界面聚合法制备分离CO_2固定载体复合膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分离与回收CO2是21世纪最为重要的涉及能源、资源和环境的课题之一。分离CO2的固定载体膜尚属新的研究领域,其膜材料的开发和制膜工艺的改善是亟待解决的问题。本文探索了用界面聚合法制备分离CO2固定载体复合膜。
     首次以水相-油相法界面聚合研制成功五种CO2固定载体复合膜。这五种复合膜分别以二乙烯三胺(DETA)、三乙烯四胺(TETA)、四乙烯五胺(TEPA)、多乙烯多胺(PEPA)和聚乙烯亚胺(PEI)为水相单体或预聚物,均苯三甲酰氯(TMC)为油相单体,聚砜(PS)或聚醚砜(PES)超滤膜为基膜。利用多种测试手段分析了所制膜的结构。考察了膜对CO2/CH4和CO2/N2体系的透过分离性能。系统研究了各种条件对膜结构和性能的影响规律。结果表明,五种复合膜均含有大量胺基,表面粗糙致密,具有超薄分离层且分离层与支撑层具有互嵌结构。对TETA单体,适宜的制膜条件是:PS为基膜,65~70oC下热处理10~15min;2~2.8wt% TETA浓度,0.2~1.2wt% TMC浓度, 2~10min TETA浸泡时间,3~4min界面聚合时间,添加浓度不小于0.4wt%的酸吸收剂(NaOH、Na2CO3或TEA)。随着胺单体链长的增加,DETA-TMC、TETA-TMC、TEPA-TMC和PEPA-TMC复合膜透气性依次增大,分离因子依次减小。一般地,随着进料压力的升高或进料温度的降低,CH4(N2)渗透速率升高,CO2渗透速率和CO2/CH4(CO2/N2)分离因子降低。
     五种复合膜的透过选择性和耐压能力综合指标明显高于文献报道的其它固定载体膜。如,进料温度30oC,进料压力1.1atm时,对混合气体CO2/CH4 (体积比10/90),DETA-TMC/PS、TETA-TMC/PS、TEPA-TMC/PS和PEPA-TMC/PS复合膜的CO2渗透速率分别可达5.85×10-6、1.47×10-5、2.38×10-5和3.18×10-5cm3(STP)cm-2s-1cmHg-1,相应的CO2/CH4分离因子为124、96、76和64。同样的复合膜,进料压力分别为10.6atm、10.4atm、10.2atm和9.9atm时,其CO2渗透速率分别可达4.86×10-6、9.20×10-6、1.34×10-5和1.65×10-5 cm3(STP)cm-2s-1cmHg-1,相应的CO2/CH4分离因子为56、42、35和31。膜对CO2/N2 (体积比20/80)的透过选择性更好。对PEI-TMC/PS复合膜,进料压力为1.1atm时,CO2渗透速率可达3.13×10-5cm3(STP)cm-2s-1cmHg-1,CO2/CH4分离因子是81;进料压力10.9atm时,CO2渗透速率和CO2/CH4分离因子分别可达2.34×10-5 cm3(STP)cm-2s-1cmHg-1和37。
     尝试用油相-水相法界面聚合制备了TETA-TMC/PES固定载体复合膜,研究比较了水相-油相法和油相-水相法两种工艺及所制膜结构和性能的不同特点。结果表明,前者制备的复合膜表面更粗糙、分离层更薄,制膜工艺较复杂但分离性能更好。
Separation and reclaim of CO2 is one of the most important subjects on energy, resource and environment in 21 century. Fixed carrier membrane for CO2 separation is a new research field in which both the development of membrane material and the improvement of membrane preparation technique are urgent. This study made attempts to develop fixed carrier membranes for CO2 removal prepared by interfacial polymerization (IP).
     Five kinds of fixed carrier composite membranes were developed by IP from aqueous phase to organic phase, with diethylenetriamine (DETA), trimethylene tetramine (TETA), tetraethyleneamine (TEPA), polyethylene polyamide (PEPA) and polyethylenimine (PEI) as monomers or prepolymer of aqueous phase, trimesoyl chloride (TMC) as monomer of organic phase, polysulfone (PS) or polyethersulfone (PES) ultrafiltration membranes as supports. Several techniques were employed to characterize the structure of the membranes. The permselectivities of the membranes were measured with CO2/CH4 as well as CO2/N2. Influence of various parameters on membrane structure and performance were studied. The results show that these membranes contain a lot of amine groups, the IP layers of the composite membranes are dense, rough and very thin, and the adhesion between the IP layer and the porous support is good due to penetration of the IP layer into the porous support. Composite membranes with TETA as amine monomer have good performance with 10-15min heat-treatment at 65-70oC, 2-2.8wt% TETA concentration, 0.2-1.2wt% TMC concentration, 2-10min soaking in TETA solution, 3-4min IP time, more than 0.4wt% acid acceptor concentration of Na2CO3, NaOH or TEA. With amine chain longer, gas permeance of the membranes with various amines increases and the selectivity of the membranes decreases. Generally, with feed pressure increasing or temperature decreasing, CH4 or N2 permeance increases and CO2 permeance decreases which result in a decrease in CO2/CH4 or CO2/N2 selectivity.
     These composite membranes have excellent comprehensive performances including permselectivties and pressure stabilities, which are better than that of other fixed carrier membranes reported in literatures. For example, for feed gas containing 10vol% CO2 and 90vol% CH4, at 30oC and 1.1atm of feed gas pressure ,DETA-TMC/PS, TETA-TMC/PS, TEPA-TMC/PS and PEPA-TMC/PS composite membranes display CO2 permeance of 5.85×10-6, 1.47×10-5, 2.38×10-5 and 3.18×10-5 cm3(STP)cm-2s-1cmHg-1 and CO2/CH4 selectivity of 124, 96, 76 and 64. At 10.6atm, 10.4atm, 10.2atm and 9.9 atm of feed pressure,these membranes have CO2 permeance of 4.86×10-6, 9.20×10-6, 1.34×10-5 and 1.65×10-5 cm3(STP)cm-2s-1cmHg-1 and CO2/CH4 selectivity of 56, 42, 35 and 31. These membranes have better permselectivity for feed gas containing 20vol% CO2 and 80vol% N2. At 1.1atm of feed pressure, PEI-TMC/PS composite membrane has a CO2 permeance of 3.13×10-5 cm3(STP)cm-2s-1cmHg-1 and CO2/CH4 selectivity of 81, at 10.9atm of feed pressure, this membrane has a CO2 permeance of 2.34×10-5cm3(STP)cm-2s-1cmHg-1 and CO2/CH4 selectivity of 37.
     TETA-TMC/PES fixed carrier membranes were prepared by IP from organic phase to aqueous phase. The method of IP methods from aqueous phase to organic phase and the method of IP from organic phase to aqueous phase, and the corresponding membrane structure and performance were compared. The results show that the method of IP from aqueous phase to organic phase is more complex, and the composite membranes prepared by this method present rougher surface, thinner IP layer, and better permselectivity.
引文
[1] 周家贤,CO2-21 世纪的新碳源,化工进展,2001,(1):1~3
    [2] Howard J. Herzog, What future for carbon capture and sequestration? Environmental science and technology , 2001, 35(7):148~153
    [3] Puri P S, Membrane gas separation opportunities in the control of Greenhouse Effect, Euro membrane’97, 370~372
    [4] 张阿玲,温室气体 CO2 的控制和回收利用,北京:中国环境出版社[M],1996
    [5] 加藤顺(日),碳化学工业生产技术,北京:化学工业出版社[M],1990
    [6] 夏明珠,严莲荷,雷武等,二氧化碳的分离回收技术与综合利用,现代化工,1991,19(5):46~48
    [7] 刘振东,最新实用节能手册,北京:地震出版社[M],1994
    [8] T.A.谢苗诺娃,列伊捷斯主编,南京化学工业公司研究院译,工业气体的净化,北京:化学工业出版社[M],1977
    [9] 李秀清,CO2 对环境的破坏及其治理,河北化工,1994,3:52~54
    [10] Richard W. Baker, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res., 2002, 41: 1393~1411
    [11] Cecille L, Toussaint J C, Future industrial prospects of membrane process Elsevier, NewYork, NY, 1989
    [12] Marcel Mulder, Towards closed systems: From water to Carbon dioxide, Euro membrane’ 97, 367~369
    [13] Marcel Mulder 著,李琳译, Basic principles of membrane technology second edition, 膜技术基本原理,北京:清华大学出版社[M],1999
    [14] Bauer J. M., Elyassini J., Moncorge G., et al., New developments and application of carbon membranes, Key Eng. Mater, 1991, 61/62: 207~212
    [15] Koresh J. E., Soffer A., The carbon molecular sieve membranes, General properties and the permeability of CH4/H2 mixture, Sep. Sci. Tech, 1987, 22: 973~982
    [16] Centeno T. A., Fuertes A. B., Supported carbon molecular sieve membranes based on phenolic resin, J. Membr. Sci, 1999, 160: 201~211
    [17] Liang G. H., Sha G. Y., Guo S. C., Carbon membranes for gas separation devied from coal tar pitch, Carbon, 1999, 37: 1391~1397
    [18] 刘茉娥等编著,膜分离技术, 北京:化学工业出版社[M],1998
    [19] Koros W. J., Mahajan R., Pushing the limits on possibilties for large scale gas separation: which strategies? J. Membr. Sci, 2000, 175: 181~196
    [20] 吕丽春,李琳,陶瓷膜气体在分离中的应用,膜科学与技术,1995,15(2):12~20
    [21] Kammermeyer K., Silicon rubbers as a selective barrier, Ind. Eng. Chem, 1957, 49: 1685~1686
    [22] Stern S. A., Shah V. M., Hardy B. J., Structure/permeability relationships in silicone polymers, J. Polym. Sci, Part B: Polym. Phys, 1987, 25: 1263~1298
    [23] 张颖,分离 CO2/CH4 固定载体复合膜的制备与性能研究,天津大学博士论文,2002
    [24] Masuda T., Isobe E. and Higashimura T., Poly[1-(trimethylsilyl)-1-propyne]: A new high polymer synthesized with extremely high gas permeability, J. Am. Chem. Soc. 1983, 105: 7473~7474
    [25] Plate N. A., Durgarjan S. G., Khotimskii V. S., Novel poly(silicon oleins) for gas separation, J. Membr. Sci., 1990, 52: 289
    [26] Sykes G. F., Clair A. K., The effect of molecular structure on the gas transmission rates of aromatic polyimides, J. Appli. Polym. Sci., 1986, 32:3725~3735
    [27] Kim T. H., Koros W. J., Husk G. R., Relationship between gas separation properties and chemical structure in a series of aromatic polyimides, J. Membr. Sci., 1988, 37: 45~62
    [28] Coleman M. R., Koros W. J., Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications, J. Membr. Sci., 1990, 50: 285~297
    [29] 李悦生,丁孟贤,徐纪平,聚酰亚胺气体分离膜的进展,高分子通报,1991,(3):138~146
    [30] 李悦生,丁孟贤,徐纪平,单醚二酐型聚醚酰亚胺的透气性能与分子结构之间关系的研究,高分子学报,1994,(4):432~440
    [31] Brien K. C., Koros W. J., Polyimide materials based on pyromellitic dianhydride for the separation of carbon dioxide and methane gas mixtures, J Membr. Sci, 1988, 35: 217~230
    [32] Stern S. A., Mi Y., Yamamoto H., et al., Structure/Permeability relationships of polyimide membranes. I. Applications to the separation of gas mixtures, J. Polym. Sci., Polym. Phys. Ed, 1989, 27: 1887~1909
    [33] Matsumoto K., Xu P., Nishikimi T., Gas permeation of aromatic polyimides. I . Relationship between gas permeabilities and dielectric constants, J. Membr. Sci, 1993, 81: 15~22
    [34] 祁喜旺,陈翠仙,蒋维钧,聚酰亚胺气体分离膜,膜科学与技术,1996, 16(2):1~7
    [35] 张健,后晓准,主链含硅的芳族聚酰胺的合成及其气体选择透过性能,高分子学报,1995,(2):182~188
    [36] Ghosal K., Freeman B. D. and Chern R. T., Gas separation properties of aromatic polyamides with sulfone groups, Polymer, 1995, 36(4): 793~800
    [37] Morisato A., Ghosal, Freeman B. D., Chern R. T., et al., Gas separation properties of aromatic polyamides containing hexafluoroisopropylidene groups, J. Membr. Sci, 1995, 104: 231~241
    [38] Singh A., Ghosal K., Freeman B. D., et al., Gas separation properties of pendent phenyl substituted aromatic polyamides containing sulfone and hexafluoroisopropylidene groups, Polymer, 1999, 40: 5715~5722
    [39] Auvil S. R., Srinivasan R., Burban P. M., Int symposium on membranes for gas and vapour separation, Suadal USSR, Febr.1989
    [40] Koros W. J., Fleming G. K., Jordan S. M., et al., Polymeric membrane materials for solution-diffusion based permeation separations, Prog Polym. Sci, 1988, 13: 339~401
    [41] Koros W. J., Coleman M. R., Walker D. R. B., Controlled permeability polymer membranes, Ann Rev Mater Sci, 1992, 22: 47~89
    [42] Hirose T., Kamiya Y., Mizoguchi K., Gas transport in poly[bis(trifluoroethoxy) phosphazene], J. Appl. Polym. Sci, 1989, 38: 809~820
    [43] Hirose T., Mizoguchi K., Gas transport in poly(alkoxyphosphazenes), J. Appl. Polym. Sci, 1991, 43: 891~900
    [44] Takada K., Matsuya H., Masuda T., et al., Gas permeability of polyacetylenes carrying substituents, J. Appl. Polym. Sci, 1985, 30: 1605~1616
    [45] Stern S. A., Polymers for gas separation: the next decade, J. Membr. Sci, 1994, 94: 1~65
    [46] Robeson L. M., Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci, 1991, 62: 165~185
    [47] Robeson L. M., Burgoyne W. F., Langsam M., et al., High performance polymers for membrane separation, Polymer, 1994, 35: 4970~4978
    [48] Ward W. J., Robb W. L., Carbon dioxide-oxygen separation: facilitated transport of carbon dioxide across a liquid film, Science, 1967, 156: 1481~1484
    [49] Ward W. J., Robb W. L., Liquid Membranes for use in the separation of gases. US. Patent 3. 396.510, 1968
    [50] Saha S., Chakma A., Selective CO2 separation from CO2/C2H6 mixtures by immobilized diethanolamine/PEG membranes, J. Membr. Sci, 1995, 98: 157~171
    [51] Chen H., Obuskovic G., Majumdar S., Sirkar K K., Immobilized glycerol-based liquid membranes in hollow fibers for selective CO2 separation from CO2-N2 mixtures, J. Membr. Sci, 2001, 183: 75~88
    [52] Davis R. A., Sandall O. C., CO2/CH4 separation by facilitated transport in amine-polyethylene glycol mixtures, AIChE J, 1993, 39: 1135~1145
    [53] Meldon J. H., Stroeve P., Gregoire C. E., Facilitated transport of carbon dioxide: a review, Chem. Eng. Commun, 1982, 19: 263~300
    [54] Danesi Pr., Reichley-Yinger L, Rickert P. G., Lifetime of supported liquid membranes: the influence of interfacial properties, chemical composition and water transport on the long- term stability of the membranes, J. Membr. Sci., 1987, 31(2-3) :117~145
    [55] Fabiani C., Merigiola M., Seibona G., et al., Degradation of supported liquid membranes under an osmotic pressure gradient, J. Membr. Sci., 1987, 30(1): 97~104
    [56] Matson S. L., Lopez J., Quinn J. A., Separation of gases with synthetic membrane, Chem. Eng. Sci.,1983,38: 503~524
    [57] Majumdar S., Sirkar K. K., Sengupta A., Hollow-fiber contained liquid membrane [M], Ho W S, Sirkar K K, Membrane Handbook, New York: Chapman & Hall, 1992, 764~909
    [58] Teramoto M., Takeuchi N., Maki T., et al., Facilitated transport of CO2 through liquid membrane accompanied by permeation of carrier solution, Sep. Purif.,2002,27:25~31
    [59] Figoli A., Sager W. F. C., Mulder M. H. V., Facilitated oxygen transport in liquid membranes:review and new concepts, J. Membr. Sci, 2001, 181: 97~110
    [60] Teramoto M., Recent development in liquid membrane technology In:ICOM'93, Abstracts/oral presentations Heidelberg: Germany, 1993
    [61] Neplebroek A. M., Bargaman D., Smolders C. A., Supported liquid membrane: stabilization by gelation, J. Membr. Sci, 1992, 67: 149~165
    [62] Okabe K., Nakabayashi M., Matsumiya N., et al.,CO2 separation through hydrogel membranes.In: ICOM’96.Yokohama; The membrane Society of Japan, 1996, 588~589
    [63] Kemperman A. J. B., Rolevink H. H. M., Bargeman D., Th. van den Boomgaard, H. Strathmann, Stabilization of supported liquid membranes by interfacial polymerization top layers, J. Membr. Sci., 1998, 138: 43~55
    [64] Wijers M. C., Wessling M., Strathmann H., Limitations of the lifetime stabilization of supported liquid membrane by polyamides layers, J. Membr. Sci., 1999,17: 147~157
    [65] Guha A. K., Majumdar S., Sirkar K. K., A large-scale study of gas separation by hollow-fiber contained liquid membrane permeation. J. Membr. Sci.,1992,62: 293~307
    [66] Sirkar K. K., Hollow fiber contained liquid membrane based permeation-separation and separation-reaction-separation: an overview[A].In: ICOM’96[C].Yokohama: The membrane society of Japan,1996,578~579
    [67] Guha A. K., Majumdar S., Sirkar K. K., A larger-scale study of gas separation by hollow-fiber-contained liquid membrane permeator, J. Membr. Sci., 1991, 62: 293~307
    [68] Guha A. K., Majumdar S., Sirkar K. K., Gas separation models in a hollow fiber contained liquid membrane permeator, Ind. Eng. Chem. Res., 1992, 31: 593~604
    [69] Papadopoulos T., Sirkar K.K., A modified hollow fiber contained liquid membrane technique for gas separation at high pressures, J. Membr. Sci., 1994, 94: 163~181
    [70] Bessarabov D. G., Beckman I. N., Teplyakov V. V., Separation of CO2/CH4/H2 mixture using flowing liquid membranes, In: ICOM’93, Abstracts/Postors. Heidelberg: Germany, 1993, 2: 23
    [71] Visser A. E., Daris Jr J. H., rogers R. D., et al., Supported ionic liquid membranes and facilitated ionic liquid membranes, Green Industrial Applications of ionic Liquids, San Diego CA: USA, 1-5, April, 2001
    [72] Scovazzo P., Visser A., Davis J., Rogers R., et al., Supported ionic liquid membranes and facilitated ionic liquid membranes (FILMs), in: Rogers R., Seddon K., (Eds.), Industrial Applications of ionic Liquids, American Chemical Society Books, 2002, Chapter 6
    [73] Scovazzo P., Kieft J., Finan D. A., et al., Gas separations using non-hexafluorophosphate [PF-6] anion supported ionic liquid membranes, J. Membr. Sci., 2004, 238: 57~63
    [74] Quinn R., Appleby J. B., Pez G. P., Salt hydrates: new reversible absorbents for carbon dioxide, J. Am. Chem. Soc, 1995, 117: 329~335
    [75] Quinn R., Pez G. P., Use of salt hydrates as reversible absorbents of acid gases, US Patent, 4,973,456,1990
    [76] Quinn R., Appleby J. B., Pez G. P., New facilitated transport membranes for the separation of carbon dioxide from hydrogen and Methane, J. Membr. Sci, 1995, 104: 139~146
    [77] Quinn R., Pez G. P., and Appleby J. B., Molten salt hydrate membranes for the separation of acid gases. US, Patent 4,780,114, 1988
    [78] Laciak D. V., Quinn R., Pez G. P., Appleby J B, Puri P S, Selective permeation of ammonia and carbon dioxide by novel membranes, Sep. Sci. Tech, 1990, 25: 1295~1305
    [79] Dutta N. N., Baruah S., and Patil G. S., Gas separation using liquid membrane: technology perspectives, Chem. Eng, World XXVII 1992 ,(5): 73~81
    [80] Teramoto M.,Ohnishi N., Nao T., et al. Separation and enrichment of carbon dioxide by capillary membrane module with permeation of carrier solution, Sep. Purif. Technol., 2003, 30, 215~227
    [81] Sarma K. A., Chen H., Sirkar K. K., Dendrimer Membranes: A CO2-Selective Molecular Gate, J. Am. Chem. Soc. 2000, 122: 7594~7595
    [82] Sarma K. A., Sirkar K. K., Dendrimer Liquid Membranes: CO2 Separation from Gas Mixtures, Ind. Eng. Chem. Res. 2001, 40: 2502~2511
    [83] Duan S. H., Kouketsu T., Kazama S., et al., Benny D. Freeman, Formation and Characterization of PAMAM Dendrimer Composite Membrane for CO2 Separation, International Congress on Membranes and Membrane Processes, 2005, Korea
    [84] 李萌,PETEDA 的合成及其复合膜对 CO2/CH4 的分离性能研究,[硕士学位论文],天津:天津大学,2006
    [85] Leblanc O. H., Ward W. J., Matson S. L., et al., Facilitated transport in ion-exchange membranes, J. Membr. Sci, 1980, 6: 339~343
    [86] Way J. D., Noble R. D., Reed D. L., et al., Facilitated transport of CO2 in inon-exchange membranes, AIChE J, 1987, 33: 480~487
    [87] Matsuyama H., Teramoto M., Iwai K., Development of a new functional cation –exchange membrane and its application to facilitated transport of CO2, J. Membr. Sci, 1994, 93: 237~244
    [88] Yoshikawa M., Ezaki T., Sanui K., et al., Selective permeation of carbon dioxide through synthetic polymer membranes having pyridine moiety as a fixed carrier, J. Appl. Polym. Sci, 1988, 35: 145~154
    [89] Yoshikawa M., Fujimoto K., Kinugawa H., et al., Selective permeation of carbon dioxide through synthetic polymeric membranes having amine moiety, Chem. Letter, 1994, 243~247
    [90] Matsuyama H., Hirai K., Teramoto M, Selective permeation of Carbon dioxide through plasma polymerized membrane from diisopropylamine, J. Membr. Sci, 1994, 92: 257~265
    [91] Matsuyama H., Teramoto M., Sakakura H, Selectivie permeation of CO2 through Poly{2-(N, N-dimethyl) aminoethyl methacrylate} membrane prepared by plasma-graft polymerization technique, J. Membr. Sci, 1996, 114: 193~200
    [92] Matsuyama H., Terada A., Nakagawara, T, et al., Facilitated transport of CO2 through polyethylenimine/poly(vinylalcohol) blend membrane, J. Membr. Sci, 1999, 163: 221~227
    [93] Kim T. J., Li B. A., Hagg M. B., Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture, J. Polym. Sci., part B: Polym. Phys., 2004, 42: 4326~4336
    [94] Du R. H., Feng X. S., Chakma A., Poly(N,N-dimethylaminoethyl methacrylate)/polysulfone composite membranes for gas separations, J. Membr. Sci, 2006, 279: 76~85
    [95] Zhang Y., Wang Z., Wang S.C., Novel fixed carrier membranes for CO2 separation, J. Appl. Polym. Sci., 2002, 86: 2222~2226
    [96] Zhang Y., Wang Z., Wang S.C., synthesis and characteristics of novel fixed carrier membrane for CO2 separation, Chem. Lett., 2002 ,4: 430~431
    [97] Zhang Y., Wang Z., Wang S.C., CO2 facilitated transport through synthetic polymeric membranes, Chinese. J. Chem. Eng., 2002,10(5): 570~574
    [98] Zhang Y., Wang Z., Wang S.C., Selective permeation of CO2 through new facilitated transport membranes, Desalination, 2002, 145: 385~388
    [99] 张颖,王志,伊春海,王纪孝,王世昌,VSA-SA/PS 固定载体复合膜的制备及其 CO2/CH4分离性能,2006,57(1):163~168
    [100] 李保安,聚乙烯胺-聚砜复合功能膜及其 CO2 分离性能研究:[博士学位论文],天津:天津大学,1998
    [101] 伊春海,制膜湿度和温度对分离 CO2 固定载体膜结构和性能的影响:[硕士学位论文],天津:天津大学,2004
    [102] 张莉莉,PVSA/PVAm 共混复合膜的制备及其 CO2 分离性能的研究:[硕士学位论文],天津:天津大学,2004
    [103] Yi C. H., Wang Z., Li M., Wang J. X. and Wang S. C.,Facilitated transport of CO2 through polyvinylamine/polyethlene glycol blend membranes ,Desalination,2006,193:90~96
    [104] 伊春海,王志,张莉莉,胡津康,王纪孝,王世昌, 含聚乙烯基胺共混固定载体复合膜制备及其 CO2/CH4分离性能, 化工学报,2006, 57(4): 997-1002
    [105] 沈江南,CO2 优先吸附-固载促进传递膜的制备及其性能研究,[博士学位论文],浙江大学,2005
    [106] Shen J. N., Qiu J. H., Wu L. G. and Gao C. G., Facilitated transport of carbon dioxide through poly(2-N,N-dimethyl aminoethyl methacrylate-co-acrylic acid sodium) membrane, Sep. Purif. Technol., 2006, 51: 345~351
    [107] 黄仲涛等, 编著,无机膜技术及应用,北京:中国石化出版社[M],1999
    [108] 秦向东,温铁军,金美芳,脱除与浓缩二氧化碳的膜分离技术,膜科学与技术,1998,12(6):7~12
    [109] 李传峰,钟顺和,无机膜气体传递机理和模型,膜科学与技术,1999,20(3):34~36
    [110] 王金渠,无机膜分离,化工进展,1993,(3):4~10
    [111] Asad Javaid, Membranes for solubility-based gas separation applications, J.Chem. Eng., 2005, 112: 219~226
    [112] Graham T., On the law of the diffusion of gases, Philos. Mag, 1866, 32: 401~420
    [113] Pandey P., Chauhan R.S., Membrane for gas sepatation, Prog. Poly. Sci, 2001, 26: 853~893
    [114] Stern S. A., Gas permeation process, in “industrial processing with membranes” Eds. by Lacey K.E. Loeb S. Wliey Interscience, New York, 1972
    [115] Koros W. J., Chern R. T., Separation of gasous mixtures using polymer membranes in “Handbook of separation process Technology”, Eds. By Rousseau R R, Wiley Interscience, New York, 1987
    [116] 张健,后晓淮,高分子气体分子膜材料的化学结构与气体透过性能之间的关系,高分子通报,1999,1:14~19
    [117] Paymond P. C., Paul D. R., Sorption and transport of pure gases in random styrene/methyl methacrylate copolymers. J. Polym. Sci. Part B: Polym. Phys, 1990, 28: 2079~2102
    [118] Barrer R. M., Diffusivities in glassy polymers for the dual mode sorption model, J. Membr. Sci., 18 (1981) 25~35
    [119] Barbari T. A., Polymeric membranes based on bisphenol-A for gas separation, J. Membr. Sci., 42(1989) 69~86
    [120] Breck D. W., in: Zeolite Molecular Sieves, John Wiley and Sons, New York, NY, 1974, Chap.8.
    [121] Fujita H., Diffusion in Polymer-diluent systems, Fortschr. Hochpolym. Forsch, 1964, 3(3): 1~47
    [122] Frisch H. L., Stern S. A., Diffusion of small molecules in polymers, CRC Crit. Rev. Solid State Mater. Sci, 1983, 11: 123~187.
    [123] Ganesh K., Nagrajan R., Duda J. L., Rate of gas transport in glassy polymers: A free volume based predictive model, Ind. Eng. Chem. Res., 1992, 31: 746~755
    [124] Odani H., Uchikura M., Kurata M., Permeation of gas mixtures through polymer membranes, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem, 1983, 24: 81~82.
    [125] Alentiev A. Y., Yampolskii Y. P., Free volume model and tradeoff relations of gas permeability and selectivity in glassy polymers, J. Membr. Sci, 2000, 165: 201~216
    [126] Stern S. A., Fang S. M., Frisch H. L., Effect of pressure on gas permeability coefficients. A new application of “free volume” theory, J. Polym. Sci, Part A-2, 1992, 10: 201~219
    [127] Paul D. R., Koros W. J., Effect of partially immobilizing sorption on permeability and the diffusion time-lag, J. Polym. Sci, Polym. Phys. Ed, 1976, 14: 675~685
    [128] Koros W. J., Paul D. R., Huvard G. S., Energetics of gas sorption in glassy polymers, Polymer, 1979, 20: 956~960
    [129] Petropoulos J. H., Quantitative analysis of gaseous diffusion in glassy polymers, J. Polym. Sci, Part A2, 1970, 8: 1979~1801
    [130] Chern R. T., Koros W. J., Yui B., et al., Selective permeation of CO2 and CH4 through Kapton polyimide: Effects of penetrant competition and gas-phase nonideality, J. Polym. Sci, Polym Phys Ed, 1984, 22: 1061~1084
    [131] Brandt W. W., Model calculation of the temperature dependence of small molecule diffusion in high polymer, J. Phys. Chem, 1959, 63: 1080~1084
    [132] Di Benedetto A. T., Molecular properties of amorphous high polymers, I: A cell theory for amorphous high polymers, J. Polym. Sci, 1963, A1: 3459~3476
    [133] Pace R. J., Datyner A., Statistical mechanical model for diffusion of simple penetrants in polymers. I. Theory, J. Polym. Sci, Polym Phys Ed, 1979, 17: 437~451
    [134] Moaddeb M., Koros W. J., Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles, J. Membr. Sci, 1997, 125: 143~163
    [135] Nobel R. D., Analysis of facilitated transport with fixed site carrier membrane, J. Membr. Sci, 1990, 50: 207~214
    [136] Nobel R. D., Generalized microscopic mechanism of facilitated transport in fixed site carrier membrane, J. Membr. Sci, 1992, 75: 121~129
    [137] Cluster E. L., Aris R., Bhown A., On the limits of facilitated diffusion, J. Membr. Sci, 1989, 43: 149~164
    [138] Kang Y. S., Hong J. M., Kim U. Y., Analysis of facilitated transport in solid membranes with fixed site carriers Ⅰ: single RC circuit model, J. Membr. Sci, 1996, 109(2): 149~157
    [139] Hong J. M., Kang Y. S., Jang J., Analysis of facilitated transport in polymeric membranes with fixed site carriers Ⅱ: single RC circuit model, J. Membr. Sci, 1996, 109(2): 159~163
    [140] Little R. J., Van Swaaij W. P. M., Versteeg G. F., Kineticsof carbon dioxide with tertiary amines in aqueous solution. AIChEJ. 1990, 36: 1633
    [141] Versteeg G. F., van Swaaij, W. P. M. On the Kinetics between CO2 and Alkanolamines Both in Aqueous and Nonaqueoussolutions: Tertiary Amines. Chem. Eng. Sci., 1988, 43: 587
    [142] 中垣正幸著,许景文,严忠译,膜学入门[M],上海:上海科技文献出版社, 1983
    [143] Koros W J, Simplified analysis of gas/polymer selective solubility behavior, J. Polym. Sci, Part B Polym. Phys. Ed, 1985, 23: 1611~1628
    [144] Lin H. Q., Freeman B. D., Materials selection guidelines for membranes that remove CO2 from gas mixtures, Journal of Molecular Structure, 2005, 739: 57~74
    [145] Bickel C. S., Koros W. J., Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking, J. Membr. Sci, 1999, 155: 145~154
    [146] Ren J. Z., Wang R., Chung T. S., et al., The effect of chemical modifications on morphology and performance of 6FDA-ODA/NDA hollow fiber membranes for CO2/CH4 separation, J. Membr. Sci, 2003, 222: 133~147
    [147] Cao C., Chung T. S., Liu Y., et al., Chemical cross-linking modification of 6FDA-2, 6-DTA hollow fiber membranes for natural gas separation, J. Membr. Sci, 2003, 216: 257~268
    [148] Lu S., Chung T. S., Goh S. H., et al., Transport properties of cross-linked polyimide membranes induced by different generations of diaminobutane (DAB) dendrimers, J. Membr. Sci, 2004, 238: 153~163
    [149] Kesting R. E., Fritzsche A. K., Membrane polymers, in: Polymeric Gas Separation Membranes, Wiley Interscience, New York, 1993 Chapter 3
    [150] Bos A., Punt I. G. M., Wessling M., Strathmann H., CO2-induced plasticization phenomena in glassy polymer, J. Membr. Sci, 1999, 155: 67
    [151] Wessling M., Huisman I., Boomgaard Th. van den, Smolders C. A., Time-dependent permeation of carbon dioxide through a polyimide membrane above the plasticization pressure, J. Appl. Polym. Sci., 1995, 58: 1959
    [152] Bos A., Punt I. G. M., Wessling M., et al., Plasticization resistant glassy polyimide membranes for high pressure CO2/CH4 separations, Sep. Purif. Technol., 1998, 14: 27
    [153] Sander E. S., Penetrant-induced plasticization and gas permeation in glassy polymers, J. Membr. Sci, 1988, 37: 63~80
    [154] Williams S. C., Bikson B., Nelson J. K., et al., Method for preparing composite membranes for enhanced gas separation. US Pat: 4840819, 1989
    [155] Puri P. S., Diggs D. T., Lynch S. C., et al., Process for producing composite membranes, EP Pat.: 674938A1, 1995
    [156] Chen S. H., Chang D. J., Liou R. M., Hsu C. S., Lin S. S.. Preparation and separation properties of polyamide nanofiltration membrane, J. Appl. Polym. Sci., 2002,83:1112~1118
    [157] Cadotte J. E., Evolution of composite reverse osmosis membranes in D. R. Lloyd (Ed.), Materials science of synthetic membrane, American Chemical Society, Washington, D. C., 1985, pp.273~294
    [158] Bartels C. R., A Surface science investigation of composite membranes, J. Membr. Sci., 1989,45:225~245
    [159] Morgan P. W. and Kwolek S. L., Interfacial polycondensation.Ⅱ . Fundamentals of polymer formation at liquid interfaces, J. Polym. Sci. XL, 1959, pp.299~327
    [160] Chern Y. T., Chen L.W., Preparation of composite membranes via interfacial polyfunctional condensation for gas separation applications, J. Appl. Polym. Sci., 1992,44:1087~1093
    [161] Chern Y. T., Chen L. W., Interfacial polyfunctional condensation: curing reaction, J. Appl. Polym. Sci., 1991,42:2535~2541
    [162] Petersen J., Peinemann K.V., Novel polyamide composite membranes for gas separation prepared by interfacial polycondensation, J. Appl. Polym. Sci., 1997,63(12):1557~1563
    [163] Singh P. S., Joshi S. V., Trivedi J. J., et al., Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions, J. Membr. Sci., 2006, 278: 19~25
    [164] 梁雪梅,陆晓锋,刘光全,界面缩聚法制备聚芳酯复合纳滤膜的研究,华东理工大学学报,1999,25(3):297~301
    [165] Kwak S. Y., Kim C. K. and Kim J. J., Effects of bisphenol monomer structure on the surface morphology and reverse osmosis (RO) performance of Thin-film-composite membranes composed of polyphenyl esters, J. Polym. Sci.: part B: Polym. Phys., 1996,34: 2201~2208
    [166] Roh I. J., Park S. Y., Kim J. J., Kim C. K., Effects of the polyamide molecular structure on the performance of reverse osmosis membranes, J. Polym. Sci., part B: Polym. Phys., 1998, 36: 1821~1830
    [167] Kim C.K., Kim J.H., Roh I.J., J.J. Kim, The changes of membrane performance with polyamide molecular structure in the reverse osmosis process, J. membr. Sci., 2000, 165: 189~199
    [168] Zhou Y., Yu S. C., Liu M. H. and Gao C. J., Polyamide thin film composite membrane prepared from m-phenylenediamine and m-phenylenediamine-5- sulfonic acid, J. membr. Sci., 2006,270: 162~168
    [169] Ahmad A. L., Ooi B. S., Mohammad A. W. and Choudhury J. P., Composite nanofiltration polyamide membrane: a study on the diamine ratio and its performance evaluation, Ind. Eng. Chem. Res.,2004,43: 8074~8082
    [170] Lu X. F., Bian X. K., Shi L. Q., Preparation and characterization of NF composite membrane, J. Membr. Sci., 2002, 210: 3~11
    [171] Du R. H., Zhao J., Properties of poly (N, N-dimethylaminoethyl methacrylate) /polysulfone positively charged composite nanofiltration membrane, J. Membr. Sci., 2004, 239:183~188
    [172] Chen S. H., Chang D. J., Liou R. M., Hsu C. S., Lin S. S.. Preparation and separation properties of polyamide nanofiltration membrane, J. Appl. Polym. Sci., 2002, 83: 1112~1118
    [173] Song Y. J., Sun P., Henry L. L., Sun B., Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process, J. Membr. Sci., 2005, 251: 67~79
    [174] Khare V. P., Greenberg A. R., Krantz W. B., Investigation of the viscoelastic and transport properties of interfacially polymerized barrier layers using pendant drop mechanical analysis, J. Appl. Polym. Sci., 2004,94:558~568
    [175] Ahmad A. L., Ooi B. S., Properties-performance of thin film composites membrane: study on trimesoyl chloride content and polymerization time, J. Membr. Sci., 2005, 255: 67~77
    [176] Idris A., Kormin F., Noordin M. Y., Application of response surface methodology in describing the performance of thin film composite membrane, Sep. Purif. Technol., 2006, 49: 271~280
    [177] Li L. C., Wang B. G., Tan H. M., Chen T. L., et al., A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane, J. Membr. Sci., 2006, 269: 84~93
    [178] Veríssimo S., Peinemann K. V., Bordado J., Thin-film composite hollow fiber membranes: an optimized manufacturing method, J. Membr. Sci.,2005, 264: 48~55
    [179] Veríssimo S., Peinemann K. V., Bordado J., New composite hollow fiber membrane for nanofiltration, Desalination, 2005, 184: 1~11
    [180] Il J. R., Alan R. G., Vivek P. Khare, Synthesis and characterization of interfacially polymerized polyamide thin film, Desalination, 2006, 191: 279~290
    [181] 张宇峰,刘恩华,吴云,等, 聚酰胺纳滤中空纤维复合膜的制备及其性能研究, 天津工业大学学报,2004, 23(1):8~10,14
    [182] 彭海媛,陈坚锐,曾振辉,等,以 PAN 超滤膜为基膜的复合膜制备与性能表征,福州大学学报(自然科学版),2004,32(1):93~97
    [183] 高爱环,刘金盾,张浩勤,等,聚哌嗪酰胺复合纳滤膜制备及其性能表征,高校化学工程学报,2004,18(1):28~32
    [184] 翟晓东,陆晓锋,梁国明,等,界面聚合法制备聚酰胺复合纳滤膜Ⅰ复合纳滤膜的制备及其结构,华东理工大学学报,2001,27(6):643~647,676
    [185] 梁雪梅,陆晓锋,梁国明,界面聚合法制备聚芳酯复合纳滤膜的研究,浄水技术,1999,17(4):2~5
    [186] 梁雪梅,陆晓锋,梁国明,界面缩聚法制备聚芳酯复合纳滤膜的研究Ⅱ界面缩聚对复合膜的影响,华东理工大学学报,1999,25(4):394~397
    [187] Jegal J., Min S. G., Lee K. H.. Factors affecting the interfacial polymerization of polyamide active layers for the formation of polyamide composite membranes, J. Appl. Polym. Sci., 2002, 86: 2781~2787
    [188] Chai G. Y., Krantz W. B., Formation and characterization of polyamide membranes via interfacial polymerization, J. Membr. Sci., 1994, 93: 175~192
    [189] Rao A. P., Desai N.V., R. Rangarajan, Interfacially synthesized thin film composite RO membranes for seawater desalination, J. Membr. Sci., 1997, 124: 263~272
    [190] Kwak S. Y., Jung S. G. and Kim S. H., Structure-notion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films, Environ. Sci. Technol., 2001, 35: 4334~4340
    [191] 宋玉军,陈淑英,刘福安,等,制备 NF-TFC 膜的界面聚合反应研究,水处理技术,2000,26(4):203~206
    [192] 周勇,高性能反渗透复合膜及其功能单体制备研究,[博士论文],浙江大学,2006 年 4 月
    [193] 裴玉新,沈新元,血液净化用高分子膜的现状及发展,膜科学与技术, 1998,18(1):10~13
    [194] Streicher E., Schmeider H., The development of a polysulfone membrane, A new perspective in dialysis? Contrib Nephrol, (Highly permeable membr.) 1985, 46: 1~13
    [195] 邢卫红,钟景,聚砜制膜液的相平衡膜及其与制膜的关系,水处理技术,1995,21(1): 15~20
    [196] 张婉南,张钧,卢建军等,聚醚砜超滤膜的研制,水处理技术,1989, 15(3): 170~173
    [197] 陈忠祥,周美娟,肖通虎等,非溶剂草酸对形成聚醚砜微孔膜的影响研究,膜科学与技术,2001,21(6):21~26
    [198] McMurry J., Fundamentals of organic chemistry, Reprinted for People’s Republic of China by Thomson Leaning Asia and China Machine Press under the authorization of Thomson Leaning, the fourth Edition, 2003, pp.323~325
    [199] 高鸿宾 主编,有机化学,高等教育出版社[M],第三版,2002
    [200] 高家武,周福珍,刘士昕,等编著,高分子材料热分析曲线集[M],1990年第一版
    [201] Mark C., Porter Handbook of industry membrane technology, New Jersey, U.S.A.: Noyea Publications, 1990, pp. 307~344
    [202] 卞晓锴,陆晓锋,施柳青,原子力显微镜及膜科学技术研究中的应用,膜科学与技术,2002,22(5):36~40
    [203] 朱诚身 主编,聚合物结构分析,北京:科学出版社[M],2004 年第一版
    [204] Ismail A. F., Lorna W., Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane, Sep. Purif. Technol., 2002, 27: 173~194
    [205] Puleo A. C., Paul D. R., The effect on degree of acetylation on gas sorption and transport behavior in cellulose acetate, J. Membr. Sci., 1989, 47: 301~332
    [206] GowarikerV. R., Viswanathan N. V., Sreedhar J., Polymer science, Halsted Press, A Division of John Wiley and Sons Inc., New York, Western Hemisphere, 1986, pp. 263~294
    [207] Wang Z., Yi C. H., Zhang Y., Wang J. X., Wang S. C.,CO2-facilitated transport through poly(N-vinyl-γ-sodium aminobutyrate-co-sodiumacrylate) /polysulfone composite membranes,J. Appl. Polym. Sci., 2006 100 (1): 275~282
    [208] 徐寿昌,有机化学[M], 北京:高等教育出版社,1993
    [209] Koo J. Y., Peterson R. J., Cadotte J. E., ESCA characterization of chlorine damaged polyamide reverse osmosis membrane, ACS Polym. Prepr., 1986, 27(2): 391~392
    [210] Xim T. H., Koros W. J., Husk G. R. and O’Brien K. C., Relationship between gas separation properties and chemical structure in a series of aromatic polyimides, J. Membr. Sci., 1988, 37: 45~62
    [211] Chern Y. T., Chen L. W., interfacial polyfunction condensation ATR study of polyfunctional interfacial condensation, J. Macromol Sci Chem, 1991, A28(1): 105~127
    [212] 王学松, 现代膜技术与应用指南,化学工业出版社[M],2005
    [213] Wu D. Q., Koros W. J., High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes, Ind. Eng. Chem. Res., 2002,41:357~380
    [214] Cadotte J. E., King R. S., Majerle R. J., et al., Interfacial synthesis in the preparation of reverse osmosis membrane, J. Macromol Sci. Chem., 1981, A-15: 727~755

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700