UV-A特异诱导津田芜菁花青素合成基因表达调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光对植物花青素合成的调控,主要是通过光受体接受光信号进行信号转导,启动花青素合成的代谢途径。如红光、UV-A光、蓝光、UV-B光均可通过相应的光敏色素、隐花色素(蓝光/UV—A受体)、UV-B受体诱导拟南芥花青素的合成。但在津田芜菁(Brassica rapa‘Tsuda’)中只有UV-A光可诱导花青素的合成,而蓝光却不能诱导花青素的合成。为了研究津田芜菁UV-A特异诱导的光信号转导因子与花青素生物合成相关基因之间的关系以及UV-A特异诱导的花青素合成调节特性,本论文以花青素合成光敏感型的津田芜菁(Brassica rapa‘Tsuda’)4天苗龄幼苗及生长3个月的膨大下胚轴表皮为试材,进行了花青素合成的光诱导研究;相关基因的表达谱分析;UV-A诱导的蛋白质磷酸化研究;信号因子的克隆、表达特性分析及瞬时表达研究;花青素合成关键基因CHS的启动子克隆及分析。得到以下主要结果:
     1 UV-A光对津田芜菁花青素的积累有特异诱导作用
     津田芜菁花青素的合成受太阳光的诱导,在UV-B、UV-A、蓝光、红光、远红光以及红蓝复合光、UV-A红光复合光、UV-A远红光复合光中,诱导津田芜菁花青素合成最有效的光波为UV-A。UV-A特异诱导津田芜菁幼苗下胚轴下部以及成株膨大的下胚轴表皮花青素的积累。
     2 UV-A诱导津田芜菁花青素合成相关基因群的表达及蛋白质磷酸化分析
     cDNA微阵列分析表明津田芜菁UV-A光处理后的基因表达谱与Dark处理以及蓝光、UV-B单色光处理相比有明显差异。在UV-A特异诱导表达的基因群中,花青素合成关键基因CHS受UV-A光的上调诱导表达。初步筛选出的UV-A诱导花青素合成相关的基因有查儿酮合酶基因、黄烷酮3-羟化酶基因、谷胱甘肽S转移酶基因、细胞色素P450基因、以及bHLH转录因子、类锌指蛋白、Myb类DNA结合蛋白转录因子等。
     蛋白质磷酸化分析表明UV-A诱导后,细胞膜蛋白和细胞质蛋白均出现了磷酸化水平的动态变化,它们的磷酸化在UV-A处理5 min后便得以检测,磷酸化的程度在处理30-45 min左右达到高峰,接着开始下降,到120 min时几乎检测不到。说明UV-A诱导蛋白质的磷酸化可能参与其信号转导。
     3津田芜菁类CRY1、COP1、HY5基因在UV-A诱导下的表达特性
     从津田芜菁中克隆了与拟南芥CRY1、COP1、HY5序列相似的同源基因,推测的氨基酸序列与拟南芥对应的蛋白质序列相比,相似性均达90%以上,而且CRY1序列中含有光合裂解酶和FAD-bingding结构域,COP1中含有Ring和WD-40结构域,HY5中含有bZIP结构域。在原生质体中的瞬时表达和定位表明CRY1、COP1分布在整个原生质体中,而HY5分布在细胞器(包括细胞核)区。在津田芜菁幼苗中,CRY1、COP1、HY5表达量很大,不受光的诱导。而成熟植株中COP1、HY5表达量明显减少,受UV-A的诱导,这可能与花青素生物合成相关基因的表达调控有关,虽然有证据表明CRY1不是津田芜菁UV-A特异诱导花青素信号转导的光受体,但假定存在的特异UV-A受体是否同CRY1共用信号转导的下游因子COP1、HY5还需要进一步的研究。
     4津田芜菁CHS的表达受UV-A特异诱导,其5’调控区存在着光反应元件
     津田芜菁花青素合成基因CHS5’非翻译区序列,与拟南芥CHS启动子区序列有很高的相似性,除了含有真核生物启动子结构普遍具有的保守序列CAAT box和TATA box外,还有与光诱导相关的保守序列ACE、ATCT-motif、BoxⅡ、G-Box、GATA-motif、GT1-motif、MRE、SP1和TCT-motif等。津田芜菁CHS在不同单色光以及UV-A诱导下的表达特性说明,只有UV-A诱导CHS基因大量表达,表明UV-A对津田芜菁CHS表达的特异诱导,存在着UV-A特异调控CHS表达的信号转导调控途径。
Anthocyanin biosynthesis in higher plants is regulated by light. Photoreceptors receive lightand are involved in light signal transduction to stimulate the metabolism of anthocyaninaccumulation. In Arabidopsis anthocyanin biosynthesis is induced by red, UV-A, blue, and UV-B light through phytochromes, cryptochromes and UV-B receptor, respectively. In Brassicarapa 'Tsuda', however, only UV-A induced anthocyanin biosynthesis. In this study, 'Tsuda'plants at the stage of 4 days or 3 months old were used as materials. The anthocyaninbiosynthesis character as induced by light, the analysis of gene expression profile, the cloningand expression of regulated gene, the cloning and analysis of promoter of CHS wereinvestigated. The main results were obtained as follows.
     1. UV-A specific induction of anthocyanin biosynthesis in 'Tsuda' plants.
     Anthocyanin biosynthesis was induced by sunlight in 'Tsuda' plants. When lights withspecific wave length were irradiated such as UV-B, UV-A, blue, red, far-red, blue plus red, UV-A plus red, and UV-A plus far-red lights, only UV-A induced anthocyanin biosynthesis. UV-Ainduced anthocyanin biosynthesis in both of hypcotyls of seedlings and swollen hypocotyls of'Tsuda' plants.
     2. UV-A specific induction of gene expression profile of anthocyanin biosynthesis andprotein phosphorylation in 'Tsuda' plants.
     Microarray analysis showed that gene expression profile induced by UV-A had obviousdifference from those by blue and UV-B. Among a set of many genes induced by UV-A, theexpression of CHS, which was a key gene of anthocyanin biosynthesis, showed up-regulation.Genes for anthocyanin biosynthesis, including chalcone synthase, flavanone 3-hydroxylase,glutathione S-transferase, cytochrome P450, bHLH transcription factor, zinc finger-like protein,and Myb-like DNA binding protein were screened out by UV-A induction.
     Both cytoplasmic and membrane proteins were phosphorylated in response to UV-Aexposure. The phosphorylation of these cytoplasmic and membrane proteins became detectablewithin 5 minutes after UV-A exposure. The phosphorylation extent increased gradually until30-45 min after exposure, and then declined to an almost undetectable level by 120 min. Itsuggested that the phosphorylation of proteins in response to UV-A exposure might be involvedin light signal transduction.
     3. The expression character of putative CRY1, COP1, HY5 induced by UV-A in 'Tsuda'plants.
     Homolog cDNAs of CRY1, COP1, and HY5 in 'Tsuda' were isolated and the amino acidresidues deduced from each gene showed over 90%sequence identity to that of Arabidopsis CRY1, COP1, and HY5, respectively. Photolyase and FAD-binding domains in CRY1, Ringand WD-40 domains in COP1, and bZIP domain in HY5 were separately found in putativeCRY1, COP1, and HY5 of 'Tsuda' plants. The transient expression of CRY1, COP1, and HY5in protoplast showed that CRY1 and COP1 were distributed in the whole protoplast and HY5was in the area of nucleus. In the seedlings of 'Tsuda'plants, the level of CRY1, COP1, HY5expression was higher than that in mature plants, but they were not induced by light. In matureplants, in contrast, the expression of COP1, HY5 was induced by UV-A. It suggested that itmight be related to the expression of anthocyanin biosynthesis genes. Although CRY1 was notshown to be a photoreceptor of UV-A signal transduction in anthocyanin biosynthesis of B.rapa 'Tsuda', the pseudo-UV-A photoreceptor and CRY1 photoreceptor were considered toshare potentially the same regulators, ie., COP 1 and HY5.
     4. The expression of CHS was induced specifically by UV-A and LRE was localized in its5'-untranslation region
     The sequence of CHS 5' UTR in 'Tsuda' plants had high identity to that of the promoter ofCHS in Arabidopsis. It contained CAAT box, TATA box and light-induced motif such as ACE,ATCT-motif, BoxⅡ, G-Box, GATA-motif, GT1-motif, MRE, SP1 and TCT-motif. Theexpression character of CHS induced by light with different wavelengths showed that only UV-A induced the expression of CHS in 'Tsuda' plants. It may be possible that a UV-A signaltransduction way specifically induces the expression of CHS in B. rapa 'Tsuda'.
引文
[1] Forkmann G. Flavonoids as flower pigments: The formation of the natural spectrum and its extension by genetic engineering. Plant Breeding. 1991. 106: 1~26
    [2] Schafer E and Bowler C. Phytochrome-mediated photoperception and signal transduction in higher plants. EMBO reports. 2002. 3: 1042~1048
    [3] Briggs WR and Olney MA. Photoreceptors in Plant Photomorphogenesis to Date. Five Phytochromes, Two Cryptochromes, One Phototropin, and One Superchrome. Plant Physiology. 2001. 125: 85~88
    [4] Clack T, Matthews S and Sharrock RA. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: The sequence and expression of PHYD and PHYE. Plant Mol. Biol. 1994. 25: 413~417
    [5] Quail PH. Phytochrome photosensory signaling networks. Nat. Rev. Mol. Cell Biol. 2002. 3: 85~93
    [6] Cashmore AR, Jarillo JA, Wu YJ and Liu D. Cryptochromes: Blue light receptors for plants and animals. Science. 1999. 284: 760~765
    [7] Lin C. Plant blue-light receptors. Trends in Plant Science. 2000. 5: 337~342
    [8] Briggs WR and Christie JM. Phototropins 1 and 2: Versatile plant blue-light receptors. Trends in Plant Science. 2002. 7: 204~210
    [9] Shannon MH, Lori CN and Kevin HG. Structural Basis of a Phototropin Light Switch. Science. 2003. 301: 1541~1544
    [10] Mol J, Grotewold E, Koes R. How genes paint flowers and seeds. Trends in Plant Science. 1998. 3: 212~217
    [11] Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology. 2001. 126: 485~493
    [12] Shirley BW. Flavonoid biosynthesis: 'new' functions for an 'old' pathway. Trends in Plant Science. 1996. 1: 377~382
    [13] Fuglevand G, Jackson JA, Jenkins GI. UV-B, UV-A and blue light signal transduction pathways interact synergistically to regulate chalcone synthase gene expression in Arabidopsis. Plant Cell. 1996. 8: 2347~2357
    [14] Lozoya E, Block A, Lois R, Hahlbrock K, Scheel D. Transcriptional repression of lightinduced flavonoid biosynthesis by elicitor treatment of cultured parsley cells. Plant Journal. 1991. 1: 227~234
    [15] Aharoni A, De Vos CH, Wein M, Sun Z, Greco R, Kroon A, Mol JN and O'Connell AP. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. The Plant Journal. 2001.28:319~332
    [16] Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Auaubel FM, Goodman HM. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant Journal. 1995.8:659~671
    [17] Winkel-Shirley B. It takes a garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism. Plant Physiology. 2001. 127:1399~1404
    [18] Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. The Arabidopsis TT_2 gene encodes an R_2R_3 MYB domain protein that acts as a key determinant for the proanthocyanidin accumulation in developing seed. Plant Cell. 2001.13:2099~2114
    [19] Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L. The TT_8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell. 2000. 12:1863~1878
    [20] Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng XW. Molecular interaction between COP1 and HY5 of Arabidopsis. Mol Cell. 1998. 1: 213~222
    [21] Boss PK, Davies C, Robinson SP. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Molecular Biology. 1996. 32:565~569
    [22] Jin H and Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol. 1999.41:577~585
    [23] 邵莉,李毅,杨美珠,宋云,陈章良,萧师辉.查尔酮合酶基因对转基因植物花色和育性的影响.植物学报.1996.38:517~524
    [24] Suzuki KI, Xue HM, Tanaka Y, Fukui Y, Fukuchi MM, Murakami Y, Katsumoto Y, Tsuda S, Kusumi T. Flower color modifications of Torenia hybrida by cosuppression of anthocyanin biosynthesis genes. Molecular Breeding. 2000. 6:239~246
    [25] Meyer P, Heidmann I, Forkmann G. A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature. 1987. 330:677~678
    [26] Dela G, Or E, Ovadia R, Nissim-Levi A, Weiss D, Oren-Shamir M. Changes in anthocyanin concentration and composition in 'Jaguar' rose flowers due to transient high-temperature conditions. Plant Science. 2003. 164:333~340
    [27] Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology. 2002.5:218~223.
    [28] Harker CL, Ellis THN, Coen ES. Identification and genetic regulation of the chalcone synthase multigene family in pea. Plant Cell. 1990. 2:185~194.
    [29] 童哲.光敏色素及光形态建成.见余叔文主编,植物生理与分子生物学(第二版).北京:科学出版社,1998.633~653
    [30] Smith H, Phytochromes and light signal perception by plants-an emerging synthesis. Nature, 2000. 407:585~591
    [31] 张鸿明,赵实,高荣孚和刘玉军(2003).光敏色素分子特性及其信号转导机制.武汉植物学研究.21:537~543
    [32] Quail PH, Boylan MT, Parks BM, Short TW, Xu Y and Wagner D. Phytochromes: photosensory perception and signal transduction. Science. 1995.268:675~680
    [33] Bowler C, Neuhaus G, Yamagata H, Chua NH. Cyclic GMP and calcium mediate phytochrome phototransduction. Cell. 1994. 77:73~81
    [34] Zhou JL, Ma LG and Sun DY. Effects of G protein and cGMP on phytochrome-mediated amaranthin synthesis in Amaranthus caudatus seedlings. Science China (Series C). 1998. 41:232~237
    [35] Okamoto H, Matsui M and Deng XW. Overexpression of the heterotrimeric G-protein α-subunit enhances phytochrome-mediated inhibition of hypocotyls elongation in Arabidopsis. Plant Cell. 2001.13:1639~1651
    [36] 马力耕和孙大业.光敏色素与转录因子结合直接调控植物基因表达和发育.生命科学.2001.13:148~150
    [37] Guo H, Mockler T, Duong H, Lin C, SUB1, an Arabidopsis Ca~(2+)-binding protein involved in cryptochrome and phytochrome coaction. Science, 2001.291: 487~490
    [38] Kircher S, Gil P, Kozma-Bognar L, Fejes E, Speth V, Husselstein-Muller T, Bauer D, Adam E, Schafer E, Nagy F. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell, 2002. 14:1541~1555
    [39] Quail PH, Phytochrome photosensory signaling networks. Nat. Rev. Mol. Cell Biol. 2002. 3:85~93
    [40] Wang H, Ma LG, Li JM, Zhao HY, Deng XW. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science, 2001. 294:154~158
    [41] Yang HQ, Tang RH and Cashmore AR, The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell, 2001.13:2573~2587
    [42] Ahmad M, and Cashmore AR. HY4 gene of Arabidopsis thaliana encodes a protein with characteristics of blue-light photoreceptor. Nature. 1993.366:162~166
    [43] Mockler TC, Guo H, Yang H, Duong H and Lin C. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development. 1999. 126: 2073~2082.
    [44] Lin C. Blue light receptors and signal transduction. Plant Cell. 2002. 14: 207~225.
    [45] Ahrnad M, Jarillo JA and Cashmore AR. Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell. 1998. 10:197~208
    [46] Lin C, Yang H, Guo H, Mockler T, Chen J, and Cashmore AR. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl. Acad. Sci. USA. 1998. 95: 2686~2690
    [47] Jiao YL, Yang H J, Ma LG, Sun N, Yu HY, Liu T, Gao Y, Gu HY, Chen ZL, Wada M, Gerstein M, Zhao HY, Qu LJ and Deng XW. A Genome-Wide Analysis of Blue-Light Regulation of Arabidopsis Transcription Factor Gene Expression during Seedling Development. Plant Physiology. 2003. 133: 1480~1493
    [48] Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K, IshiuraM, Kanehisa M, Roberts VA, Todo T, Tainer JA and Getzoff ED. Identification of a new cryptochrome class: structure, function, and evolution. Mol Cell. 2003. 11: 59~67
    [49] Kleine T, Lockhart P, Batschauer A. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J. 2003. 35: 93~103
    [50] Short TW and Briggs WR. The transduction of blue light signals in higher plants. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 1994. 45: 143~171
    [51] Chory J and Wu D. Weaving the complex web of signal transduction. Plant Physiology. 2001. 125: 77~80
    [52] Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell. 2001. 13: 2589~2607
    [53] Deng XW, Matsui M, Wei N, Wanger D, Chu AM, Felmann KA, quail PH. COPI: an Arabidopsis regulatory gene, encodes a protein with Zinc-binding motif and αGβ homologus domain. Cell. 1992. 71: 791~801
    [54] Yamamoto YY, Matsui M, Ang LH, Deng XW. Role of a COP1 interactive protein in mediating light-regulated gene expression in Arabidopsis. Plant Cell. 1998. 10: 1083~1094
    [55] Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A and Deng XW. Molecular interaction between COP1 and HY5 Defines a Regulatory switch for light control of Arabidopsis development. Molecular Cell. 1998. 1: 213~222
    [56] Moscovici S, Moalem-Beno D, Weiss D. Leaf-mediated light responses in petunia flowers. Plant Physiol. 1996. 110: 1275~1282.
    [57] Katz A, Weiss D. Photocontrol of chs gene expression in petunia flowers. Physiology Plant. 1998. 102: 210~216.
    [58] Wade HK, Bibikova TN, Valentine WJ, Jenkins GI. Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant J. 2001. 25: 675~685
    [59] Barnes SA, Quaggio RB, Whitelam GC, Chua NH. fhyl defines a branch point in phytochrome A signal transduction pathways for gene expression. Plant J. 1996. 10: 1155~1161
    [60] Weisshaar B, Armstrong GSA, Block A. da Costa e Silva O, Hahlbrock K. Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J. 1991. 10: 1777~1786.
    [61] Anju Singh, Selvi M, Sharma R. Sun light-induced anthocyanin pigmentation in maize vegetative tissues. Journal of Experimental Botany. 1999. 50: 1619~1625
    [62] Chaturvedi R, Shyam R, .Sane PV. Steady state levels of Dlprotein and psbA thanscript during UV-B inactivation of photosystem Ⅱ in wheat. Biochemistry and Molecular Biology Internation. 1998. 44: 925~932
    [63] Gollop R, Even S, Colova-Tsolova V and Perl A. Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region. Journal of experimental botany. 2002. 53: 1397~1409
    [64] Wade HK, Sohal AK and Jenkins GI. Arabidopsis ICX1 Is a Negative Regulator of Several Pathways Regulating Flavonoid Biosynthesis Genes. Plant physiology. 2003. 131: 707~715
    [65] Fields S, Song OK. A novel genetic system to detect protein-protein interactions. Nature. 1989. 340: 245~246
    [66] Hartmann U, Valentine W J, Christie JM, Hays J, Jenkins GI and Weisshaar B. Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Molecular Biology. 1998. 36: 741~754
    [67] Takeda J, Obi I, Yoshida K. Action spectra of phenylalanine ammonia-lyase and chalcone synthase expression in carrot cells in suspension. Physiolgia Plantarum. 1994. 91, 517~521
    [68] Zhou B, Li YH, Xu ZR, Yan HF, Homma S, and Kawabata S. Ultraviolet-A specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa), Journal of experimental botany. 2007, 58: 1771-1781
    [69] Zhou B, Lan XG, Xu ZR, Kawabata S, and Li YH. UV-A Specific Regulation of Anthocyanin Biosynthesis in Red Turnip, Brassica rapa L. subsp, rapa: UV-A mediated Protein Phosphorylation. Acta Hort ISHS. 2007. (in press)
    [70] Kawabata S, Li Yuhua, Adachi M, Maruyama H, Ozawa E, Sakiyama R. Role of Photoreceptor- and Sugar-mediated Reactions in Light Dependent Anthocyanin Production in Lily and Stock Flowers. J. Japan. Soc. Hort. Sci. 2002. 71: 220~225
    [71] Siegelman HW, Hendricks SB. Photocontrol of anthocyanin formation in turnip and red cabbage seedlings. Plant Physiology. 1957. 32, 393-398.
    [72] Lange H, Shropshire WJ and Mohr H. An analysis of phytochrome-mediated anthocyanin synthesis. Plant Physiology. 1970. 47:649~655
    [73] Batschauer A, Ehmann B and Schafer E. Cloning and characterization of a chalcone synthase gene from mustard and its light-dependent expression. Plant Mol Biol. 1991. 16:175~185
    [74] Frohnmeyer H, Ehmann B, Kretsch M, Rocholl M, Harter K, Nagatani A, Furuya M, Batschauer A and Schafer E. Differential usage of photoreceptors for chalcone synthase gene expression during plant development. 1992. Plant J, 2:899~960
    [75] Neuhaus G Bowler C, Kern R and Chua NH. Calcium/calmodulin-dependent and independent phytochrome signal transduction pathways. 1993. Cell, 73:937~952
    [76] Kendriek RC, Kronenberg GH. Photomorphogenesis in Plants. 2nd ed. 1994. Dordrecht: Kluwer Academic Publishers
    [77] Young JC, Liscum E, Hangarter RP. Spectral-dependence of light-hypocotyl elongation in photomorphogenic mutants of Arabidopsis thaliana evidence for a UV-A photosensor. Planta. 1992. 188:106~114
    [78] 孙亮先,董海涛,李德葆.cDNA微阵列检测萌发期水稻重要代谢基因表达模式.中国水稻科学.2002.16:299~303
    [79] 饶志明,董海涛.水稻抗稻瘟病近等基因系的cDNA微阵列分析菌素.遗传学报,2002.29:887~893
    [80] Harmer SL. Microarrays: determining the balance of cellular transcription. The Plant Cell. 2002. 12:613~615
    [81] Chu Z, Ouyang Y, Zhang J, Yang H, Wang S. Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive R gene xa13. Molecular Genetics and Genomics, 2004, 271(1): 111~120
    [82] Shim KS, Cho SK, Jeung JU, Jung KW, You MK, Ok SH, Chung YS, Kang KH, Hwang HG, Choi HC, Moon HP and Shin JS. Identification of fungal (Magnaporthe grisea) stress-induced genes in wild rice (Oryza minuta). Plant Cell Reports. 2004. 22(8): 599~607
    [83] 骆蒙,孔秀英,刘越.小麦抗病基因表达谱中的文库构建与筛选方法研究.遗传学报.2002.29(9):814~819
    [84] 李瑶,裘敏燕,刘三震等.基因芯片与功能基因组.北京:化学工业出版社,2004.153~154
    [85] 王曼,王小菁.蓝光、近紫外光的受体及其对CHS表达诱导的研究.植物学通报.2000.19:265~271
    [86] 刘月萍,王向阳.黑芥子酶研究进展.生物技术通讯.2006.17:837~839
    [87] 孙大业,郭艳林,马力耕.细胞信号转导.北京:科学出版社,第二版,1998.213
    [88] Kitamura S, Shikazono N and Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. The Plant Journal. 2004. 37:104~114
    [89] Wittstock U and Halkier BA. Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. Catalyzes the Conversion of L-Phenylalanine to Phenylacetaldoxime in the Biosynthesis of Benzylglucosinolate. The Journal of Biological Chemistry. 2000. 275:14659~14666
    [90] Forkmann G. and Dangelmayr B. Genetic control of isomerase activity in flowers of Dianthus Caryophyllus. Biochem. Genetics. 1980. 18:5~6
    [91] Feldbrugge M, Sprenger M, Hahlbrock K, Weisshaar B. PcMYB1, A novel plant protein containing a DNA-binding domain with one MYB repeat, interacts in vivo with a light regulatory promoter unit. Plant J. 1997. 11(5):1079~1093.
    [92] Sprenger-Haussels M, Weisshaar B. Transactivation properties of parsley praline-rich bZIP transcription factor. Plant J. 2000.22 (1): 1~8.
    [93] Kircher S, Ledger S, Hayashi H, Weisshaar B, Schafer E, Frohnmeyer H. CPRF4a, A novel plant bZIP protein of the CPRF family: comparative analyses of light-dependent expression, post-transcriptional regulation, nuclear import and heterodimerisation. Mol Gen Genet. 1998.257(6): 595~605
    [94] Feldbrugge M, Sprenger M, Dinkelbach M, Yazaki K, Harter K, Weisshaar B. Functional analysis of a light-responsive plant bZIP transcriptional regulator. Plant Cell. 1994. 6(11): 1607~1621
    [95] Lois R, Dietrich A, Hahlbrock K, Schulz W. A phcnylalanine ammonialyase gene from parsley: structure, regulation and identification of elicitor and light-responsive cis-acting elements. EMBO J. 1989. 8:1641~1648
    [96] Ohl S, Hedrick S A, Chory J, Lamb CJ. Functional properties of a phenylalanine ammonialyase promoter from Arabidopsis. Plant Cell. 1990. 2: 837~848.
    [97] Foster R, Izawa T, Chua NH. Plant bZIP proteins gather at ACGT elements. FASEB J. 1994. 8:192~200
    [98] Menkens AE, Schindler U, Cashmore AR. The G-box: a ubiquitous regulatory DNA element in plants bound by GBF family of bZIP proteins. Trends Biochem Sci. 1995.20: 506~510
    [99] Sablowski RW, Baulcombe DC. Bevan M. Expression of a flower-specific Myb protein in leaf cells using a viral xector causes ectopic activation of a target promoter. Proc Natl Acad Sci USA. 1995.92:6901~6905
    [100] Sablowski RW, Moyano E, Culianez-Macia FA, Schuch W, Martin C, Bevan M. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J. 1994. 13:128~137
    [101] 刘强,张勇,陈受宜.干旱、高盐及低温诱导的植物蛋白激酶基因.科学通报,2000,45(6):561~566
    [102] Schaffer R, Landgraf J, Perez-Amador M, Wisman E. Monitoring genome wide expression in plants. Curr Opin Biotechnol. 2000. 11: 162~167
    [103] Eisen MB, Spellman PT, Brown PO and Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA. 1998. 95: 14863~14868
    [104] Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under draught and cold stresses by using a full-length cDNA microarray. Plant Cell. 2001. 13: 61~72
    [105] Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA. 2000. 97: 11655~11660
    [106] Brosche M, Schuler MA, Kalbina I, Connor L, Strid A. Gene regulation by low level UVB radiation: identification by DNA array analysis. Photochem Photobiol Sci. 2002. 1: 656~664
    [107] Jiao Y, Yang H, Ma L, Sun N, Yu H, Liu T, Gao Y, Gu H, Chen Z, Wada M, Gerstein M, Zhao H, Qu L J, Deng XW. A genome-wide analysis of blue light regulation of Arabidopsis transcription factor gene expression during seedling development. Plant Physiol. 2003. 133: 1480~1493
    [108] Reymond P, Weber H, Damond M and Farmer E. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell. 2000. 12: 707~720
    [109] Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell. 2001. 13: 889~905.
    [110] Cashmore AR. Cryptochromes: enabling plants and animals to determine circadian time. Cell. 2003. 114, 537~543
    [111] Lin C, and Shalitin D. Cryptochrome structure and signal transduction. Annu Rev Plant Biol. 2003. 54, 469~496
    [112] Mao J, Zhang YC, Sang Y, Li QH and Yang HQ. From The Cover: A role forArabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA. 2005. 102: 12270~12275
    [113] Mas P. Circadian clock signaling in Arabidopsis thaliana: from gene expression to physiology and development. Int J Dev Biol. 2005. 49: 491~500
    [114] Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, and Kay SA. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science. 2000. 290: 2110~2113
    [115] Guo H, Duong H, Ma N, and Lin C. The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J. 1999. 19:279~287
    [116] Kleiner O, Kircher S, Harter K and Batschauer A. Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant J. 1999. 19: 289~296
    [117] Mas P, Devlin PF, Panda S and Kay SA. Functional interaction of phytochrome B and cryptochrome 2. Nature. 2000. 408: 207-211
    [118] Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y and Cashmore AR. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell. 2000. 103: 815~827
    [119] Arnima G, Deng XW. Light inactivation of Arabidopsis photomorphogenci repressor COP1 involres a cell-specific requlation of its nucleocytoplasmic partitionning. Cell. 1994.79:1035~1045
    [120] Osterlund MT, Hardtke CS, Wein, Deng XW. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature. 2000. 405: 462~466.
    [121] Christie JM, Jenkins GI. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells. Plant Cell. 1996.8: 1555~1567.
    [122] Long JC, Jenkins GI. Involvement of plasma membrane redox activity and calcium homeostasis in the UV-B and UV-A/blue light induction of gene expression in Arabidopsis. Plant Cell. 1998. 10:2077~2086
    [123] Jenkins GI. UV-A and blue light signal transduction in Arabidopsis. Plant Cell Environ. 1997.20:773~778
    [124] 李志勇.细胞工程(第2版).北京:科学出版社.2003.pp.101~105.
    [125] 李春艳,李妮亚,陈少良.植物原生质体培养与融合的研究进展.海南师范学院学报(自然科学版)2005.18:264~268.
    [126] 赵维峰,孙光明.园艺植物原生质体培养及应用.热带农业科学.2004.24:48~53.
    [127] Davey MR, Anthony P, Power JB, Lowe KC. Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 2005.23: 131~171.
    [128] Cocking EC. A method for the isolation of plant protoplasts and vacuoles. Nature. 1960. 187: 927~929.
    [129] Aoki S, Takebe I. Infection of tobacco mesophyll protoplasts by tobacco mosaic virus ribonucleic acid. Virology. 1969. 39: 439~448.
    [130] Moran N, Ehrensten G, Iwasa K, Bare C, Mischke C. Ion channels in plasmalemma of wheat protoplasts. Science. 1984. 226: 835~838.
    [131] Gilroy S, Jones RL. Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts. Proc Natl Acad Sci USA. 1992.89: 3591-3995.
    [132] Patat-Ochatt EM, Ochatt SJ, Power JB. Plant regeneration from protoplasts of apple root stocks and scion varieties. J Plant Physiol. 1988.13: 460~465.
    [133] Hua S and Sun Z. Support vector machine approach for protein subcellular localization prediction. Bioinformatics. 2001.17:721~728.
    [134] Holm M, Ma LG, Qu LJ, and Deng XW. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes & Development. 2002. 16:1247~1259
    [135] Yi C, and Deng XW. COP1 from plant photomorphogenesis to mammalian tumorigenesis. Trends in Cell Biology. 2005.15:618~625
    [136] Ahmad M, Lin C, and Cashmore AR. Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant Journal. 1995.8:653~658
    [137] Lin C, Ahmad M, and Cashmore AR. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant Journal. 1996. 10:893~902
    [138] 潘增光,邓秀新.苹果原生质体制备培养及植株再生.园艺学报.2000.27:95~101.
    [139] 左红梅,任大明.纤维素酶纯化方法与原生质体的制备.安徽农业科学.2005.33:1147~1148.
    [140] 陈名红,李天飞,陈学军,吴渝生,李大春.4种基因型烟草叶肉原生质体培养的研究.江西农业大学学报.2005.28:175~179.
    [141] Froozabady E. Rapid plant regeneration from Nicotiana mesophy protoplasts. Plant Science. 1986. 46. 127~131.
    [142] 陈名红,熊立,陈学军.烟草叶肉原生质体分离和纯化研究.云南民族大学学报(自然科学版).2005.14:326~329.
    [143] 江力,孔小卫,吴晓杰,李少松.烟草原生质体的分离纯化.安徽大学学报(自然科学版).2006.30:91~94.
    [144] 张红梅,王俊丽.植物原生质体游离、培养及应用.河北林果研究.2002.17:376~382.
    [145] 付春华,郭文武,邓秀新.柚类、橘类叶肉原生质体分离方法研究.华中农业大学学报.2005.24:504~507.
    [146] Sairam RV, Seetharama N, Devi PS, Verma A, Murthy UR, Potrykus I. Culture and regeneration of mesophyll-derived protoplasts of sorghum (Sorghum bicolour L. Moench). Plant Cell Report. 1999. 18: 927~977.
    [147] 朱道圩,米银法,陈延惠,王静毅,刘中杰.GFP基因在软枣猕猴桃愈伤组织原生质 体中瞬间表达的初步研究.河南农业大学学报.2003.37:145~148.
    [148] Weiss D. Regulation of flower pigmentation and growth: Multiple signaling pathways control anthocyanin synthesis in expanding petals. Physiologia Plantarum. 2000. 110: 152~157.
    [149] 王曼,王小菁.蓝光和蔗糖对拟南芥花色素苷积累和CHS基因表达的影响.热带亚热带植物学报.2004.12(3):252~256
    [150] Faktor O, Kooter J M, Dixon R A, Lamb C J. Functional dissection of a bean chalcone synthase gene promoter in transgenic tobacco plants revrals sequence motifs essential for floral expression. PMB. 1996.32:849~859.
    [151] Koes RE, van Blokland R, Quattrocchio F, van Tunen AJ, Mol JNM. Chalcone synthase promoters in Petunia are active in pigmented and unpigrnented cell types. The Plant Cell. 1990. 2:379~392
    [152] Jaakola L, Maatta K, Pirttila AM Torronen R, Karenlampi S, Hohtola A. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during Bilberry fruit development. Plant Physiology. 2002. 130:729~739.
    [153] Matsushita T, Mochizuki N and Nagatani A. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature. 2003.424:571~574
    [154] Yamaguchi R, Nakamura M, Mochizuki N, Kay SA, Nagatani A. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J Cell Biol. 1999. 145:437~445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700