磷酸盐/聚合物基分子印迹材料的制备与特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分别采用共沉淀法、煅烧法及模板法制备了多种磷酸盐;采用混熔法制备了银基磷酸盐/聚氯乙烯基材料;采用反相悬浮法制备了磷酸钙/海藻酸钙复合微球;采用溶出法制备了磷酸盐/聚氯乙烯基离子印迹材料;采用硅烷交联法制备了磷酸钙/海藻酸钙分子印迹复合微球。并对上述磷酸盐/聚合物基材料的制备、结构和特性分别进行了研究。
     从微生物与银系抑菌剂材料表面相互作用的角度出发,归纳了Ag+抑菌性能的更合理的评价方法,实验通过具体实验比较研究了TTC活性显色测定与平板培养活菌计数法、抑菌圈法等评价效果。
     通过银离子印迹磷酸盐/聚氯乙烯基材料制备即银基磷酸盐/聚氯乙烯基材料的溶出实验研究,探讨和提出了银离子的溶出及其在磷酸盐/聚合物基复合材料中的迁移模式。
     以磷酸钙/海藻酸钙复合微球为载体,以乙烯基三(β-甲氧基乙氧基)硅烷(A-172)和γ-氨基丙基三乙氧基硅烷(KH-550)硅烷为功能单体和交联剂,以甲基橙为模板,采用表面印迹技术,制备了磷酸钙/海藻酸钙分子印迹复合微球(CP/CA MICMs)。采用紫外分光光度计测试了MICMs的吸附和识别性能。研究表明,所得的印迹物对模板的吸附满足Langmiur吸附模型,其吸附速度和吸附容量与功能单体种类、载体类型、模板与功能单体的比率等因素有关。水相中模板和功能单体主要以静电作用和疏水作用相结合。MICMs对其模板分子表现出较好的分子识别性能,而在相同情况下未印迹的空白聚合物则无此识别特性。印迹复合微球的识别性能与功能单体种类、载体类型、模板与功能单体的比率和微球比表面积等因素有关。
Calcium phosphate was fabricated via templates method and silver-based phosphate was prepared by co-deposition means. Silver-based phosphate/PVC was prepared by mixing and melting the silver-based phosphate and PVC powder. Calcium alginate/calcium phosphate composite microspheres were fabricated via inverse suspension (W/O) with chloroform and hexane as dispersed phase, ethyl cellulose as disperser, mixture of calcium phosphate and sodium alginate solution as dispersing phase and calcium chloride solution as the cross-linker. Ion imprinted phosphate/polyvinyl chloride was prepared by stripping means. The phosphate/polymer-based materials were characterized as far as their structure is concerned.
     From the viewpoint of the interaction of microorganism and the silver-based antibacterial, the more reasonable estimate methods were proposed. The test results indicated that the TTC active coloration determination and flat cultivation bacteria account methods were suitable for the estimation of contact antibacterial.
     The Ag+ dissolve behavior of the silver-based phosphate/PVC was determined in the dissolve tests. The transplant disciplinarian of Ag+ in the silver-based phosphate/PVC was discussed and proposed.
     Surface molecular imprinted calcium phosphate/calcium alginate composite microspheres (CP/CA MICMs) were synthesized by using CP/CA CMs as the supporting matrix, ethylenetri(β-methoxy)ethyoxysilane (A-172) andγ-amidopropyltriethyoxysilane (KH-550) as the functional monomers and crosslinking agents,and methyl orange as template in aqueous solution. The capability of CP/CA MICMs was tested by ultraviolet spectrophotometer. The result showed that CP/CA MICMs adsorbed their templates in the way of Langmiur, and their adsorption properties were influenced by the functional monomer, the carriers and the ratio of the template to the functional monomer. The functional monomers were showed to combine the templates mainly through electrostatic and hydrophobic interactions in the water system. The CP/CA MICMs exhibited a specific recognition to their templates. These abilities of CP/CA MICMs were influenced by the functional monomers, the carriers, the ratio of the template to functional monomers and the specific areas of the MICMs.
引文
[1] Cameron Alexander, Hakan S. Andersson, Lars I. Andersson et, al, Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003, JOURNAL OF MOLECULAR RECOGNITION, 2006; 19: 106–180
    [2] Wulff G, Sarhan A,The use of polyner with enzyme-analogous structures for the resolution of racemates, Angew Chem Int Ed Engl, 1972, 11: 341-341.
    [3] Wulff G, Sarhan A, Iabrocki K. Tetrahedron Lett, 1973, 4329.
    [4] Wulff G, Vesper W, Einsler R G, et, al, Synthetic polymer with chiral cavities, Makromol. Chem., 1977, 178(1):2799~2802.
    [5] Vlatkis G., Andersson L.L., Muller R., Mosbach K., Drug assay using antibody miMICMS made by molecular imprinting, Nature, 1993, 361:645-647.
    [6] Sellergren B, Lepisteo M, Mosbach K, Highly enantio- and substrate-selective polymers obtained by molecular imprinting based on non-covalent interactions, Reactive Polymers, 1989, 10: 306~312
    [7] Sellergren B, Shea K J, Chiral ion-exchange chromatography correlation between solute retention and a theoretical ion-exchange model using imprinted polymers, J Chromatogra A, 1993, 654: 17–28.
    [8] Wulff G, Sarhan A, Gimpel J, et al. Chem Ber, 1974, 107: 3364–3371.
    [9] Norrlw O, Glad M, Mosback K, Acrylic polymer preparation containing recognition sites obtained by imprinting with substrates, J Chromatogr, 1984, 299: 29–41.
    [10] Shea K J, Sasaki D Y, J Am Chem Soc, On the control of microenvironment shape of functionalized network polymers prepared by template polymerization, 1989, 111: 3442–3445.
    [11] Nicholls I A, Ramstrom, Mosback K, Insight into the role of the hydrogen bond and hydrophobic effect on recognition in molecularly imprinted polymer synthetic peptide receptor miMICMS, J Chromatogr A, 1995, 691: 349–353.
    [12] Arshady R, Mosback K. Makromol Chem, Synthesis of substrate-selective polymers by host-guest polymerization, 1981, 182: 687–692.
    [13] Wulff G, Minarik M. Chromatogr Commun, 1986, 9: 607.
    [14] Anderson H S, Nicholls I A, Recent Res Devel in Pure & Applied Chem, 1997, 1: 133–157.
    [15] Lele B S, Kulkarni M G, Mashekar R A, Molecularly imprinted polymer miMICMS of chymotrypsin, 1.Cooperative effects and substrate specificity, Reactive and functional polymers, 1999,39(1): 37~52.
    [16] Hart B R, Rush D J, Shea K J, Discrimination between enatiomers of structurally related molecules: separation of benzodiazepines by molecularly imprinted polymer, J Am Chem Soc, 2000, 122: 460–465.
    [17] Liang C D, Peng H, Bao X Y, et al, Study of molecular imprinting polymer coated BAW bio-mimic and its application to the determination of caffeine in human serum and urine,. Analyst 1999, 124: 1781–1785.
    [18] Dickert F L, Lieberzeit P, Tortschanoff M, Antibodies-a new generation of chemical sensors, Sensors and Actuators, B: hemical,2000,65(1):186~189.
    [19] Malitesta C, Losito I, Zambonin P G, Molecularly imprinted electrosynthesized polymers: New materials for biomimetic sensors, Analytical Chemistry, 1999,7(7):1366~1370.
    [20] Haupt K, Mosbach K, Molecularly imprinted polymers and theirs use in biomimetic sensors, Chemical Reviews, 2000,100(7): 2495~2504.
    [21] Nishide H, Tsuchida E, Selective adsorption of metal ions on poly(4-vinylpyridine) resins in which the ligand chain is immobilized by crosslinking, Makromol Chem, 1976, 177: 2295~2310.
    [22] Wulff G, Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies, Angew Chem. Int. Ed. Engl., 1995, 34:1812~1832.
    [23] Owens P. K., Karsson L, Molecular imprinting for bio-and pharmaceutical analysis, Trends in Anal. Chem., 1999, 18: 146-155.
    [24] Wulff G, Role of binding-site interactions in the molecular imprinting of polymers Trends in Biotechnology, 1993,11(3):85~93.
    [25] Mosbach K, Molecular imprinting, molecularly imprinted polymers-theirs use in enantiomeric resolution, as antibody binding miMICMS and as catalysts, Protein Engineering, 1995,8:54~60.
    [26] Mosbach K, Ramstrom O, Emerging technique of molecular imprinting and its future impact on biotechnology, Bio/Technology, 1996,14(2):163~169.
    [27] Kempe M, Mosbach K, Molecular imprinting used for chiral separations, J. Chromatogr. A, 1995, 694:3~13.
    [28] Kempe M, Mosbach K, Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases, J. Chromatogr. A, 1995, 691:317~323.
    [29] Mosbach K, Toward the next generation of molecular imprinting with emphasis on the formation by direct molding of compounds with biological activity (biomimetics), Analytic Chimica Acta., 2001, 435:3~8.
    [30] Bruggemann O, Haupt K, Ye L, et al., New configurations and applications of molecularly imprinted polymers, J. Chromatogr. A, 2000, 889:15-24.
    [31] Pinel C, Loisil P, Gallezot P, Preparation and utilization of molecularly imprinted silicas, Advanced Materials, 1997, 9(7): 582~585
    [32] Hunnius M, Rufinska A, Maier W F, Selective surface adsorption versus imprinting in amorphous microporous silicas, Microporous and Mesoporous Materials, 1999, 29(3): 389~403
    [33] Markowitz M A, Kust P R, Deng G, Catalytic silica particles via template-directed molecular imprinting, Langmuir, 2000, 16(4): 1759~1765
    [34] 何天白, 胡汉杰, 海外高分子科学的新进展, 北京: 化学工业出版社, 1997, 193~214
    [35] Slade C J, Molecular (or bio-) imprinting of bovine serum albumin,Journal of Molecular Catalysis B: Enzymatic, 2000, 9: 97~105
    [36] Shulai Lu, Guoxiang Cheng, Xingshou Pang, Preparation of molecularly imprinted Fe3O4/P(St-DVB) composite beads with magnetic susceptibility and their characteristics of molecular recognition for amion acid, Journal of Applied Polymer Science, 2003, 89:3790-3796
    [37] Lu, Shulai; Cheng, Guoxiang; Cai, Zhijiang; Pang, Xingshou. Preparing methods of nanocavity biomaterials with recognition specificity via template imprinting of protein. Zhongguo Yixue Kexueyuan Xuebao, 2003, 25(5): 640-644.
    [38] 成国祥,陆书来,张立广等,分子印迹聚合物磁性复合微球及其悬浮聚合制备方法,中国专利,02121489.1
    [39] 成国祥,陆书来,庞兴收等,分子印迹聚合物磁性复合微球及其反相乳液与悬浮聚合的复合制备方法,中国专利,02121487.5
    [40] 成国祥,陆书来,庞兴收等,生物大分子模板印迹凝胶磁性复合微球及其反相悬浮聚合制备方法,中国专利,02121485.9
    [41] 成国祥,陆书来,张立广等,生物大分子模板表面印迹凝胶磁性复合微球及其种子反相悬浮聚合制备方法,中国专利,02121486.7
    [42] Harkins D A, Schweitzer G K, Preparation of site-selective ion-exchange resins, Sep Sci Technol, 1991, 26: 345–354.
    [43] Ye L, Cormack A P G, Mosbach K, Molecularly imprinted monodisperse microspheres for competitive radioassay, Analytical Communication, 1999, 36: 35~38
    [44] Ye L, Weiss R, Mosbach K, Synthesis and characterization of molecularly imprinted microspheres, Macromolecules, 2000, 33 (22): 8239~8245
    [45] 成国祥, 张立永,付聪, 种子溶胀悬浮聚合法制备分子印迹聚合物微球,色谱,2002, 20(2): 102~107
    [46] Uezu K, Nakamura H, Kanno J-I, et al, Metal ion-imprinted polymer prepared by the combination of surface template polymerization with postirradiation by γ-rays, Macromolecules, 1997, 30(13): 3888~3891
    [47] Yoshida M, Uezu K, Nakashio F, et al, Spacer effect of novel bifunctional organophosphorus monomers in metal-imprinted polymers prepared by surface template polymerization Journal of Polymer Science, Part A: Polymer Chemistry, 1998, 36(15): 2727~2734
    [48] Uezu K, Yoshida M, Goto M, et al, Molecular recognition using surface template polymerization, Chemtech, 1999, 29(4): 12~18
    [49] Yoshida M, Uezu K, Goto M, et al, Required properties for functional monomers to produce a metal template effect by a surface molecular imprinting technique, Macromolecules, 1999, 32(4): 1237~1243
    [50] Yoshida M, Uezu K, Goto M, et al, Surface imprinted polymers recognizing amino acid chirality Journal of Applied Polymer Science, 2000, 78(4): 695~703
    [51] Yoshida M, Hatate Y, Uezu K, et al, Metal-imprinted microsphere prepared by surface template polymerization and its application to chromatography, Journal of Polymer Science, Part A: Polymer Chemistry, 2000, 38(4): 689~696
    [52] Yoshida M, Hatate Y, Uezu K, et al, Chiral-recognition polymer prepared by surface molecular imprinting technique, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 169(1): 259~269
    [53]Norrow O.,G1ad M.,Mosbach M., J. Chramatogr.[J],1984,29:299
    [54] Shi H, Tsai W-B, Ferrari S, et al, Template imprinted nanostructural surfaces for protein recognition, Nature, 1999, 398: 593~597
    [55] Uezu K., Nakamura H., Kanno J.,et al, Metal ion- imprinted polymer prepared by the combination of surface template polymerization with postirradiation by γ-ray, Macromolecules, 1997, 30: 3888- 3891.
    [56] Dai S H., Williams T. F., Angew. Chem. Int. Ed.,1999, 9: 38.
    [57] Uezu K., Yoshida M., Goto M.,et al, Molecular recognition using surface template polymerization, Chemtech.,1999, 29(4): 12- 18.
    [58] 裴广玲, 金属离子印迹聚合物微球的研究, [博士学位论文], 天津大学, 2002
    [59] 裴广玲,成国祥,金属离子印迹聚合物微球的制备研究进展,热固性树脂,2002, Vol.17, No.4: 26-28.
    [60] Glad M, Narrlow O, Sellergren B, et al, Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica, J Chromatogr, 1985, 347:11~23
    [61] Kempe M, Glad M, Mosbach K, An approach towards surface imprinting using the enzyme ribonuclease A biorecognition and affinity technology, Journal of Molecular Recognition, 1995, 8(1-2): 35~38
    [62] Mallik S J, Plunkett S D, Dhal P K, et al, Towards materials for the specific recognition and separation of proteins, New J Chem, 1994, 18(3): 299~304
    [63] Hirayama K, Burow M, Synthesis of polymer-coated silica particles with specfic recognition sites for glucose oxidase by the molecular imprinting technique, Chem Lett, 1998, 8: 731~732
    [64] 陆书来, 分子印迹聚合物磁性复合微球的制备及其特性研究, [博士学位论文], 天津大学, 2002
    [65] 庞兴收, 蛋白质印迹软湿凝胶聚合物微球的研究, [博士学位论文], 天津大学, 2005
    [66] Pang Xingshou, Cheng Guoxiang, THE PROTEIN-IMPRINTED POLYMER MATERIALS (chapter 12), 《 Horizons in polymer research 》, Nova Science Publishers, New York,USA (2005, In press, Corrected proof)
    [67]吴建军,磷酸盐在食品工业中的应用,磷酸盐工业,2005,Vol.17,3:14
    [68] 左文成,食品磷酸盐的应用及市场展望, 中国食品添加剂, 2005,Vol.5:10
    [69] 韩敏义,复合磷酸盐在食品中的应用, 食品信息与技术, 2004 Vol.7:21
    [70] 封惠侠,新型无机离子交换剂研究—偏磷酸铈的气相色谱应用,郑州轻工业学院学报,1998,Vol. 13:15
    [71] 王秉济,无机离子交换剂的研究:I.焦磷钒酸锆的合成及性质,华东理工大学学报:自然科学版,1994,Vol. 20:270
    [72] 姚兴东,新型无机离子交换剂组成与性能研究:聚磷酸盐型交换剂的组成与 IEC 的关系,离子交换与吸附,1993,Vol. 9:128
    [73] 贡长生,邝生鲁,磷酸盐离子交换剂的合成和应用,现代化工,1990 Vol. 6:23
    [74] Brown W E, Chow L C. A new calcium phosphate, water-setting cement. In: Brown P W, editor. Cements research progress. Westerville. Ohio: American Ceramic Society, 1986, 352~379
    [75] Real R P, Wolke J G C, Vallet-Regi M, et al. A new method to produce macropores in calcium phosphate cements. Biomaterials, 2002, 23:3673~3680
    [76] Miyamoto Y, Ishikawa K, et al. Histological and compositional evaluations of three calcium phosphate cement when implanted in subcutaneous tissue immediately after mixting. J Biomed Marter Res (Appl Biomater), 1999, 48:36~42
    [77] Von Gonten A S, Kelly J R, Antonucci J M. Load-behavior of a simulated craniofacial structure fabricated from a hydroxyapatite cement and bioresorble fiber-mesh. J Mater Sci: Mater Med 2000, 11:95~100
    [78] Ishaug-Riley S L, Creme-Kruger G M, Yaszemski M J, et al. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers, Biomaterials, 1998,19:1405~1412
    [79] Sakavitsas V I, Bancroft G N, Mikos A G, Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor, J Biomed Mater Res, Part A, 2002,62:136~148
    [80] Ibim S M, Uhrich K E, Bronson R, et al. Poly(anhydride-co-imides), In vivo biocompatibility in a rat model, Biomaterials. 1998,19:941~951
    [81]顾汉卿,徐国风.生物医学材料学,第一版,天津,天津科技翻译出版公司,1993,335~351
    [82]He J H, Ma W, Tan S, et al, Study on Surface Modification of Ultrafine Inorganic Antibacterial Particles, Applied Surface Science, 2005, 241: 279-286.
    [83] Kawahara K, Antibacterial effect of Silver-zeolite on oral bacteria under anaerobic conditions, Dental Materials, 2000, 16: 452-455.
    [84] Jeon H, Yi S, Oh S, Preparation and Antibacterial Effects of Ag-SiO2 Thin Filmsby Sol-gel Method, Biomaterials, 2003, 24: 4921-4928.
    [85] Kokkoris M, Sol-Gel Preparation and Characterization of AgTiO2, Nanocomposite Thin Films, Nucl. Instr. and Meth. in Phys. Res. B, 2002, 188: 67-72.
    [86] 汪山, 程继健, 陈奇, 载银型无机缓释抑菌材料的研究与应用, 中国陶瓷, 2000, 36(2): 7-9.
    [87] 刘康时, 江显异, 赵英, 银系无机抑菌剂作用机理的研究进展, 佛山陶瓷, 2001, (11): 1-5.
    [88] 柳清菊, 隆泉, 张瑾, 等, 载银氧化物抑菌材料的制备及性能, 功能材料, 2004, 35(2): 245-250.
    [89] 迟广俊, 姚素薇, 张卫国, 等, 沉淀二氧化硅载银抑菌剂的制备及其抑菌性能, 天津大学学报, 2002, 35(2): 247-249.
    [90] 何娟, 苏雪筠, 载银沸石抑菌剂的研究, 中国陶瓷工业, 2002, 9(4): 15-19.
    [91] 余海霞, 张泽强, 谢恒星, 载银型抑菌累托石的制备及其性能, 武汉化工学院学报, 2003, 25(1): 46-49.
    [92] 侯丈生, 贾虎生, 张颖, 热处理对载银 4A 沸石抑菌剂抑菌性能的影响,材料热处理学报, 2005, 26(3): 79-81.
    [93] 张丈钲, 王广文, 载银无机抑菌剂变色抑制剂研发现状, 化工新型材料, 2002, 30(4): 23-25.
    [94] Paje S E, Liopis J, Villegas M A, Fernandez Navarro J M, Photoluminescence of A Silver-doped Glass, Appl. Phys. A 63(1996): 431-434.
    [95] Yoshio O, Takashi I, Abhijit C, Takeo E, Toshio S, Takashi S, Hitoshi M, Silver-doped Antibacterial CeraMICMS,Applied Clay Science, 2001,18: 123-134
    [96] Top A, Silver, Zinc, and Copper Exchange in A Na-clinoptilolite and Resulting Effect on Antibacterial Activity, Applied Clay Science, 2004, 27: 13-19.
    [97] Yamamoto O, Sawai J, Change in Antibacterial Characteristics with Doping Amount of ZnO in MgO-ZnO Solid Solution, International Journal of Inorganic Matelials, 2000, 2: 451-454.
    [98] Sawai J, Quantitative Evaluation of Antibacterial Activities of Metallic Oxide Powders (ZnO, MgO and CaO) by Conductimetric Assay, Journal of Microbiological Methods, 2003, 54: 177-182.
    [99]马铁成, 高文元, 刘贵伟, 杀菌陶质釉面砖的研究, 硅酸盐通报, 1999, 4: 41-45.
    [100] 吕国玉, 李玉宝, 魏杰, 等, 载银羟基磷灰石抑菌织物的研究, 功能材料, 2005, 36(6): 888-891.
    [101] 冯晋阳, 吴建锋, 徐晓虹, 羟基磷灰石抑菌剂的研究, 硅酸盐通报, 2004, (4): 6-10.
    [102] Monma H, Kamiya T, Preparation of hydroxyapatite by the hydrolysis of brushite, J. Mater. Sci., 1987, 22: 4247-4250
    [103] Monma H, Ueno S, Kanazawa T, Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate, J. Chem. Tech. Biotechnol., 1981, 31: 15-24.
    [104] Moreno E C, Vanghese K, Crystal growth of calcium apatite from dilute solutions, J. Crystal Growth, 1981, 53: 20-30.
    [105] Fujishiro Y, Yabaki H, Kawamura K, et al., Preparation of needle-like hydroxyapatite by homogeneous precipitation under hydrothermal conditions, J. Chem. Tech. Biotechnol., 1993, 57: 349-353.
    [106] Deptula A, Lada W, Olczak T, et al., Preparation of spherical powders of hydroxyapatite by sol-gel process, J. Non-Crystalline Solids, 1992, 147/148: 537-541.
    [107] Vallet-Regi M, Cutierrez-Rios M T, Alonso M P, et al., Hydroxyapatite particles synthesized by pyrolysis of an aerosol, J. Solid State Chem., 1994, 112: 58-64.
    [108] Lim C K, Wang J, Ng S C, et al., Nanosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant, J. Mater. Chem., 1999, 9: 1635-1639.
    [109] Lim C K, Wang J, Ng S C, et al., Processing of fine hydroxyapatite powders via an inverse microemulsion route, Mater. Lett., 1996, 28: 431-436.
    [110] Lim C K, Wang J, Ng S C, et al., Processing of hydroxyapatite via microemulsion and emulsion routes, Biomaterials, 1997, 18(21): 1433-1439.
    [111] 张善明, 刘强, 张善磊. 从海带中提取高粘度海藻酸钠. 食品加工, 2002, 23: 86-87
    [112] 程晋生. 海藻酸盐和明胶/海藻酸钠混合凝胶,明胶科学与技术,2004,24: 169-177
    [113] Thu B, Smidsrod O, Skjak-Brak G. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J. (Eds), Immobilized Cells; Basics and Applications Amsterdam: Elsevier Science, 1996:19
    [114] Draget KI, Skjak-Brak G, Christensen BE, et al. Swelling and partial solubilization of alginic acid gel beads in acidic buffer. Carbohydr. Polym., 1996, 29: 209-215
    [115] Lewis, J.C., Stanley, N.F., and Guist, G.G. Commercial production andapplications of algal hydrocolloids, Algae and Human Affairs, Lembi, C.A. and Waaland, J.R., Eds., Cambridge Univ. Press, 1988, 205–236.
    [116] 陈声明. 海藻酸的微生物合成及其发酵条件. 食品与发酵工业, 1994, 4: 55-58
    [117]Finotelli P.V., Morales M.A., Rocha-Leao M.H., et al. Magnetic studies of iron(III) nanoparticles in alginate polymer for drug delivery applications. Mat. Sci. Eng. C, 2004, 24: 625–629
    [118] Nokhodchi A, Tailor A. In situ cross-linking of sodium alginate with calcium and aluminum ions to sustain the release of theophylline from polymeric matrices. Farmaco., 2004, 59: 999–1004
    [119] Chan L.W., Jin Y., Heng P.W.S. Cross-linking mechanisms of calcium and zinc in production of alginate microspheres. Int. J. Pharm., 2002, 242: 255–258
    [120] 马成浩, 彭奇军, 于丽娟. 混合酸酐交联海藻酸钠的制备及性能. 食品添加剂, 2004, 25(4): 123-125
    [121]马成浩, 于丽娟, 彭奇均. 环氧氯丙烷交联海藻酸钠的制备及性能,无锡轻工大学学报, 2005,24(1): 80-84
    [122]Eiselt P., Lee K.Y., Mooney D. J. Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)-diamines. Macromolecules, 1999, (32): 5561-5566
    [123]Lee K.Y., Rowley H. A., Eiselt P., et al. Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules, 2000 (33): 4291-4294
    [124]Chan L. W., Heng P. W.S. Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification. Biomaterials, 2002, 23:1319-1326
    [125]Tripathy T., Pandey S.R., Karmakar N. C., et al. Novel flocculating agent based on sodium alginate and acrylamide. Eur. Polym. J., 1999, 35: 2057-2072
    [126] 柳明珠, 曹丽歆. 丙烯酸与海藻酸钠共聚制备耐盐性高吸水树脂. 应用化学, 2002, 19: 455-458
    [127] 萧聪明, 何月英, 吴宏. 海藻酸钙水凝胶小球与丙烯腈的接枝共聚改性. 应用化学, 2004, 21(5): 535-537
    [128] 樊李红, 杜予民, 唐汝培. 海藻酸钠/水性聚氨酯共混膜的结构表征和性能测试. 分析科学学报, 2002, 18: 441-444
    [129] 李沙, 李馨儒, 侯新朴. 海藻酸钠—壳聚糖微囊的制备及载药性质的研究.中华临床医药, 2002, 3: 1-3
    [130] 李新建,薛毅珑,罗芸 等. 海藻酸盐-多聚赖氨酸-海藻酸盐微胶囊膜的强度和生物相容性测定. 军医进修学院学报, 2001, 22: 94-96
    [131] Choi Y S, Hong S R, Lee Y M, et al. Study on gelatin-containing artificial skin:I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials, 1999, 20: 409-417
    [132] 樊李红, 杜予民, 郑化 等. 海藻酸/明胶共混膜结构表征及性能. 武汉大学学报(理学版),2001, 47: 712-716
    [133] Hertzberg S., Moen E., Vogelsang C. Mixed photo-cross-linked polyvinyl alcohol and calcium-alginate gels for cell entrapment. Appl. Microbiol. Biotechnol., 1995, 43:10-17
    [134]李沁华, 张文宇. 聚乙烯醇-海藻酸钙复合材料制备及性质. 暨南大学学报(自然科学版), 2001, 22: 81-85
    [135] 刘建, 赵宁阳, 黄锦辉 等. 硬脂酸—海藻酸钠复合薄膜调料包装袋的研究. 食品科学, 1996, 6: 67-70
    [136] Perka C,Spltzer RS,Liadenhayn K,et a1.Matrix—mixed culture:new methodology for chondrocyte culture and preparation of cartilage transplants.J. Biomed. Mater. Res., 2000, 49(3): 305-311
    [137] 甘纯玑.《褐藻胶生产及应用》.农业出版社.1989.
    [138]Martinsen A., Skjak-Brak G., Smidsrod O. Algiante as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng., 1989, 33: 79-89
    [139] Martinsen A., Storro I., Skjak-Brak G. Alginate as immobilization material: III. Diffusional properties. Biotechnol. Bioeng., 1992, 39: 186-194
    [140]Yahsi A., Sahin F., Demirel G., et al. Binary immobilization of tyrosinase by using alginate gel beads and poly(acrylamide-co-acrylic acid) hydrogels. Int. J. Biol. Macromol., 2005, 36: 253–258
    [141]Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science, 1980, 210: 908–910.
    [142] Darrabie MD, Kendall WF, Opara EC. Characteristics of Poly-L-Ornithine-coated alginate microcapsules. Biomaterials, 2005, 26: 6846–6852
    [143] Solpan D., Torun M. Investigation of complex formation between (sodium alginate/acrylamide) semi-interpenetrating polymer networks and lead, cadmium, nickel ions. Colloid Surface A: Physicochem. Eng. Aspects, 2005, 268: 12–18
    [144] FengJu Zhang, GuoXiang Cheng, XiaoGuang Ying. Emulsion and macromolecules templated alginate based polymer microspheres. Reactive and Functional Polymers, 2006, 66:712-719
    [145] Feng Ju Zhang, Guo Xiang Cheng, Zhi Gao, Cui Ping Li, Preparation of Porous Calcium Alginate Membranes/Microspheres via an Emulsion Templating Method, Macromol. Mater. Eng. 2006, 291, 485–492
    [146] J.W. Vanderhoff, M .S. Eaasser. Polym. Mater. Sci. Eng.,1986,54:587
    [147] A.J .Paine. Macromolecules, 1995,2 8:3 104.
    [148] 曹同玉,刘庆普,胡金生。聚合物乳液合成原理、性能及应用,北京:化学工业出版社,1997.
    [149] 宋健.陈磊,李效军,微胶囊化技术及应用.北京:化学工业出版社,2001
    [150] 王礼云编译.磷酸盐耐高温凝胶材料[M],北京:中国轻工业出版社,1965.
    [151] 胡连成,黎义,于翘.俄罗斯航天透波材料现状考察[J].宇航材料工艺,1994,(1):48.
    [152] Zhang Y, Zhang M. Three-dimensional macroporous calcium phosphate bioceraMICMS with nested chitosan sponges for load-bearing bone implants. J Biomed Mater Res, 2002, 61:1~8
    [153] Simon CG Jr, Khatri C A, et al. Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly(lactide-co-glycolide) microspheres. J Ortho Res, 2002, 20:473~482.
    [154] Kunio Ishikawa, Youji Miyamoto, Masaaki Takechi, Tomotake Toh, Masayuki Kon, Non-decay type fast-setting calcium phosphate cement- Hydroxyapatite putty containing an increased amount of sodium alginate. J. Biomed Mater Res, 1997,36:393-399.
    [155] F. Despang1, A. Borner1, R. Dittrich2, Alginate/calcium phosphate scaffolds with oriented, tube-like pores. Mat.-wiss. u. Werkstofftech. 2005, 36:761~767
    [156] Cormack, P.A.G.; Mosbach, K. React Funct Polym 1999, 41,115.
    [157] Katz A.,Davis M.E., Molecular imprinting of bulk, microporous silica ,Nature[J],2000,403(20):286
    [158] Ciuffi KJ,Sacco HC,Biazzotto J C,et al. J Non-Cryst Sol [J],2000,273(1~3):100
    [159] Kodakari N,Katada N,Niwa M,Appl Surf Sci [J],1997, 121/122:292
    [160] 孟令芝,余兆菊,袁良杰 染料分子印迹聚硅氧烷的制备及性能研究,武汉大学学报(理学版) 2002,48(2):147~150
    [161] Yu C and Moebach K.J.Org, Chem., 1997, 62:4057-4064
    [162] Chao Liu, Guoxiang Cheng, Kongyin Zhao, Template synthesis of lamellar calcium phosphates influenced by template, phosphorus sources and ethanol. Journal of Tianjin University, 2006, 39:190-192
    [163] 董晓旭, 抗菌高分子材料抗菌性检验方法的研究, 工程塑料应用, 2000, 28(2): 27-29.
    [164] 董晓旭, 抗菌性能检测方法.塑料科技, 2000, 4(2): 43-95.
    [165] 李晓英, 抗菌剂及抗菌材料的应用, 中国塑料, 2001, 15(2): 68-70.
    [166] 日本防菌防微学防菌防微事典, 东京, 防菌防微出版社, 1986: 222-224.
    [167] Park S, Jang Y, Preparation and Characterization of Activated Carbon Fibers Supported with Silver Metal for Antibacterial Behavior, Journal of Colloid and Interface Science, 2003, 261: 238-243.
    [168] Li C Y, Antibacterial Pitch-based Activated Carbon Fiber Supporting Silver, Carbon, 1998, 36(1-2): 61-65.
    [169] Yamamoto O, Adsorption and Growth Inhibition of Bacteria on Carbon Materials Containing Zinc Oxide, Carbon, 2001, 39: 1643-1651.
    [170] Yamamoto O, Influence of Particle Size on The Antibacterial Activity of Zinc Oxide, International Journal of Inorganic Materials, 2001, 3: 643-646.
    [171] Guo T Y, Xia Y Q, Hao G .J, et al. Adosrption separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials 2004, 25: 5905-5912
    [172] Hilt J Z, Byrne M E. Configurational biomimesis in drug delivery: molecular imprinting of biologically significant molecules. Adv. Drug Deliv. Rev. 2004, 56: 1599-1620
    [173] Tsai H A, Syu M J. Synthesis and characterization of creatinine imprinted poly(4-vinylpyridine-co-divinylbenzene) as a specific recognition receptor. Anal. Chim. Acta, 2005, 539: 107–116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700