盐碱胁迫下羊草相关基因及蛋白质的表达谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羊草(Leymus chinensis)是一种广布于东北盐碱地区的优良牧草,对盐碱胁迫具有较强的耐受性,其中蕴藏着大量的抗逆基因和相关蛋白质。大规模分离、鉴定cDNA克隆及获得蛋白质表达谱,对进一步丰富抗逆功能基因资源库、探明植物耐受盐碱分子机理具有重要意义。本文以羊草为试验材料,对羊草盐碱胁迫耐受相关基因群及蛋白质表达谱进行了以下研究:
     1.盐碱胁迫下羊草消减文库的构建及差异基因片段的筛选分析
     以黑龙江省青冈县天然盐碱地(pH 9.5)草场生长的羊草地上部分cDNA为试验方(Tester),同期日光温室培养土(pH 5-6)条件下生长的8周龄非盐碱条件下生长的羊草地上部分cDNA为消减方(Driver),利用抑制性消减杂交技术(suppression subtractive hybridization,SSH)构建了盐碱胁迫下羊草消减文库。从消减文库中共筛选1920个阳性克隆,PCR鉴定插入片段大部分集中在300-1000 bp之间。去冗余后得到的552个非重复序列,将这些序列与GenBank数据库中的序列进行比对,发现其中有548条与数据库中的序列有同源性,其中功能已知序列339个,功能未知序列209条;另外有4条序列在数据库中未发现其同源序列。功能已知的基因种类涉及代谢、能量、细胞生长及分化、转录、蛋白质合成、蛋白质定位及贮存、细胞运输、细胞结构、转座子、信号转导、细胞胁迫及防御。消减文库中获得的基因其中包括已报道的在其他植物体中获得的盐碱胁迫相关的基因,如单脱氢抗坏血酸还原酶基因(monodehydroascorbate reductase,MDAR)、γ-谷氨酰半胱氨酸合成酶基因(gamma-glutamylcysteine synthetase,γ-ECS)、铁蛋白基因(ferrtin,FER)、水孔蛋白基因(aquaporin,PIP)、脱水素基因(dehydrin,DHN)、硫氧还蛋白还原酶基因(thioredoxin reductase,TR)、14-3-3蛋白基因等,其功能涉及活性氧清除、渗透调节、离子转运、基因调控等。
     2.利用cDNA微阵列检测羊草盐碱胁迫下基因的表达
     消减文库获得的552个非重复序列经PCR扩增后,制备cDNA微阵列。在反转录过程中,利用引物序列中包含的Cy3、Cy5荧光染料捕获序列标记盐碱胁迫下生长的羊草和温室培养羊草(非盐碱胁迫)的cDNA,按照3DNA Array900~(?)试剂盒中相应步骤完成芯片杂交,用ScanArray 4000~(?)芯片扫描仪扫描芯片。芯片的扫描根据添加的外标调整Cy3与Cy5的信号强度,使信号均一化后通过SAM软件分析上述样品基因表达差异的显著性。芯片杂交进行了三次生物学重复,杂交结果显示出的变化倍数超过2倍的认为是具有显著表达差异的基因。三次获得的差异表达基因个数分别为198、197、192个。三次杂交显著上调表达的基因个数分别为195、144、192个,显著下调的基因个数分别为3、53、0个。上调基因中部分基因为已报道与盐碱胁迫相关基因,如脱水素基因、单脱氢抗坏血酸还原酶基因、硫氧还蛋白基因、铁蛋白基因、水孔蛋白基因、14-3-3蛋白基因等。另外一些上调基因并没有其与盐碱胁迫相关的报告。
     3.盐碱胁迫下上调基因PIP、MDAR、FER、14-3-3在羊草植株中表达分析
     羊草植株用浓度为200 mmol/L的Na_2CO_3溶液进行胁迫处理,处理时间分别为2、6、12、24、48和72 h,提取各处理样品的总RNA,利用特异探针进行Northern杂交,分析水孔蛋白基因、单脱氢抗坏血酸还原酶基因、铁蛋白基因、14-3-3蛋白基因在不同胁迫处理时间段内的表达情况。结果表明:在盐碱胁迫条件下,4个基因均被诱导表达,且随盐碱胁迫处理时间的延长而呈上升表达的趋势,但表达特性并不完全一致。PIP、MDAR、FER基因的表达量在测定范围呈递增趋势,而14-3-3蛋白基因从2h开始至72 h表达量明显增加,12h、24h达到最高值,随后表达量开始下降。从这些结果中可以看出,这些基因都受盐碱胁迫诱导,在盐碱胁迫条件下表达量增加,功能基因的表达与调控基因的表达方式有所不同。
     4.利用二维液相色谱分析盐碱胁迫条件下羊草特异蛋白质的表达
     共设四组试验材料:处理组Ⅰ(盐碱胁迫)为温室内栽培的8周龄羊草,用200 mmol/LNa_2CO_3浇灌72h后的植株,对照组Ⅰ(非盐碱胁迫)材料为温室内栽培的8周龄羊草;处理组Ⅱ(盐碱胁迫)为盐碱地草场自然生长的羊草;对照组Ⅱ(非盐碱胁迫)为同期取回的天然生长的植株重新种植在温室栽培土条件下的羊草。用三氯乙酸—丙酮沉淀法提取总蛋白,蛋白质沉淀裂解后,采用第一维色谱聚焦、第二维反相高效色谱的组合模式进行二维液相色谱分离。第一维分离中将等电点(pI)在8.5-4.0范围内的蛋白质样品分离为每间隔0.3个pI梯度的组分。第一维分离组分接下来根据蛋白质的疏水性进行第二维分离。等电点8.5-4.0范围内的蛋白质样品经过二维分离后利用ProteoVue软件将所有组分按照等电点排序后即可获得蛋白质表达谱。本试验获得了处理组Ⅰ、Ⅱ和对照组Ⅰ、Ⅱ的羊草盐碱胁迫及非盐碱胁迫下植物的总蛋白质表达谱,在整个pH 8.5-4.0范围内条带清晰,蛋白质分布呈现为两个主要部分,pI为6.1-4.0和8.5-7.0两个区段范围内,其中pI为6.2-4.0范围内蛋白质表达量高于pI为8.5-7.2范围内蛋白质,即蛋白质集中在酸性范围内。但是pI为6.2-4.0范围内蛋白质疏水性接近导致蛋白质条带区分并不清晰,pI为7.2-8.5范围内蛋白质的分离效果要好于前者。处理组蛋白质中性、碱性蛋白质的表达量要稍高于对照组中性、碱性端蛋白质表达量。
     利用DeltaVue软件将色谱峰比值大于2倍的蛋白质初步定为存在表达差异的蛋白质组分。处理组Ⅰ与对照组Ⅰ比较后获得的总差异表达蛋白质组分90个,等电点为8.5-6.4范围差异表达蛋白质组分58个,其中对照组高于处理组的差异表达蛋白质组分共37个,处理组高于对照组的差异表达蛋白质组分共21个。处理组Ⅱ与对照组Ⅱ比较后获得的总差异表达蛋白质组分46个。等电点为8.5-6.4范围差异表达蛋白质组分23个,其中对照组高于处理组表达量的差异表达蛋白质组分共12个,处理组高于对照组的差异表达蛋白质组分共11个。其中大部分差异表达蛋白质组分的差异倍数均集中在2倍左右,少数蛋白质变化倍数在5倍以上。对差异蛋白质的鉴定工作有待进一步研究。
Leymus chinensis (Trin.) Tzvel., a high quality plant for grazing, adapts to alkaline-sodic soil conditions and distributes widely in the Northeast of China. This species has developed molecular and physiological mechanisms during the course of evolution, which involve lots of anti-stress genes and proteins to adapt stress conditions. To identify and characterize the complexity of this adaptation, it is important to identify, genes by large-scale sequencing of cDNA clones and related proteins. The cDNA clones and related proteins are expected to enrich the stress related molecular resources and reveal the molecular mechanism. In this dissertation, studies were made on the stress-related genes and proteins expression profile of Leymus chinensis shoots under saline-alkaline stress.
     1. The construction of subtraetive library of Leymus chinesis under saline-alkaline stress
     Using cDNAs from Leymus chinensis seedlings grown on the natural habitat of saline-alkaline soil was regarded as tester and cDNA from seedlings in normal growth as driver, suppression subtractive hybridization (SSH) was employed to construct cDNA subtracted library. Of the 1920 cDNA clones showed high quality sequences. The size of inserts was 300-1000 base pairs as it was determined by PCR. In the subtractive library, 552 clones were non- redundant, of which 339 had homology to the known transcripts, and 209 were unknown or unclassified. The remaining 4 ESTs had no homology in the databases searched. The suggested functions ESTs which have the annotation in the database include metabolism, energy, protein synthesis, protein storage, disease/defense, signal transduction, transporter and transpon. Sequence comparison of these clones using BlastN led to the identification of several putative saline-alkaline stress related genes, such as monodehydroascorbate reductase (MDAR), gamma-glutamylcysteine synthetase (γ-ECS), thioredoxin reductase (TR), Ferrtin (FER), Aquaporin (PIP), Dehydrin (DHN) and 14-3-3 protein. The suggested function of the ESTs involved active oxygen elimination, osmotic adjustment, ion transport and regulation of the genes. The putative ESTs will serve as useful resource to demonstrate the molecular basis of saline-alkaline stress related genes and for the further study of gene expression in Leymus chinensis. We consider that some of these genes and their metabolisms are possibly involved in the process of salt tolerance in Leymus chinensis.
     2. Gene expression profile of Leymus chinensis under saline-alkaline stress detected by cDNA microarray
     The inserts amplified from 552 sequences of Leymus chinensis SSH library clones were spotted on slides to get cDNA microarray. Saline-alkaline stress and non-stress mRNA were labeled with Cy3- or Cy5- fluorescence dye respectively during reverse transcription and then mixed as targets. Microarray hybridization was accomplished following the direction of user manual of 3DNA 900~(?). The array was scanned by ScanArray 4000~(?) microarray scanner. For standardization, the Cy3 and Cy5 signal intensities were adjusted to fit external controls. The microarry was hybrid for three times. Using SAM software to analyze the significance of difference of the microarray genes, 198, 197, and 192 significant regulated genes were detected in the three hybridizations, respectively. Among the significant regulated genes there were 3, 53, 0 down-regulated genes, respectively. In function-known genes included monodehydro-ascorbate reductase, gamma-glutamylcysteine synthetase, ferrtin, aquaporin, dehydrin, thioredoxin reductas, and 14-3-3 proteins, all of which were known to be related with stress tolerance. There is no report for other up-regulated genes.
     3. Expression of up-regulated genes, MDAR, FER, PIP, and 14-3-3s investigated by Northern blotting.
     Firstly, to blast the sequence of MDAR, FER, PIP, 14-3-3s with the related genes of other plants in database to design the primer. The special sequences of the four genes were labeled by the dig- mark to get the probe. The seedlings of treated with 200 mmol/L Na_2CO_3 for 2, 6,12, 24, 48 and 72h were used for extraction of RNA for Northern blot. The expression of four genes was detected in treatments. MDAR, FER, PIP, and 14-3-3s transcriptome increased with the duration of the treatment. But the genes showed different expression patterns. In 14-3-3s expression pattern, the largest amount was observed in seedlings treated for 12h and 24h, and then the expression amount decreased. The results indicated the genes induced by saline-alkaline stress. Yet the function genes and regulation genes showed different expression patterns.
     4. Protein expression profile of Leymus chinensis with two-dimensional liquid chromatography
     There were four groups of Leymus chinensis plants seedlings collected from the natural habitat (treatmentⅠ), seedlings poured with 200 mmol/L Na_2CO_3 after 72h (treatmentⅡ), seedlings in the natural habitat planted in the non-saline-alkaline soil (controlⅠ), and eight- week-old seedlings grown in the greenhouse without any stress (controlⅡ). Total proteins were extracted by TCA-acetone precipitation method. Proteins were fractionated in the first dimension using chromatofocusing (CF). Subsequently the fractions with pH value between 8.5 and 4.0 collected after first dimension separation were further fractionated by high-performance reverse phase liquid chromatography (HPRP). The pI/UV map showed that the protein expression profiling of Leymus chinensis was generated by ProteoVue software. In the experiment, four protein express profiles were got from samples of each of treatmentsⅠ,Ⅱ, controlⅠ, andⅡ.
     The protein expression profile maps showed clear bands and good-qulity fraction. The contribution of the protein fraction focused on pI range 6.1-4.0 and 8.5-7.0. The amount of protein in pI 6.2-4.0 was higher than that in 8.5-7.2, indicating mostly acidic proteins. But the proteins with pI in 6.2-4.0 had the similar hydrophilicity. The expression amount of neutral and basic proteins in treatments was higher than that of the controls.
     To get the differential proteins under the saline-alkaline stress, protein expression profiles of controls and treatments were compared by Deltavue software. Proteins which the peak height of controls and treatments was above two was decided the differential ones.There were 90 differential proteins, in each of controlⅠand treatmentⅠ, and 46 in each of controlⅡand treatmentⅡ. In pI 8.5-6.4, there were 58 differential proteins in controlⅠand treatmentⅠ. The higher amounts of differential proteins in control were 37, and that in treatment were 21. And in controlⅡand treatmentⅡthere are 23 differential proteins. The higher amount of differential proteins in control were 12, and that in treatment were 11.The peak height ratio of mostly differential proteins were about two, with some observations showing higher than five. Further studies remain to be made on such as the identification of differential proteins. The differential expression protein is important in order to understand the mechanism under saline-alkaline stress.
引文
[1] 赵可夫,范海编著.盐生植物及其对盐渍生境的适应生理.北京:科学出版社,2005
    [2] 利容千,王建波主编.植物逆境细胞及生理学,武汉:武汉大学出版社,2002
    [3] Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev Plant Physiol, 1980, 31: 149-190
    [4] Munns R, Termat A. Whole-plant responses to salinity. Aust J Plant Physiol, 1986, 13: 143-160
    [5] 赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制.西北植物学报,2005,25(2):413-418
    [6] Gorham J. Salt tolerance in the Triticeae: ion discrimination in Rye and Triticale. J Exp Bot, 1990, 41: 609-624
    [7] Gorham J. Salt tolerane in the Triticeae: K/Na discrimination in Aegilops species. J Exp Bot, 1990. n41: 615-621
    [8] Gorham J. Salt tolerance in the Triticeae: K/Na discrimination in synthetic Hexaploid wheat. J Exp Bot, 1990, 41: 623-631
    [9] Schachtman DP, Munns R. Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Aust J Plant Physiol, 1992, 82: 555-556
    [10] Niu X, Bressan RA, Hasegawa PM, Pardo JM. Ion homeostasis in NaCl stress environments. Plant Physiol, 1995, 109: 735-742
    [11] Zhu JK. Plant Salt Tolerance. Trends Plant Sci, 2001, 6: 66-71
    [12] Taiz L. The Plant Vacuole. J Exp Biol, 1992, 172: 113-122
    [13] Hasegawa PW. Bressan RA, Zhu JK, Bohnert J. Plant Cellular and Molecular Responses to High Salinity. Annu Rev Plant Physiol Plant Mol Biol. 2000, 51: 463-499
    [14] Schachtman DP, Schroeder JI. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 1994, 370: 655-658
    [15] Smart CJ, Garvia DF. Price JP, Lucas WJ, Kochian LV. The Molecular Basis of Potassium Nutrition in Plant. Plant Soil, 1996. 187: 81-89
    [16] Apse MP, Aharon GS, Snedden A. Salt Tolerance Conferred by Overexpression of a Vacuolar Na~+/H~+ Antiporter in Arabidopsis. Science, 1999, 285: 1256-1258
    [17] Delauney AJ, Verma DPS. Proline biosynthesis and osmoregulation in plants. Plant J., 1993, 4(2): 215-223
    [18] Binzel ME, Hess FD, Bresan RA. Hasegawa PM. Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol, 1988, 86: 607-614
    [19] Haro R, Banuelos MA. Quintero FJ, Rubio F, Rodriguez-Navarro A. Genetic basis of sodium exclusion and sodium tolerance in yeast. Physiologia Plantarum, 1993, 89 (4): 868-874
    [20] Stadtman ER. Protein Oxidation and aging. Science, 1992, 257: 1220-1224
    [21] Pacific RE. Hydrophobicity as the signal for selective degraclation of hydroxyl radical modified hemoglobin by the multicatalytic proteinase complex, proteasome. J. Biol. Chem., 1993, 268: 15405-15411
    [22] Asada K, Takahashi M. Production and scavenging of active oxygen in photosynthesis. Elsevier Science Publishers, Amsterdam, 1987: 227-287
    [23] Casamo LM. Hydroxyl radicals and a thylakoid-bound endopeptidase are involved in light and oxygen-induced proteolysis in oat chloroplasts. Plant Cell Physiol, 1994, 35: 145-152
    [24] Asada K. Production and action of active oxygen in photosynthetic tissue. CRC Press, Boca Raton FL, 1994: 77-104
    [25] Bowler C, Van Montagu M, Inze D. Superoxide dismutase and stress tolerance, Plant Mol Biol, 1992, 43: 83-116
    [26] Van Camp W, Capiau K, Van Montagu M, Inze D, Slooten L. Enhancement of oxidative stress tolerance in stransgenic tobacco overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol, 1996, 112: 1703-1714
    [27] Willekens H, Langebartels C, Tire C, Montagu MV, Inze D, Camp WV. Differential expression of catalase genes in Micotiana plumbaginifolia. Proc. Natl. Acad. Sic USA, 1994, 91: 10450-10454
    [28] Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Camp WV. Catalase is a sink for H_2O_2 and is indispensable for stress defense in C3 plants. EMBO J, 1997, 16: 4806-4816
    [29] Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 1989, 28: 1057-1060
    [30] Delauney AJ, Verma DPS. A soybean delta~1-pyrroline-5-carboxylate reductase gene was isolated by functional complementation in Escherichia coli and is found to be osmoregulated. Mol. Gen. Genet, 1990, 221: 299-305.
    [31] Verbruggen N, Villarroel R, van Montagu M. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiology, 1993, 103(3): 771-781
    [32] Strizhof N, Abraham E, Okresz L. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant Journal, 1997, 12(3): 557-569
    [33] Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K. Characterization of the gene for deltal-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol, 1997, 33(5): 857-865
    [34] Ginzberg I, Stein H, Kapulnik Y, Szabados L, Strizhov N, Schell J, Koncz C, Zilberstein A. Isolation and characterization of two different cDNAs of deltal-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Mol Biol. 1998, 38(5): 755-764.
    [35] Falkenberg P, Strom AR. Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of Escherichia coll. Biochim. Biophys. Acta. 1990, 1034: 253-259
    [36] Brunker P, Altenbuchner J, Kulbe KD, Mattes R. Cloning, nucleotide sequence and expression of a mannitol dehydrogenase gene from Pseudomonas fluorescens DSM 50106 in Escherichia coli. Biochim Biophys Acta. 1997, 1351(1-2): 157-167
    [37] Hu L, Lu H, Liu Q, Chen X, Jiang X. Overexpression of mtld gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol. 2005, 25(10): 1273-1281
    [38] 刘俊君,彭学贤,王海云.莽克强.大肠杆菌mtlD基因和gutD基因的克隆、全序列测定和高效表达.生物工程学报,1995,11(2):157-161
    [39] 董云洲.表达肌醇甲基转移酶基因载体的构建及转基因烟草的耐盐性研究.植物学报,1999,41(2):146-149
    [40] Luttge U, Ratajczak R. The physiology, biochemistry and molecular biology of the plant vacuolar ATPase. In: R A Leigh and D Sanders eds, "Plant Vacuole", Academic Press, 1997: 252-196
    [41] Logan H, Bassel M, Very AA, Sentenac H. Plasma membrane transport systems in higher plants: From black boxes to molecular physiology. Physiol Plant, 1997, 100: 1-15
    [42] Ding L, Zhu JK. Reduced Na~+ uptake in the NaCl-hypersensitive sosl mutant of Arabidopsis thaliana. Plant physiol, 1997, 113: 795-799
    [43] Binzel ML. NaCl-induced accumulation of tonoplast and plasma membrane H~+-ATPase message in tomato. Physiol Plant, 1995, 94: 722-728
    [44] Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCM. Improved performance of transgenic fructan accumulating tobacco under drought stress. Plant Physiol, 1995, 107: 125-130
    [45] Schachtman D, Liu W. Molcular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci, 1999, 4: 281-287.
    [46] Blumwald E, Poole RJ. Na~+/H~+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol, 1985, 78: 163-167.
    [47] Apse MP, Aharon GS. Snedden WA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabidopsis. Science, 1999, 285: 1256-1258.
    [48] Hechenberger M, Schwappach B, Fischer WN, Frommer WB, Jentsch T, Steinmeyer K. A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J. Biol. Chem, 1996, 271: 33632-33638.
    [49] Liu J, Zhu JK. A calcium sensor homologue required for plant salt tolerance. Science, 1998, 280: 1943-1945.
    [50] Rubio F, Gassman W, Schroeder JI. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 1995, 270: 1660-1663.
    [51] Droillard MJ, Bureau D, Paulin A, Daussant J. Identification of different classes of superoxide dismutase in carnation petals. Electrophoresis, 1989, 10(1): 46-48
    [52] Cannon RE, Scandalios JG. Two cDNAs encode two nearly identical Cu/Zn superoxide dismutase proteins in maize. Mol Gen Genet, 1989, 219(1-2): 1-8.
    [53] Wu Ray, Jin S, Jayappakash T. How to obtain optimal gene expression in transgenic plants.北京:第七次基因学术会议,1999.
    [54] Liu Q. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Porc Natl Acad Sci, 2000, 97: 3730-3734.
    [55] Shi H. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na~+/H~+ antiporter. Porc Natl Acad Sci, 2000, 97: 6896-6901
    [56] Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K. Two genes that encode Ca~(2+)-dependent protein kinases are induced by drought and highsalt stresses in A. Thaliana. Molecular General Genetic, 1994, 244: 331-340
    [57] Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K. A transmembrane hybrid-type hitidine kinase in Arabidopsis thaliana as an osmoseducer. Plant Cell, 1999, 11: 1743-1754
    [58] Xiong LM, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002: 165-183
    [59] Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature or high-salt stress. Plant Cell, 1994: 251-264
    [60] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors. DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391-1406.
    [61] Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNAbinding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun, 2002. 290(3): 998-1009
    [62] 刘凤华,郭岩,谷冬梅,肖岗,陈正华,陈受宜.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报,1997,24(1):54-58
    [63] 郭北海,张艳敏.李洪杰,等.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达.植物学报,2000,42(3):279-283
    [64] Liu J, Huang S, Peng X, Liu W, Wang H. Studies on high salt tolerance of transgenic tobacco. Chin J Biotechnol. 1995; 11(4): 275-80
    [65] Tarczynski MC, Jensen RG, Bohnert HJ. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science, 1993, 259: 509-510
    [66] 刘俊君,黄绍兴,彭学贤.柳维波,王海云.高度耐盐双价转基因烟草的研究.生物工程学报,1995,11(4):381-384
    [67] 王慧中,黄大年,鲁瑞芳,刘俊君,钱前,彭学贤.转mtlD,gutD双价基因水稻的耐盐性.科学通报,2000,45(7):724-729
    [68] Mc Kersie BD, Bowley SR, Jones KS. Winter survival of transgenic Alfalfa overexposing superoxide dismutase. Plant Physiol, 1999, 119: 839-847
    [69] Van Camp W, Wilekens H, Bowler C, Van Montagu M, Inze D. Elebted levdls of superoxide dismutase protect transgenic plants against ozene damage. Biology Technology, 1994, 12: 165-168.
    [70] 刘强,赵南明,Yamaguch-Shinozaki K,Shinozaki K.DREB转录因子在提高植物抗逆性中的作用.科学通报,2000,45(1):11-16
    [71] Kasuga M, Liu Q, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant duought salt and freezing tolerancd by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol, 1999, 17: 287-291
    [72] Diatchenko L, Lukyanov S, Lau YF, Siebert PD. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol, 1999, 303: 349-380
    [73] Faivre-Rampant O, Cardle L, Marshall D, Viola R, Taylor MA. Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene. J. Exp. Bot., 2004, 55(397): 613-622
    [74] Rebrikov DV, Britanova OV, Gurskaya NG, Lukyanov KA, Tarabykin VS, and Lukyanov SA. Mirror orientation selection(MOS): a method for eliminating false positive clones from libraries generated by suppression subtractive hybridization. Nucleic Acids Res., 2000, 28(20): e90
    [75] Ji W, Wright MB, Cai L, Flament A. Lindpaintner K. Efficacy of SSH PCR in isolating differentially expressed genes. BMC Genomics, 2002, 3: 12-19
    [76] Yang GP. Ross DT. Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes. Nucleic Acids Research, 1999, 27: 1517-1523
    [77] 郭新红,姜孝成,潘晓玲,戴玉池,姜维明,陈良碧.用抑制差减杂交法分离和克隆梭梭幼苗受渗透胁迫诱导相关基因的cDNA片段.植物生理学报,2001,27(5):401-406
    [78] 孙洪波,王国英,孙振元,古润泽,赵梁军.应用抑制差减杂交法分离粗枝大叶黄杨幼苗的冷诱导表达基因.中国农业科学,2005,38(1):135-139
    [79] Zhang Y, Mian MAR., Chekhovskiy K, So S, Kupfer D, Lai HS, Roe BA, Differential gene expression in Festuca under heat stress conditions. J. Exp. Bot., 2005, 56(413): 897-907
    [80] 王转,贾晋平,景蕊莲.用抑制差减杂交法分离小麦幼苗水分胁迫诱导表达的cDNA.生物技术通报,2003,(5):36-39
    [81] 曾日中,段翠芳,黎瑜,郝秉中.茉莉酸刺激的橡胶树乳胶cDNA消减文库的构建及其序列分析.热带作物学报,2003,24(3):1-6
    [82] 赵惠芳,丁德荣,马中华,蒯本科.用抑制差减杂交技术分离烯丙异噻哗诱导水稻特异表达的基因.复旦学报(自然科学版),2004,43(2):225-229
    [83] 黄鑫,戴思兰,孟丽,郑国生.抑制性差减杂交(SSH)技术在分离植物差异表达基因中的应用.分子植物育种,2006,(5):735-746
    [84] Sahr T, Voigt G, Schimmack W, Paretake HG, Ernst D. Low-level radiocaesium exposure alters gene expression in roots of Arabidopsis. New Phytol., 2005, 168(1): 141-148
    [85] Agarwal S, Grover A. Isolation and transcription profiling of low-O_2 stress-associated cDNA clones from the flooding-stress-tolerant FR13A rice genotype. Annal. Botany, 2005, 96: 831-844
    [86] Michelmore R. Genomic approaches to plant disease resistance. Curr Opin Plant Biol., 2000, 3: 125-131
    [87] Schena M. Shalon D. Davis RW. Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270: 467-470
    [88] Richmond CS, Mau R. Genome-wide expression profiling in Escherichia coli K12. Nucleic Acids Research. 1999 (27): 3821-3835
    [89] Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I. The transcriptional program of sporulation in budding yeast. Science, 1998, 282: 699-705.
    [90] White KP, Hurban P. Microarray analysis of Drosophila development during metamorphosis. Science, 1999, 286: 2179-2184
    [91] Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH 3rd. Becker KG, Ko MS. Genome-wide expression profiling of mid-gestation placenta and embryo using a 15, 000 mouse developmental cDNA microarray. Proc Natl Acad Sci USA, 2000, 97(16): 9127-9132
    [92] 李瑶主编.基因芯片技术—解码生命.北京:化学工业出版社,2004
    [93] Richmond T, Somerville S. Chasing the dream: plant EST microarray. Curr Opin Plant Bio, 2000, 3: 108-116
    [94] Umeda M, Hara C, Matsubayashi Y, Li HH, Liu Q, Tadokoro F, Aotsuka S, Uchimiya H. Expressed sequence tags from cultured cells of rice (Oryza sativa L.) under stressed conditions: analysis of genes engaged in ATP-generating pathways. Plant Mol Biol, 1994, 25: 469-478
    [95] Cushman MA, Bufford D, Fredrickson M, Ray A, Aksekrod I, Landrith D, Stout L, Maroco J, Cushman J. An expressed sequence tag (EST) database for the common ice plant Mesembryanthemum crystallinum. Plant Physiol, 1999, (120): 145-15
    [96] Bockel C, Salamini F, Barrels D. Isolation and characterization of genes expressed during early events of the dehydration process in the resurrection plant Craterostigama plantagineum. J Plant Physiol, 1998, 15(2): 158-166
    [97] Cushman JC, Bohnert HJ. Genomic approaches to plant stress tolerance. Curr Opin Plant Bio, 2000, 3(2): 117-124.
    [98] Gaff DF, Barrels D, Gaff JL. Changes in gene expression during drying in a desiccation-tolerant grass sporobolus stapfianus and a desiccation-sensitive grass Sporobolus pyramidalis. Aust J Plant Physiol, 1997, 24: 617-622
    [99] Zivy M, de Vienne D. Proteomics: a link between genomics, genetics and physiology. Plant Mol. Biol, 2000, 44: 575-580
    [100] Canovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M. Plant proteome analysis. Proteomics, 2004, 4: 285-298
    [101] Ong SE, Pandey A. An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomol Eng, 2001, 18(5): 195-200
    [102] Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol, 1999, 17(10): 994-999
    [103] Hobbs JS, Simonian MH. Betgovargez E, Ioffe V, Movsisyan A, Yu J, James C, Bogler O. Tool for proteomics: An automated approach to protein fractionation. Mod Drug Discovery, 2004, 7(5): 60-62
    [104] Zhu-Salzman K, Salzman R A, Ahn J E, Koiwa H. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol., 2004, 134: 420-431
    [105] Chen EI, Hewel J, Felding-Habermann B, Yates JR. Large scale protein profiling by combination of protein fractionation and Multidimensional Protein Identification Technology (MudPIT). Mol cell proteomics, 2006, 5: 53-56
    [106] Lubman DM. Kachman MT. Wang HX, Gong SY, Yan F. Hamler RL, O'Neil KA, Zhu K, Buchanan NS, Barder TJ. Two-dimensional liquid separations-mass mapping of proteins from human cancer cell lysates. J Chromatogr B Analyt Technol Biomed Life Sci, 2002, 782(1-2): 183-196
    [107] Nilsson CL. Larsson T. Gustafsson E. Identification of protein procedures vaccine candidates from Heliobacter pylori using a arative two dimensional electrophoresis and mass spectrometry. Anal Chem, 2000, 72(9): 2148-2153.
    [108] Wall DB, Kachman MT, Gong S, Hinderer R, Parus S, Misek DE, Hanash SM, Lubman DM. Isoelectric focusing nonporous HPLC: a two dimensional liquid-phase separation method for mapping of cellular proteins with identification using MALDI-TOF mass spectrometry. Anal Chem, 2000, 72: 1099-1111
    [109] Lubman DM, Kachman MT, Wang H, Gong S, Yan F, Hamler RL, O'Neil KA, Zhu K, Buchanan NS, Barder TJ. Two-dimensional liquid separations-mass mapping of proteins from human cancer cell lysates. J Chromatogr B, 2002, 782: 183-196
    [110] Opiteck GJ. Comprehensive two-dimensional high performance liquid chromatography for the isolation of over-expressed proteins and proteome mapping. Analytical Biochemistry, 1998. 258: 349-361.
    [111] Liu HJ, Scott JB, Berger SJ, Chakrabrty AB, Pumb RS, Cohen SA. Multidimensional chromatography coupled to electrospray ionization time of flight mass spectrometry as an alternative to two dimensional gels for the identification and analysis of complex mixtures of intact proteins. J. Chromatography B, 2000, 782: 267-289.
    [112] Zhu K, Kim J, Yoo C, Miller FR, Lubman DM. High sequence coverage of proteins isolated from liquid separations of breast cancer cells using capillary electrophoresis-time-of-flight MS and MALDI-TOF MS mapping. Anal Chem, 2003, 75 (22): 6209-6217
    [113] Bauer SH, Wiechers MF, Bruns K, Przybylski M, Stuermer CA. Isolation and identification of the plasma membrane-associated intracellular protein reggie-2 from goldfish brain by chromatography and fourier-transform ion cyclotron resonance mass spectrometry. Anal. Biochem. 2001, 298: 25-31
    [114] Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol, 1999, 17: 676-682
    [115] Wolters DA, washburn MP, Yates JR. An automated multidimensional protein identification technology for shotgun proteomics. Anal chem, 2001, 73: 5683-5690
    [116] Chong BE, Yan F, Lubman DM, Miller FR. Chromatofocusing nonporous reversed-phase high-performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry of proteins from human breast cancer whole cell lysates: a novel two dimensional liquid chromatography/mass spectrometry method. Rapid Commun. Mass. Spectrom, 2001, 15: 291-296
    [117] Ishihama Y. Proteomic LC-MS systems using nanoscale liquid chromatography with tanderm mass spectrometry. J Chromatogr A, 2005, 1067: 73-74
    [118] Kreunin P, Urquidi V, Lubman DM, Goodison S. Identification of metastasis-associated proteins in a human tumor metastasis model using the mass-mapping technique. Proteomics, 2004, 4: 2754-2765
    [119] Lee HJ, Lee EY, Kwon MS, Paik YK. Biomarker discovery from the plasma proteome using multidimensional fractionation proteomics. Current Opinion in Chemical Biology, 2006, 10: 42-49
    [120] Skalnikova H, Halada P, Dzubak P, Hajduch M, Kovarova H. Protein fingerprints of anti-cancer effects of cyclin-dependent kinase inhibition: identification of candidate biomarkers using 2-D liquid phase separation coupled to mass spectrometry. Technol Cancer Res Treat, 2005, 4(4): 447-454
    [121] Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK. Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arahidopsis. Plant Cell, 2004, 16(5): 1378-1391
    [122] Dani V. Simon WJ, Duranti M, Croy RRD. Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics, 2005, 5(3): 737-745
    [123] Yan SP, Tang ZC, Su WA, Sun WN, Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 2005, 5(1): 235-244
    [124] Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice(Oryza sativa L.) seedlings. Proteomics, 2002, 2(8): 947-959
    [125] Kang JG, Pyo YJ, Cho JW, Cho MH. Comparative proteome analysis of differentially expressed proteins induced by K~+ deficiency in Arabidopsis thaliana. Proteomics, 2004, 4(11): 3549-3559
    [126] Salekdeh GH, Siopongco J. Wade LJ, Ghareyazie B, Bennett J. A proteomic approach to analyzing drought-and salt-responsiveness in rice. Field Crop Res, 2002, 76(2-3): 199-219
    [127] 石德成,李玉明,杨国会,李毅丹,赵可夫.盐碱混合生态条件的人工模拟及其对羊草胁迫作用因素分析.生态学报,2002,22(8):1929-1332
    [128] 颜宏,赵伟,盛艳敏,石德成,周道玮.碱胁迫对羊草和向日葵的影响.应用生态学报,2005,16(8):1497-1501
    [129] 王玉猛,任立飞,田秋英,刘洪升,李凌浩,张文浩.根茎在羊草响应短期NaCl胁迫过程中的作用.植物生态学报,2006,30(6):954-959
    [130] Xu ZZ, Zhou GS. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta. 2006: 1080-1090
    [131] Jin H, Plaha P, Park JY, Hong CP, Lee IS, Yang ZH, Jiang GB, Kwak SS, Liu SK, Lee JS, Kim YA, Lim YP. Comparative EST profiles of leaf and root of Leymus chinensis, a xerophilous grass adapted to high pH sodic soil. Plant Science, 2006, 170: 1081-1086
    [132] Grover A, Kapoor A, Lakshmi OS, Agarwal S, Sahi C, Katiyar-Agarwal S, Agarwal M, Dubey H. Understanding molecular alphabets of the plant abiotic stress responses. Current Science, 2001, 80: 206-216
    [133] Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Current opinion in plant biology, 2003, 6: 410-417
    [134] Smirnoff N. The function and metabolism of ascorbic acid in plants. Annuals of Botany, 1996, 78: 661-669
    [135] Smirnoff N, Wheeler GL. Ascorbic acid in plants: biosynthesis and function. Critical review in Biochemsitry and Molecular Biology, 2000, 35: 291-314
    [136] Sano S, Asada K. cDNA cloning of monodehydroascorbate radical reductase from cucumber: a high degree of homology in terms of amino acid sequence between this enzyme and bacterial flavoenzymes. Plant Cell Physiol, 1994, 35: 425-437
    [137] Murthy SS, Zilinskas BA. Molecular cloning and characterization of a cDNA encoding pea monodehydroascorbate reductase. J. Biol. Chem., 1994, 269: 31129-31133
    [138] Grantz AA, Brummell DA, Bennett A B. Ascorbate free radical reductase mRNA levels are induced by wounding. Plant Physiol, 1995, 108: 411-418
    [139] Hell R, Bergmann L. Glutathione synthetase in tobacco suspension cultures catalytic properties and localization. Physiol Plant, 1988, 72: 70-76
    [140] Hell R, Bergmann L. γ-glutamylcysteine synthetase in higher plants catalytic properties and subcellular location. Planta, 1990, 180: 603-612
    [141] May MJ, Leaver CJ. Arabidopsis thaliana γ-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast and E. coil homologs. Proc. Natl. Acad. Sci. USA, 1994, 91: 10059-10063
    [142] Schafer HJ, Greiner S, Rausch T, Haag-Kerwer A. In seedlings of the heavy metal accumulator Brassica juncea Cu~(2+) differentially affects transcript amounts for gammaglutamylcysteine synthetase(gamma-ECS) and metallothionein(MT2). FEBS Letters, 1997, 404(2): 216-220
    [143] Noctor G, Strohm M, Jouanin L, Kunert KJ, Foyer CH, Rennenberg H. Synthesis of glutathione in leaves of transgenic poplar overexpressing γ-glutamylcysteine synthetase. Plant Physiol., 1996, 112: 1071-1078
    [144] 陈晖,匡柏健,王敬驹.羊草抗羟脯氨酸细胞变异系的筛选及其特性分析.植物学报,1995,37(2):103-108
    [145] Arner E, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 2000, 267: 6102-6109
    [146] Konrad A, Banze M, Follmann H. Mitochondria of plant leaves contain two thioredoxins. Completion of the thioredoxin profile of higher plants. J. Plant Physiol., 1996, 149: 317-321
    [147] Banze M, Follmann H. Organdie-specific NADPH thioredoxin reductase in plant mitochondria. J. Plant Physiol. 2000, 156: 126-129
    [148] Miler IM. Plant mitochondria and oxidative stress electron transport NADPH turnover and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol Plant Mol. Biol. 2001, 52: 561-591
    [149] Theil EC. Ferritin: structure, gene regulation, and cellular function in animals, plants and microorganisms. Annu. Rev. Biochem., 1987, 56: 289-315
    [150] 程志强,郭泽建,徐晓晖,柴荣耀,李德葆.转铁蛋白基因增强水稻对氧化胁迫与稻瘟病菌的抗性.中国水稻科学,2003,17(1):85-88
    [151] 徐建兴.细胞色素c在线粒体中的抗氧化功能.中国科学院院刊,2003,(4):277-278
    [152] Guerrero FD, Jones JT, Mullet JE. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol. Biol., 1990. 15(1): 11-26
    [153] Yamaguchi-Shinosaki K, Koizumi M, Urao S, Shinozaki K. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol, 1992, 33: 217-224
    [154] Fray RG, Wallace A, Grierson D, Lycett GW. Nucleotide sequence and expression of a ripening and water stress-related cDNA from tomato with homology to the MIP class membrane channel proteins. Plant Mol. Biol., 1994, 24: 539-543
    [155] Yamada S, Katsuhara M, Kelly WB, Michalowski CB, Bohnert HJ. A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant. Plant Cell, 1995, 7(8): 1129-1142
    [156] Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell, 1998, 10: 623-638
    [157] Allagulova CR, Gimalov FR, Shakirova FM, Vakhitov VA. The plant dehydrins: structure and putative functions. Biochemistry, 2003, 68: 945-951
    [158] Choi DW, Close TJ. A newly identified barley gene, Dhnl2, encodes a YSK_2 DHN, is located on chromosome 6H and has embryo-specific expression. Theor Appl Genet, 2000, 100: 1274-1278
    [159] Choi DW, Zhu B, Close TJ. Barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dicktoo. Theor Appl Genet, 1999, 98: 1234-1247
    [160] Koag MC, Fenton RD, Wilkens S, Close TJ. The binding of maize DHN1 to lipid vesicle. Gain of structure and lipid specificity. Plant Physl, 2003, 131: 309-316
    [161] Nylander M, Svensson J, Palva ET, Welin BV. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol, 2001, 45: 263-279
    [162] Hara M, Fujinaga M, Kuboi T. Radical scavenging activity and oxidative modification of citrus Dehydrin. Plant Physiol Biochem, 2004, 42: 657-662
    [163] Sehnke PC, Henry R, Cline K, Ferl RJ. Interaction of a plant 14-3-3 protein with the signal peptide of a thylakoid targeted chloroplast precursor protein and the presence of 14-3-3 isoforms in the chloroplast stroma. Plant Physiol, 2000, 122: 235-242
    [164] Babakov AV, Chelysheva VV, Klychnikov OI, Zorinyanz SE, Trofimova MS, De Boer AH. Involvement of 14-3-3 proteins in the osmotic regulation of H~+-ATPase in plant plasma membranes. Planta, 2000, 211(3): 446-448
    [165] Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H. Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a "stay-green" phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol., 2004, 45(8): 1007-1014
    [166] Moorhead G, Douglas P, Cotelle V, Harthill J, Morrice N, Meek S, Deiting U, Stitt M, Scarabel M, Aitken A and Mackintosh C. Phosphorylation-dependent Interactions between enzymes of plant metabolism and 14-3-3 Proteins. The Plant Journal, 1999, 18(1): 1-12
    [167] Chen Z, Fu H, Liu D, Chang PF, Narasimhan M, Ferl R, Hasegawa PM, Bressan RA. A NaCl-regulated plant gene encoding a brain protein homology that activates ADP ribosyltransferase and inhibits protein kinase C. Plant J, 1994, 6: 729-740
    [168] Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal, 2002, 31(3): 279-292
    [169] Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct integr genornics, 2002, 2: 282-291
    [170] Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology, 2002, 130: 2129-2141
    [171] Mohan D, Pasa-Tolic L, Masselon CD, Tolic N, Bogdanov B, Hixson KK, Smith RD, Lee CS. Integration of electrokinetic-based multidimensional separationl concentration platform with electrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry for proteome analysis of Shewanella oneidensis. Anal Chem, 2003, 75(17): 4432-4440
    [172] Tang T, Huang J, Zhong Y, Shi S. High-throughput S-SAP by fluorescent multiplex PCR and capillary electrophoresis in plants. J Biotechnol, 2004, 114(1-2): 59-68
    [173] Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA, Hays L, Schieltz D, Ulaszek R, Wei J, Wolters D, Yates JR. Proteomic survey of metabolic pathways in rice. Pro natl acad sci USA, 2002, 99: 11969-11974
    [174] Hoffmann-Benning S, gage DA, mcintosh L. Comparison of peptides in the phloem sap of flowering and non-flowering perilla and hrpine plants using microbore HPLC followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Planta, 2002, 216(1): 140-147
    [175] Pirondini A, Visioli G, Malcevschi A, Marmiroli N. A 2-D liquid-phase chromatography for proteomic analysis in plant tissues. Chromatography B, 2006, 833: 91-100
    [176] 陈军.多维色谱法分析毛白杨次生维管系统再生过程的蛋白质表达谱.中国林业科学研究院博士学位论文.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700