Chambers, J. A.; Gillard, R. D.; Williams, P. A.; Vagg, R. S. Chiral Metal-Complexes.8. Chiroptical and 1H NMR studies on diastereoisomeric ternary complexes of Co3+ with 1,10-phenanthroline and (R,R)-tartaric acid or (S)-malic acid. Inorg. Chim.1983,72(2),263-268.
    32. Lin, R.; Zhang, H.; Li, S. H.; Chen, L. Q.; Zhang, W. G.; Wen, T. B.; Zhang, H.; Xia, H. P. pH-switchable inversion of the metal-centered chirality of metallabenzenes: opposite stereodynamics in reactions of ruthenabenzene with L-and D-cysteine. Chem. Eur. J.2011, 17(8),2420-2427.
    33. Zahn, S.; Canary, J. W. Electron-induced inversion of helical chirality in copper complexes of N,N-dialkylmethionines. Science 2000,288(5470),1404-1407.
    34. Barcena, H. S.; Liu, B.; Mirkin, M. V.; Canary, J. W. An electro chiroptical molecular switch:Mechanistic and kinetic studies. Inorg. Chem.2005,44(21), 7652-7660.
    35. Barcena, H. S.; Holmes, A. E.; Zahn, S.; Canary, J. W. Redox inversion of helicity in propeller-shaped molecules derived from S-methyl cysteine and methioninol. Org. Lett.2003,5(5),709-711.
    36. Yano, S.; Nakagoshi, M.; Teratani, A.; Kato, M.; Onaka, T.; Iida, M.; Tanase, T.; Yamamoto, Y.; Uekusa, H.; Ohashi, Y. Chiral inversion around a seven-coordinated cobalt center induced by an interaction between sugars and sulfate anions. Inorg. Chem.1997,36(19),4187-4194.
    37. Misaki, H.; Miyake, H.; Shinoda, S.; Tsukube, H. Asymmetric twisting and chirality probing properties of quadruple-stranded helicates:coordination versatility and chirality response of Na+, Ca2+, and La3+ complexes with octadentate cyclen ligand. Inorg. Chem.2009,48(24),11921-11928.
    38. Miyake, H.; Yoshida, K.; Sugimoto, H.; Tsukube, H. Dynamic helicity inversion by achiral anion stimulus in synthetic labile cobalt(II) complex. J. Am. Chem. Soc. 2004,126(21),6524-6525.
    39. Miyake, H.; Hikita, M.; Itazaki, M.; Nakazawa, H.; Sugimoto, H.; Tsukube, H. A chemical device that exhibits dual mode motions:dynamic coupling of amide coordination isomerism and metal-centered helicity inversion in a chiral cobalt(II) complex. Chem.Eur. J.2008,14(18),5393-5396.
    40. Miyake, H.; Sugimoto, H.; Tamiaki, H.; Tsukube, H. Dynamic helicity inversion in an octahedral cobalt(II) complex system via solvato-diastereomerism. Chem. Commun.2005,4291-4293.
    41. Gregolinski, J.; Slepokura, K.; Lisowski, J. Lanthanide complexes of the chiral hexaaza macrocycle and its meso-type isomer:Solvent-controlled helicity inversion. Inorg. Chem.2007,46(19),7923-7934.
    42. Martinez, A.; Guy, L.; Dutasta, J. P. Reversible, solvent-induced chirality switch in atrane structure:control of the unidirectional motion of the molecular propeller. J. Am. Chem. Soc.2010,132(47),16733-16734.
    43. Hutin, M.; Nitschke, J. Solvent-tunable inversion of chirality transfer from carbon to copper. Chem. Commun.2006,1724-1726.
    44. Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E. M. Chiroptical molecular switches. Chem. Rev.2000,100(5),1789-1816.
    45. Feringa, B. L.; Jager, W. F.; Delange, B.; Meijer, E. W. Chiroptical molecular switch. J. Am. Chem. Soc.1991,113(14),5468-5470.
    46. Feringa, B. L. The art of building small:from molecular switches to molecular motors. J. Org. Chem.2007,72(18),6635-6652.
    47. Pijper, D.; Feringa, B. L. Molecular transmission:controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew. Chem., Int. Ed. 2007,46(20),3693-3696.
    48. Pijper, D.; Jongejan, M. G. M.; Meetsmia, A.; Feringa, B. L. Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch. J. Am. Chem. Soc.2008, 130(13),4541-4552.
    49. Takaishi, K.; Muranaka, A.; Kawamoto, M.; Uchiyama, M. Photoinversion of cisoid/transoid binaphthyls. Org. Lett.2012,14(1),276-279.
    50. Okano, K.; Ogino, S.; Kawamoto, M.; Yamashita, T. Mass migration on a polymer surface caused by photoinduced molecular rotation. Chem. Commun.2011, 47(43),11891-11893.
    51. Chen, W. C.; Lee, Y. W.; Chen, C. T. Diastereoselective, synergistic dual-mode optical switch with integrated chirochromic helicene and photochromic bis-azobenzene moieties. Org. Lett.2010,12(1),1472-1475.
    52. Tietze, L. F.; Dufert, A.; Lotz, F.; Solter, L.; Oum, K.; Lenzer, T.; Beck, T.; Herbst-lrmer, R. Synthesis of chiroptical molecular switches by Pd-catalyzed domino reactions. J. Am. Chem. Soc.2009,131(49),17879-17884.
    53. Mammana, A.; Carroll, G. T.; Areephong, J.; Feringa, B. L. A chiroptical photoswitchable DNA complex. J. Phys. Chem.B 2011,115(40),11581-11587.
    54. Reichert, S.; Breit, B. Development of an axial chirality switch. Org. Lett.2007, 9(5),899-902.
    55. Jiang, X.; Lim, Y. K.; Zhang, B. J.; Opsitnick, E. A.; Baik, M. H.; Lee, D. Dendritic molecular switch:chiral folding and helicity inversion. J. Am. Chem. Soc. 2008,130(49),16812-16822.
    56. Haberhauer, G. A Metal-ion-driven supramolecular chirality pendulum. Angew. Chem., Int. Ed.2010,49(48),9286-9289.
    57. von Berlepsch, H.; Bottcher, C.; Ouart, A.; Burger, C.; Dahne, S.; Kirstein, S. Supramolecular structures of J-aggregates of carbocyanine dyes in solution. J. Phys. Chem. B 2000,104(22),5255-5262.
    58. Vannostrum, C. F.; Bosman, A. W.; Gelinck, G. H.; Picken, S. J.; Schouten, P. G.; Warman, J. M.; Schouten, A. J.; Nolte, R. J. M. Evidence of a chiral superstructure in the discotic mesophase of an optically-active phthalocyanine. J. Chem. Soc. Chem. Comm.1993,1120-1122.
    59. Schwartz, D. K.; Viswanathan, R.; Zasadzinski, J. A. N. Commensurate defect superstructures in a langmuir-blodgett-film. Phys. Rev. Lett.1993,70(9),1267-1270.
    60. Lin, W. B.; Wang, Z. Y.; Ma, L. A novel octupolar metal-organic NLO material based on a chiral 2D coordination network. J. Am. Chem. Soc.1999,121(48), 11249-11250.
    61. Verbiest, T.; Van Elshocht, S.; Kauranen, M.; Hellemans, L.; Snauwaert, J.; Nuckolls, C.; Katz, T. J.; Persoons, A. Strong enhancement of nonlinear optical properties through supramolecular chirality. Science 1998,282(5390),913-915.
    62. Santos-Figueroa, L. E.; Moragues, M. E.; Climent, E.; Agostini, A.; Martinez-Manez, R.; Sancenon, F. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011. Chem. Soc. Rev. 2013,42(8),3489-3613.
    63. Lou, X.; Ou, D.; Li, Q.; Li, Z. An indirect approach for anion detection:the displacement strategy and its application. Chem. Commun.2012,48(68),8462-8477.
    64. Callan, J. F.; de Silva, A. P.; Magri, D. C. Luminescent sensors and switches in the early 21st century. Tetrahedron 2005,61(36),8551-8588.
    65. Lu, W.; Zhou, J. T.; Liu, K. Y.; Chen, D.; Jiang, L. M.; Shen, Z. Q. A polymeric film probe with a turn-on fluorescence response to hydrogen sulfate ions in aqueous media. J. Mater. Chem. B 2013,1(38),5014-5020.
    66. Chen, D.; Lu, W.; Du, G. H.; Jiang, L. M.; Ling, J.; Shen, Z. Q. A chiral polymer-based turn-on fluorescent sensor for specific recognition of hydrogen sulfate. J. Polym. Sci., Part A:Polym. Chem.2012,50(20),4191-4197.
    67. Lu, W.; Jiang, H.; Hu, F. Y.; Jiang, L. M.; Shen, Z. Q. A novel chemosensor based on Fe(III)-complexation for selective recognition and rapid detection of fluoride anions in aqueous media. Tetrahedron 2011,67(41),7909-7912.
    68. Lu, W.; Chen, D.; Jiang, H.; Jiang, L. M.; Shen, Z. Q. Polymer-based fluoride-selective chemosensor:synthesis, sensing property, and its use for the design of molecular-scale logic devices. J. Polym. Sci., Part A:Polym. Chem.2012,50(3), 590-598.
    69. Lu, W.; Zhang, M. Y.; Liu, K. Y.; Fan, B.; Xia, Z.; Jiang, L. M. A fluoride-selective colorimetric and fluorescent chemosensor and its use for the design of molecular-scale logic devices. Sensor. Actuat. B:Chem.2011,160(1),1005-1010.
    70. Lu, W.; Lou, L. P.; Hu, F. Y.; Jiang, L. M.; Shen, Z. Q. Optically active polyacrylamides bearing an oxazoline pendant:influence of stereoregularity on both chiroptical properties and chiral recognition. J. Polym. Sci., Part A:Polym. Chem. 2010,48(23),5411-5418.
    71. Pu, L.1,1-binaphthyl dimers, oligomers, and polymers:molecular recognition, asymmetric catalysis, and new materials. Chem. Rev.1998,98(7),2405-2494.
    72. Zhang, X.; Yin, J.; Yoon, J. Recent advances in development of chiral fluorescent and colorimetric sensors. Chem. Rev.2014,114(9),4918-4959.
    73. Leung, D.; Kang, S. O.; Anslyn, E. V. Rapid determination of enantiomeric excess:a focus on optical approaches. Chem. Soc. Rev.2012,41(1),448-479.
    74. Wolf, C.; Bentley, K. W. Chirality sensing using stereodynamic probes with distinct electronic circular dichroism output. Chem. Soc. Rev.2013,42(12), 5408-5424.
    75. Pu, L. Fluorescence of organic molecules in chiral recognition. Chem. Rev.2004, 104(3),1687-1716.
    76. Pu, L. Enantioselective fluorescent sensors:a tale of BINOL. Acc. Chem. Res. 2012,45(2),150-163.
    77. Ikeda, M.; Matsu-ura, A.; Kuwahara, S.; Lee, S. S.; Habata, Y. Hg2+-sensing system based on structures of complexes. Org. Lett.2012,14(6),1564-1567.
    78. Dai, Z.; Lee, J.; Zhang, W. Chiroptical switches:applications in sensing and catalysis. Molecules 2012,17(2),1247-1277.
    79. Wang, F.; He, W. B.; Wang, J. H.; Yan, X. S.; Zhan, Y.; Ma, Y. Y.; Ye, L. C.; Yang, R.; Cai, F.; Li, Z.; Jiang, Y. B. Amino acid based chiral N-amidothioureas. Acetate anion binding induced chirality transfer. Chem. Commun.2011,47(42),11784-11786.
    80. Liu, W. X.; Yang, R.; Li, A. F.; Li, Z.; Gao, Y. F.; Luo, X. X.; Ruan, Y. B.; Jiang, Y. B. N-(Acetamido)thiourea based simple neutral hydrogen-bonding receptors for anions. Org. Biomol. Chem.2009,7(19),4021-4028.
    81. Ikeda, M.; Kuwahara, S.; Lee, S. S.; Habata, Y. Anion-controlled circular dichroism spectral changes in Hg2+ complexes with a chiral bidentate ligand. Inorg. Chem.2012,51(13),7022-7024.
    82. Castagnetto, J. M.; Canary, J. W. A chiroptically enhanced fluorescent chemosensor. Chem. Commun.1998,203-204.
    83. Moletti, A.; Coluccini, C.; Pasini, D.; Taglietti, A. A chiral probe for the detection of Cu(Ⅱ) by UV, CD and emission spectroscopies. Dalton. Trans.2007,1588-1592.
    84. Liu, Y; Shi, J.; Guo, D. S. Novel permethylated beta-cyclodextrin derivatives appended with chromophores as efficient fluorescent sensors for the molecular recognition of bile salts. J. Org. Chem.2007,72(22),8227-8234.
    85. Dai, Z. H.; Proni, G.; Mancheno, D.; Karimi, S.; Berova, N.; Canary, J. W. Detection of zinc ions by differential circularly polarized fluorescence excitation. J. Am. Chem. Soc.2004,126(38),11760-11761.
    86. Ali, H. D. P.; Quinn, S. J.; McCabe, T.; Kruger, P. E.; Gunnlaugsson, T. Crystallographic,1H NMR and CD studies of sterically strained thiourea anion receptors possessing two stereogenic centres. New J. Chem.2009,33(4),793-800.
    87. Hou, X.; Kobiro, K. Versatility of an intramolecularly hydrogen-bonded 4-(N,N-dimethylamino)benzoate group as a signaling subunit for anion recognition. Tetrahedron 2005,61(24),5866-5875.
    88. Kakuchi, R.; Nagata, S.; Sakai, R.; Otsuka, I.; Nakade, H.; Satoh, T.; Kakuchi, T. Size-specific, colorimetric detection of count eranions by using helical poly(phenylacetylene) conjugated to L-leucine groups through urea acceptors. Chem.Eur. J.2008,14(33),10259-10266.
    89. Caltagirone, C.; Hiscock, J. R.; Hursthouse, M. B.; Light, M. E.; Gale, P. A. 1,3-Diindolylureas and 1,3-diindolythioureas:anion complexation studies in solution and the solid state. Chem.Eur. J.2008,14(33),10236-10243.
    90. Kakuchi, R.; Tago, Y.; Sakai, R.; Satoh, T.; Kakuchi, T. Effect of the pendant structure on anion signaling property of poly(phenylacetylene)s conjugated to alpha-amino acids through urea groups. Macromolecules 2009,42(13),4430-4435.
    91. Kakuchi, R.; Shimada, R.; Tago, Y.; Sakai, R.; Satoh, T.; Kakuchi, T. Pendant structure governed anion sensing property for sulfonamide-functionalized poly(phenylacetylene)s bearing various alpha-amino acids.J. Polym. Sci., Part A: Polym. Chem.2010,48(8),1683-1689.
    92. Sakai, R.; Sakai, N.; Satoh, T.; Li, W.; Zhang, A. F.; Kakuchi, T. Strict size specificity in colorimetric anion detection based on poly(phenylacetylene) receptor bearing second generation lysine dendrons. Macromolecules 2011,44(11), 4249-4257.
    93. Huang, X.; Xu, Y.; Miao, Q.; Zong, L.; Hu, H.; Cheng, Y Synthesis and properties of chiral helical polymers based on optically active polybinaphthyls. Polymer 2009,50(13),2793-2805.
    94. Song, C.; Li, L.; Wang, F.; Deng, J.; Yang, W. Novel optically active helical poly(N-propargylthiourea)s:synthesis, characterization and complexing ability toward Fe(iii) ions. Polym. Chem.2011,2(12),2825-2829.
    95. Gao, X. Y.; Xing, G. M.; Yang, Y. L.; Shi, X. L.; Liu, R.; Chu, W. G.; Jing, L.; Zhao, F.; Ye, C.; Yuan, H.; Fang, X. H.; Wang, C.; Zhao, Y. L. Detection of trace Hg2+ via induced circular dichroism of DNA wrapped around single-walled carbon nanotubes. J. Am. Chem. Soc.2008,130(29),9190-9191.
    96. Lin, Z.; Chen, Y.; Li, X.; Fang, W. Pb2+ induced DNA conformational switch from hairpin to G-quadruplex:electrochemical detection of Pb2+. Analyst 2011, 136(11),2367-2372.
    97. Hui, H.; Zheng, L.; Zou, X.; Cheng, Y. Chiral fluorescent sensors based on optically active 1,1'-bi-2-naphthyl derivatives. Prog. Chem.2008,20(4),508-517.
    98. Xing, Z. T.; Fu, Y.; Zhou, J. C.; Zhu, C. J.; Cheng, Y. X. Coumarin-based chiral fluorescence sensor incorporating a thiourea unit for highly enantioselective recognition of N-Boc-protected proline. Org. Biomol. Chem.2012,10(20), 4024-4028.
    99. Dhara, K.; Sarkar, K.; Roy, P.; Nandi, M.; Bhaumik, A.; Banerjee, P. A highly enantioselective chiral Schiff-base fluorescent sensor for mandelic acid. Tetrahedron 2008,64(14),3153-3159.
    100. Wang, R.; Nandhakumar, R.; Hu, Y; Kim, D.; Kim, K. M.; Yoon, J. BINOL-based chiral receptors as fluorescent and colorimetric chemosensors for amino acids. J. Org. Chem.2013,78(22),11571-11576.
    101. Yu, S. S.; Plunkett, W.; Kim, M.; Pu, L. Simultaneous Determination of Both the Enantiomeric Composition and Concentration of a Chiral Substrate with One Fluorescent Sensor. J. Am. Chem. Soc.2012,134(50),20282-20285.
    102. Yu, S. S.; Pu, L. Pseudoenantiomeric Fluorescent Sensors in a Chiral Assay. J. Am. Chem. Soc.2010,132(50),17698-17700.
    103. Meng, J.; Wei, G.; Huang, X. B.; Dong, Y.; Cheng, Y. X.; Zhu, C. J. A fluorescence sensor based on chiral polymer for highly enantioselective recognition of phenylalaninol. Polymer 2011,52(2),363-367.
    104. Song, F. Y.; Ma, X.; Hou, J. L.; Huang, X. B.; Cheng, Y X.; Zhu, C. J. (R,R)-salen/salan-based polymer fluorescence sensors for Zn2+ detection. Polymer 2011,52(26),6029-6036.
    105. Hou, J. L.; Song, F. Y.; Wang, L.; Wei, G.; Cheng, Y X.; Zhu, C. J. In Situ Generated 1:1 Zn(Ⅱ)-containing polymer complex sensor for highly enantioselective recognition of N-Boc-protected alanine. Macromolecules 2012,45(19),7835-7842.
    106. Ma, X.; Jiao, J. M.; Yang, J.; Huang, X. B.; Cheng, Y. X.; Zhu, C. J. Large stokes shift chiral polymers containing (R,R)-salen-based binuclear boron complex: Synthesis, characterization, and fluorescence properties. Polymer 2012,53(18), 3894-3899.
    107. Song, F. Y; Wei, G.; Wang, L.; Jiao, J. M.; Cheng, Y. X.; Zhu, C. J. Salen-based chiral fluorescence polymer sensor for enantioselective recognition of alpha-hydroxyl carboxylic acids.J. Org. Chem.2012,77(10),4759-4764.
    108. Wang, L.; Song, F. Y.; Hou, J. L.; Li, J. F.; Cheng, Y. X.; Zhu, C. J. In situ Cu(Ⅱ)-containing chiral polymer complex sensor for enantioselective recognition of phenylglycinol. Polymer 2012,53(26),6033-6038.
    109. Song, F. Y.; Fei, N.; Li, F.; Zhang, S. W.; Cheng, Y. X.; Zhu, C. J. A chiral ionic polymer for direct visual enantioselective recognition of alpha-amino acid anions. Chem. Commun.2013,49(28),2891-2893.
    110. Song, F. Y.; Wei, G.; Jiang, X. X.; Li, F.; Zhu, C. J.; Cheng, Y. X. Chiral sensing for induced circularly polarized luminescence using an Eu(Ⅲ)-containing polymer and D-or L-proline. Chem. Commun.2013,49(51),5772-5774.
    111.Wei, G.; Zhang, S. W.; Dai, C. H.; Quan, Y. W.; Cheng, Y. X.; Zhu, C. J. A new chiral binaphthalene-based fluorescence polymer sensor for the highly enantioselective recognition of phenylalaninol. Chem. Eur. J.2013,19(41), 16066-16071.
    112.Cheng, P. F.; Jiao, S. Y.; Xu, K. X.; Wang, C. J. Progress in enantioselective recognition based on chiral crown ether. Chinese J. Org. Chem.2013,33(2),280-287.
    113.Mutihac, L.; Lee, J. H.; Kim, J. S.; Vicens, J. Recognition of amino acids by functionalized calixarenes. Chem. Soc. Rev.2011,40(5),2777-2796.
    1 H.Yang, L.; Xu, K. X.; Wang, C. J.; Wang, G. J. Progress in fluorescent chemosensors for chiral enantiomer recognition based on 2,2'-naphthol derivatives. Chinese J. Org. Chem.2013,33(12),2496-2503.
    115.Pugh, V. J.; Hu, Q. S.; Pu, L. The first dendrimer-based enantioselective fluorescent sensor for the recognition of chiral amino alcohols. Angew. Chem., Int. Ed. 2000,39(20),3638-3641.
    116.Lin, J.; Hu, Q. S.; Xu, M. H.; Pu, L. A practical enantioselective fluorescent sensor for mandelic acid. J. Am. Chem. Soc.2002,124(10),2088-2089.
    117.Xu, M. H.; Lin, J.; Hu, Q. S.; Pu, L. Fluorescent sensors for the enantioselective recognition of mandelic acid:Signal amplification by dendritic branching.J. Am. Chem. Soc.2002,124(47),14239-14246.
    118.Jiao, J. M.; Liu, X. H.; Mao, X. R.; Li, J. F.; Cheng, Y. X.; Zhu, C. J. A coumarin-based chiral fluorescence sensor for the highly enantioselective recognition of phenylalaninol. New J. Chem.2013,37(2),317-322.
    119.Chen, X.; Huang, Z.; Chen, S. Y.; Li, K.; Yu, X. Q.; Pu, L. Enantioselective gel collapsing:a new means of visual chiral sensing. J. Am. Chem. Soc.2010,132(21), 7297-7299.
    120. Martinez-Manez, R.; Sancenon, F. Fluorogenic and chromo genic chemosensors and reagents for anions. Chem. Rev.2003,103(11),4419-4476,
    121. Wu, S. K. Some photo-chemical and photo-physical problems in fluorescent chemical sensor study. Prog. Chem.2004,16(2),174-183.
    122. Yashima, E.; Maeda, Y.; Okamoto, Y. Helix-helix transition of optically active poly((1R,2S)-N-(4-ethynylbenzyl)norephedrine) induced by diastereomeric acid-base complexation using chiral stimuli. J. Am. Chem. Soc.1998,120(34), 8895-8896.
    123. Zhang, C. H.; Liu, F. B.; Li, Y. F.; Shen, X. D.; Xu, X. D.; Sakai, R.; Satoh, T.; Kakuchi, T.; Okamoto, Y. Influence of stereoregularity and linkage groups on chiral recognition of poly(phenylacetylene) derivatives bearing L-leucine ethyl ester pendants as chiral stationary phases for HPLC.J. Polym. Sci., Part A:Polym. Chem. 2013,51(10),2271-2278.
    124. Zhang, C. H.; Wang, H. L.; Geng, Q. Q.; Yang, T. T.; Liu, L. J.; Sakai, R.; Satoh, T.; Kakuchi, T.; Okamoto, Y. Synthesis of helical poly(phenylacetylene)s with amide linkage bearing L-phenylalanine and L-phenylglycine ethyl ester pendants and their applications as chiral stationary phases for HPLC. Macromolecules 2013,46(21), 8406-8415.
    125. Wolf, C. Stereolabile chiral compounds:analysis by dynamic chromatography and stopped-flow methods. Chem. Soc. Rev.2005,34(7),595-608.
    126. Superchi, S.; Bisaccia, R.; Casarini, D.; Laurita, A.; Rosini, C. Flexible biphenyl chromophore as a circular dichroism probe for assignment of the absolute configuration of carboxylic acids. J. Am. Chem. Soc.2006,128(21),6893-6902.
    127. Tartaglia, S.; Padula, D.; Scafato, P.; Chiummiento, L.; Rosini, C. A chemical/computational approach to the determination of absolute configuration of flexible and transparent molecules:Aliphatic diols as a case study. J. Org. Chem.2008, 73(13),4865-4873.
    128. Bentley, K. W.; Nam, Y. G.; Murphy, J. M.; Wolf, C. Chirality sensing of amines, diamines, amino acids, amino alcohols, and alpha-hydroxy acids with a single probe. J.Am. Chem. Soc.2013,135(48),18052-18055.
    129. Wezenberg, S. J.; Salassa, G.; Escudero-Adan, E. C.; Benet-Buchholz, J.; Kleij, A. W. Effective chirogenesis in a bis(metallosalphen) complex through host-guest binding with carboxylic acids. Angew. Chem., Int. Ed.2011,50(3), 713-716.
    130. You, L.; Berman, J. S.; Lucksanawichien, A.; Anslyn, E. V. Correlating sterics parameters and diastereomeric ratio values for a multicomponent assembly to predict exciton-coupled circular dichroism intensity and thereby enantiomeric excess of chiral secondary alcohols. J. Am. Chem. Soc.2012,134(16),7126-7134.
    131. Ghosn, M. W.; Wolf, C. Chiral amplification with a stereodynamic triaryl probe:assignment of the absolute configuration and enantiomeric excess of amino alcohols. J. Am. Chem. Soc.2009,131(45),16360-16361.
    132. Ghosn, M. W.; Wolf, C. Enantioselective CD analysis of amino acids based on chiral amplification with a stereodynamic probe. Tetrahedron 2010,66(23), 3989-3994.
    133. Ghosn, M. W.; Wolf, C. Enantioselective recognition of amines with an atropisomeric 1,8-bisphenolnaphthalene. Tetrahedron 2011,67(36),6799-6803.
    134. Bentley, K. W.; Wolf, C. Stereodynamic chemosensor with selective circular dichroism and fluorescence readout for in situ determination of absolute configuration, enantiomeric Eexcess, and concentration of chiral compounds. J. Am. Chem. Soc. 2013,135(33),12200-12203.
    135. Iwaniuk, D. P.; Wolf, C. Enantioselective sensing of amines based on [1+1]-, [2+2]-, and [1+2]-condensation with fluxional arylacetylene-derived dialdehydes. Org. Lett.2011,13(10),2602-2605.
    136. Iwaniuk, D. P.; Wolf, C. A stereodynamic probe providing a chiroptical response to substrate-controlled induction of an axially chiral arylacetylene framework. J.Am. Chem. Soc.2011,133(8),2414-2417.
    137. Iwaniuk, D. P.; Bentley, K. W.; Wolf, C. Enantioselective sensing of chiral amino alcohols with a stereodynamic arylacetylene-based probe. Chirality 2012,24(7), 584-589.
    138. Iwaniuk, D. P.; Wolf, C. Chiroptical sensing of citronellal:systematic development of a stereodynamic probe using the concept of isostericity. Chem. Commun.2012,48(91),11226-11228.
    139. Yashima, E.; Matsushima, T.; Okamoto, Y. Chirality assignment of amines and amino alcohols based on circular dichroism induced by helix formation of a stereoregular poly((4-carboxyphenyl)acetylene) through acid-base complexation. J. Am. Chem. Soc.1997,119(27),6345-6359.
    140. Yashima, E.; Maeda, K. Chirality-responsive helical polymers. Macromolecules 2008,41(1),3-12.
    141. Smith, H. E. The salicylidenamino chirality rule:a method for the establishment of the absolute-configurations of chiral primary amines by Circular-Dichroism. Chem. Rev.1983,83(4),359-377.
    142. Smith, H. E.; Neergaar. Jr; Burrows, E. P.; Chen, F. M. Optically-active amines.16. exciton chirality method applied to salicylidenimine chromophore-salicylidenimine chirality rule.J. Am. Chem. Soc.1974,96(9),2908-2916.
    143. Schellma. Ja. Symmetry rules for optical rotation. Acc. Chem. Res.1968,1(5), 144-151.
    144. Schellma.Ja. Symmetry rules for optical rotation. J. Chem. Phys.1966,44(1), 55-67.
    145. Becke, A. D. Density-functional thermochemistry.3. the role of exact exchange. J. Chem. Phys.1993,98(7),5648-5652.
    146. Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 1988, 37(2),785-789.
    147. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; et al. Gaussian 03; Gaussian, Inc.:Wallingford, CT,2004.
    148. Kamienski, B.; Schilf, W.; Dziembowska, T.; Rozwadowski, Z.; Szady-Chelmieniecka, A. The N-15 and C-13 solid state NMR study of intramolecular hydrogen bond in some Schiffs bases. Solid State Nucl. Magn. Reson.2000,16(4), 285-289.
    149. Salman, S. R.; Kamounah, F. S. Tautomerism in 1-hydroxy-2-naphthaldehyde Schiff bases:Calculation of tautomeric isomers using carbon-13 NMR. Spectrosc.Int. J.2003,17(4),747-752.
    150. Jastrzebska, I.; Gorecki, M.; Frelek, J.; Santillan, R.; Siergiejczyk, L.; Morzycki, J. W. Photoinduced isomerization of 23-Oxosapogenins:conformational analysis and spectroscopic characterization of 22-isosapogenins. J. Org. Chem.2012, 77(24),11257-11269.
    151. Sun, P.; Xu, D. X.; Mandl, A.; Kurtan, T; Li, T. J.; Schulz, B.; Zhang, W. Structure, absolute configuration, and conformational study of 12-membered macrolides from the fungus dendrodochium sp associated with the sea cucumber holothuria nobilis selenka. J. Org. Chem.2013,78(14),7030-7047.
    152. Nakai, Y.; Mori, T.; Inoue, Y. Theoretical and experimental studies on Circular Dichroism of carbo[n]helicenes. J. Phys. Chem. A 2012,116(27),7372-7385.
    153. Nakai, Y.; Mori, T.; Inoue, Y. Circular Dichroism of (di)methyl-and diaza[6]helicenes:A combined theoretical and experimental study. J. Phys. Chem. A 2013,117(1),83-93.
    154. Nakai, Y.; Mori, T.; Sato, K.; Inoue, Y. Theoretical and experimental studies of Circular Dichroism of mono-and diazonia[6]helicenes. J. Phys. Chem. A 2013, 117(24),5082-5092.
    155. Sang, Y M.; Yan, L. K.; Ma, N. N.; Wang, J. P.; Su, Z. M. TDDFT studies on the determination of the absolute configurations and chiroptical properties of Strandberg-type polyoxometalates. J. Phys. Chem. A 2013,117(12),2492-2498.
    156. Abbate, S.; Lebon, F.; Longhi, G.; Boiadjiev, S. E.; Lightner, D. A. Vibrational and electronic circular dichroism of dimethyl mesobilirubins-XIII alpha. J. Phys. Chem. B 2012,116(19),5628-5636.
    157. Oh, K. I.; Kim, W.; Joo, C.; Yoo, D. G.; Han, H.; Hwang, G. S.; Cho, M. Azido gauche effect on the backbone conformation of beta-azidoalanine peptides. J. Phys. Chem. B 2010,114(40),13021-13029.
    158. Park, E. K.; Park, B. J.; Choi, J. H.; Choi, K. H.; Cho, M. H. Chirality transfer effects in proline-substituted coumarin compounds. J. Phys. Chem. B 2009, 113(32),11301-11305.
    159. Jaworska, M.; Welniak, M.; Zieciak, J.; Kozakiewicz, A.; Wojtczak, A. Bidentate Schiff bases derived from (S)-alpha-methylbenzylamine as chiralligands in the electronically controlled asymmetric addition of diethylzinc to aldehydes. Arkivoc 2011,189-204.
    160. Berova, N.; Di Bari, L.; Pescitelli, G. Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem. Soc. Rev.2007,35(6),914-931.
    161. Kanamori, D.; Okamura, T. A.; Yamamoto, H.; Ueyama, N. Linear-to-turn conformational switching induced by deprotonation of unsymmetrically linked phenolic oligoamides. Angew. Chem. Int. Ed.2005,44(6),969-972.
    162. Kanamori, D.; Okamura, T.; Yamamoto, H.; Shimizu, S.; Tsujimoto, Y.; Ueyama, N. Structures of the small-molecule Bcl-2 inhibitor (BH3I-2) and its related simple model in protonated and deprotonated forms. Bull. Chem. Soc. Jpn.2004, 77(11),2057-2064.
    163. Mock, W. L.; Chua, D. C. Y. Exceptional active-site H-bonding in enzymes-significance of the oxyanion hole in the serine proteases from a model study. J. Chem. Soc. Perk. T.21995,2069-2074.
    164. Tanatani, A.; Yokoyama, A.; Azumaya, I.; Takakura, Y.; Mitsui, C.; Shiro, M.; Uchiyama, M.; Muranaka, A.; Kobayashi, N.; Yokozawa, T. Helical structures of N-alkylated poly(p-benzamide)s.J. Am. Chem. Soc.2005,127(23),8553-8561.
    165. Pradeep, C. P.; Htwe, T.; Zacharias, P. S.; Das, S. K. First structurally characterized optically active mononuclear Mn(iv) complex:synthesis, crystal structure and properties of [MnL2]. New J. Chem.2004,28(6),735-739.
    166. Guo, Z. Q.; Zhu, W. H.; Tian, H. Hydrophilic copolymer bearing dicyanomethylene-4H-pyran moiety as fluorescent film sensor for Cu2+ and pyrophosphate anion. Macromolecules 2010,43(2),739-744.
    167. Shen, L. J.; Lu, X. Y.; Tian, H.; Zhu, W. H. A long wavelength fluorescent hydrophilic copolymer based on naphthalenediimide as pH sensor with broad linear response range. Macromolecules 2011,44(14),5612-5618.
    168. 陈丹,手性聚合物的合成及其阴离子识别性能,硕士学位论文,浙江大学,2012.
    169. Sessler, J. L.; Katayev, E.; Pantos, G. D.; Ustynyuk, Y. A. Synthesis and study of a new diamidodipyrromethane macrocycle. An anion receptor with a high sulfate-to-nitrate binding selectivity. Chem. Commun.2004,1276-1277.
    170. Bondy, C. R.; Gale, P. A.; Loeb, S. J. Metal-organic anion receptors: Arranging urea hydrogen-bond donors to encapsulate sulfate ions. J. Am. Chem. Soc. 2004,125(16),5030-5031.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700