质膜型Ca~(2+)-ATPase基因的分离与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在农业生产中,植物病害的为害造成了巨大的损失,而生产上采用的高毒、高残留农药对产品和环境均造成严重的污染,已成为制约我国无公害农产品生产可持续发展的突出问题。研究开发可持续、环保型控制技术是解决这一问题的关键。β-氨基丁酸(BABA)是从经暴晒的番茄根系中分离得到的一种次生代谢非蛋白氨基酸,具有高效、广谱的诱抗活性,可诱导多种作物抵抗由卵菌、真菌、细菌、病毒和线虫引起的病害,保护植物免受病害为害。要开发利用BABA诱导植物抗病潜能,创新有害生物综合治理途径与技术,必须进一步认识BABA的诱导抗病机理。从功能基因组学角度分析BABA诱导植物防御反应过程中信号互作功能基因群的表达特征,是揭示寄主—病原物互作的分子机制的新思路。过去,基于技术局限,关于植物诱导抗病的基因转录调控分析大多集中在若干已知PR蛋白和个别SA信号传导路径中的几个基因上。现在,利用功能基因组学的多项技术,可以明确更多应答诱抗时植物体内转录发生改变的基因,从而更准确、全面地认知植物诱导抗病行为机制。
     本研究以番茄为材料,利用cDNA-AFLP基因转录谱分析技术研究番茄根部组织应答BABA诱导后基因转录谱,取得的结果如下:
     1.由于植物总RNA提取的质量具有很强的组织特异性,对试验中常用的TRIzol Reagent、RNAplant、TRIpure Reagent等三种RNA提取试剂盒进行了番茄成熟老化组织RNA提取效果的研究,发现RNAplant能有效从多种成熟组织中提取纯度高、完整性好的RNA,符合需要总RNA质量较高的分子试验要求。
     2.采用25mmol/L BABA溶液处理番茄六叶期幼苗,蒸馏水处理作为对照,运用cDNA-AFLP差别显示技术对基因转录谱进行分析。从显示出的约5000个转录基因片段(Transcript-derived fragments,TDFs)中发现了23个受BABA诱导上调基因片段(BABA Induced Fragment,BIF),6个诱导下调片段。通过克隆测序最终得到12个转录上调基因序列。用生物信息学方法分析这12个cDNA片段的功能,可将其分为5种类型:
     ①防卫反应基因:BIF13,BIF14为病程相关蛋白基因P69家族成员,它们具有蛋白水解酶功能;
     ②转运蛋白基因:BIF2,BIF3、BIF6、BIF17,BIF4,负责细胞内外离子、水和小分子物质的跨膜运输;
     ③信号传导蛋白:BIF5为Ca~(2+)绑定蛋白,结合游离Ca~(2+),参与Ca~(2+)信号传导;
     ④大分子蛋白相关基因:BIF 1为协助蛋白复性的分子伴侣蛋白编码基因;
     ⑤功能未知基因:BIF10、BIF11、BIF12。
     3.对上述基因片段进行序列分析,发现BIF3、6、17三个基因片段序列长度一致,同源性高达99%,为编码细胞逆境信号通路中的钙调转运蛋白酶(Calcium transporting-ATPase,Ca~(2+)-ATPase)基因片段。利用分子系统发育分析对Ca~(2+)-ATPase基因家族进行了细分;在此基础上,依据同源克隆的原理,结合步进PCR和RACE方法获得这个质膜型(Plasma membrane-type,PM-type)Ca~(2+)-ATPase全长cDNA序列,基因全长3389bp,开放阅读框为3090bp,编码1029个氨基酸的蛋白质。这是首次在茄科类植物中克隆到PM型Ca~(2+)-ATPase。
     4.利用Northern Blotting分子杂交对靶标Ca~(2+)-ATPase基因受BABA诱导的时空规律进行了研究,结果显示,Ca~(2+)-ATPase基因在根中表达量最高,叶其次,茎中最弱;基因的转录水平在6—12h达到最高,持续到72h仍有微量表达。
     5.利用生物信息学手段对靶标基因编码蛋白的理化性质和二、三级结构、代谢途径进行分析,并构建了该蛋白的理论三维模型,发现该基因编码的多肽链有7个基序(motif),4个保守功能结构域(domain),8个跨膜螺旋,都与蛋白的活性有关,该基因参与Ca~(2+)信号代谢途径。对靶标基因进行了分子系统发育分析,找到了该基因在生物界进化的地位。
     6.利用SMART和Primer Extension技术相结合,构建了一个富集BABA诱导抗性相关基因的cDNA全长文库,原始文库的滴度达到为4.4×10~6,重组率为96%,插入片段大小分布在400—1800bp,平均大小为700—1000bp;为克隆响应BABA诱导的其他重要抗性基因全长cDNA奠定了基础。
     7.利用了Ca~(2+)-ATPase的保守区段设计基因特异引物(Gene Specific Primer,GSP),在两个经受低温锻炼的柑橘品种中进行半定量RT-PCR,试验结果表明此基因广泛存在于植物组织内部,属诱导表达型基因,积极参与了植物逆境信号转导过程。
In agriculture, the pathogens cause severe losses in yield throughout the world. And continuousapplications of chemicals lead to heavy contaminations of the products and the environment. Duringthe past 20 years,β-Aminobutyric Acid (BABA) has been proved to be effective to induceresistance against a broad spectrum of pathogens in agricultural crops and vegetables. Moreover,BABA has been verified one of the most effective elicitors to introduce tolerance to abiotic stresses.Although the phenomenon has long been known, the underlying mechanisms are poorly understoodat the biochemical and molecular level. New methods should be employed to analyze the genefuncations, in order to better understand the induced resistance by BABA and the applicationpotential of BABA induced resistance.
     cDNA amplified fragment length polymorphism analysis (cDNA-AFLP) was used to revealtranscripts whose expression is rapidly altered during the treatment of soil drench ofβ-Aminobutyric Acid (BABA) to tomato (Lycopersicon esculentum L) roots.
     The main results are following
     1. 3 kits were used for RNA extraction from 3 tomato tissues, including leaf, stem and root,were evaluated upon quality、yields of RNA isolated. RNAplant was found to be the most effectiveone among the 3 reagents evaluated. With this kit, higher amount and quality of RNA could besuccessfully extracted from all 3 kinds of tissues tested.
     2. After treated with 25mmol/L BABA, cDNA-AFLP was used to reveal transcripts whoseexpression is rapidly altered during the treatment of soil drench of BABA to tomato roots, withDDH_2O as control. Among 5,000 transcript-derived fragments (TDFs), 23 showed increasedabundance and 6 showed decreased abundance. By cloning and sequencing, the sequences of 12TDFs were obtained. A high percentage of the differentially regulated TDFs identified in this studyhas homology to genes commonly regulated during plant defense/stress responses. According to thefunctions of homology genes, these 12 TDFs could be divided into 5 groups.
     ①BIF13 and BIF 14: members of P69, a pathogenesis-related proteins (PR);
     ②BIF 2, BIF 3、6、17 and BIF 4: high homologies to genes all responsible for transductionacross membrane system of little molecular materials such as H_2O, Ca~(2+) and anti-fungal agents.
     ③BIF5: signal transduction proteins, high homology to Ca~(2+)-binding protein which is animportant dement in Ca~(2+) signaling pathway.
     ④BIF1: molecular chaperone protein, keeping activity of certain proteins under stresscondition.
     ⑤BIF10, BIF and BIF 12: no homology to known genes.
     3. With the RACE and PCR technology, a PM-type (Plasma membrane-type) Ca~(2+)-ATPasegene was isolated. The full-length cDNA is 3389 bp, and the open reading frame (ORF) is 3090bp,encoding 1029 amino acid. Both RT-PCR and the analysis of sequence, including Blastn、Blastx and ORF confirmed it is the first time that PM-type Ca~(2+)-ATPase was isolated in Solanaceae plant.
     4. Northern Blotting was performed to reveal transcript level of PM-type Ca~(2+)-ATPase indifferent tissues at different times. The result indicated that Ca~(2+)-ATPase was abundant in root, lessin leaf and stem; furthermore, the transcript level of target gene was up-regulated and reached itspeak at 6 hours after the treatment, and it nearly could not transcript after 72 hours.
     5. The deduced amino acid sequence showed high identities with PM-type Ca~(2+)-ATPase, buthad low identities with ER-type Ca~(2+)-ATPase. Amino acid analysis with TMpred software indicatedthat the polypeptide chain contained 7 motifs、4 domains and 8 transmembrane helixes, which wererelated to the activity of the putative protein. The gene take participate in calcium signaling pathway.
     6. A full-length cDNA library induced by BABA was constructed by using SMART(switchingmechanism at 5' end of RNA tanscript) and Primer Extension techniques. The titers of unamplifiedand amplified cDNA library were 4.4×10~6 pfu/mL and 1.8×10~(10) pfu/mL respectively. The rate ofrecombination was 96%. The average size of inserted fragments was 700-1000bp.
     7. A pair of degenerate primers was designed against the conserved regions that was used forSemi-quantitive RT-PCR to amplify cDNA segment from two citrus genotypes (Citrus unshiu Marcand Poncirus trifoliate) treated with low temperature. The results revealed that Ca~(2+)-ATPase wasup-regulated by low temperature in citrus, suggesting this gene participating in adversity signalingconduction.
引文
1.陈昆松,徐昌杰,张上隆等.1998.富含多糖猕猴桃果实组织中总RNA提取方法的改进[J].植物生理学通讯,34:371-373
    2.龚明,李勇军, 李忠光, 宋玉泉,Trewavas AJ.1999.钙信使系统在植物对热胁迫信号的传导、响应与适应中的作用.植物环境生理学术讨论会论文汇编
    3.何龙飞, 沈振国, 刘友良.1999.铝胁迫对小麦根系液泡膜ATP酶、焦磷酸酶活性和膜脂组成的效应[J].植物生理学报, 25(4):350~356.
    4.胡松年.2005.基因表达序列标签(EST)分析手册.杭州:浙江大学出版社.
    5.蒋卫杰,刘伟,郑光华.2001.蔬菜无土栽培新技术.北京:金盾出版社:137
    6.李美茹.水稻幼苗冷适应性的诱导及钙调节作用的研究:[博士学位论文].广州: 中国科学院植物研究所, 1997.
    7.梁俊峰,谢丙炎,张宝玺,冯兰香.β-氨基丁酸、茉莉酸及其甲酯诱导辣椒抗TMV作用的研究.China Vegetables(中国蔬菜),2003,(3):4-7.
    8.J.萨姆布鲁克,D.W.拉赛尔著,黄培堂等译.2003.分子克隆:试验指南[M].第三版.北京:科学出版社
    9.沈同, 王镜岩.1991.生物化学(第2版).北京:高等教育出版社:31-34(下册).
    10.吴乃虎.1998.基因工程原理(第2版).北京:科学出版社.364~365
    11.谢丙炎,李惠霞,冯兰香.2002.β-氨基丁酸诱导辣椒抗疫病作用研究.园艺学报,29(2):65-268
    12. Asif MH,Dhawan P, Math P. 2000.A simple procedure for the isolation of high quality RNA from ripening banana fruits[J].Plant Mol Biol Rep, 18:109-115
    13. Askerlund P, Evans DE. 1992.Reconstition and characterization of a calmodulin- stimulated Ca~(2+)-pumping ATPase purified from Brassica oleracea L. Plant Physiol, 100: 1670~1681.
    14. Askerlund P. Modulation of an intracellular calmodulin-stimulated Ca~(2+)-pumping ATPase in Cauliflower by trypsin. Plant Physiol, 1996, 110: 913~922.
    15. Askerlund P. 1997.Calmodulin-stimulated Ca~(2+)-ATPase in the vacuolar and plasma membranes in cauliflower. Plant Physiol, 114: 999~1007.
    16. Axelsen KB, Palmgren MG. 1998.Evolution of substrate specificities in the P-type ATPase superfamily. Mol Evol, 46: 84~101.
    17. Bachem CW, Horvath B, Trindade L, Claassens M, Davelaar E, Jordi W, Visser RG. 2001.A potato tuber-expressed mRNA with homology to steroid dehydrogenases affects gibberellin levels and plant development. Plant J, 25(6): 595-604
    18. Bachem CW, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RG. 1996.Visuallization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J, 9:745-753
    19. Bassam BJ, Caetano-Anolles G, Gresshoff PM. 1991.Afast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem. 196:80-83
    20. Bol JF, Linthorst HJM, Cornelssen BJC. 1990.Plant pathogenesis-related proteins induced by virus infection. Annu Rev Phytopathol, 28:113-138
    21. Bonza C, Carnelli A, De Michelis M I. 1998.Purification of the plasma membrane Ca~(2+)-ATPase from radish seedlings by calmodulin-agarose affinity chromatography. Plant Physiol, 116: 845~851.
    22. Bove J, Lucas P, Godin B, Oge L, Jullien M, Grappin P. 2005.Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Mol Biol, 57(4): 593-612
    23. Bowles D J. 1988.Defense-related proteins in higher plants. Annu. Rev. Biochem, 1990, 59: 873-907
    24. Briars S A, Kessler F, Evans D E. The calmodulin- stimulated ATPase of maize coleoptiles is a 140, 000 Mr polypeptide. Planta, 176: 283~285.
    25. Bush D S. 1993.Regulation of cytosolic calcium in Plants. Plant Physiol, 103: 7~13.
    26. Bush D S. 1995.Calcium regulation in plant cell and its role in signaling.Annu Rev. Plant Physiol, 46: 95~122.
    27. Bush DR. 1999.Amino acid transport. Plant Amino Acids, Biochemistry and Biotechnology. B.K. Singh, ed. Marcel Dekker, Inc., New York, 305-318
    28. Carnelli A D, De Michelis MI, Rasi-Caldogno F. 1992.Plasma membrane Ca~(2+)-ATPase of radish seedlings. Ⅰ.Biochemical characteristics using ITP as a substrate. Plant Physiol Plant Mol Bio, 98: 1196~1201.
    29. Carafoli E. 1991.Calcium pump of the plasma membrane. Physiol Rev, 71: 129~153.
    30. Chamsai J, Buchenauer H, Orober M. 1998.DL-3-aminobutyric acid induces localized cell death, Salicylic acid, PR proteins and resistace in tomato and tobacco. International Workshop on Pathogenesis-Related Proteins in Plants Sibnaling Pathways and Biological Activities, 5th. Aussois, France.
    31. Chen X, Chang M, Wang B, Wu R. 1997.Cloning of a Ca~(2+)-ATPase gene and the role of Ca~(2+) cytosolic in the gibberellin-dependent signaling pathway in aleurone cells. Plant, 11: 363-371
    32. Cohen Y, Gisi U. 1994.Systemic translocation of ~(14)C-DL-3-aminobutyric acid in tomato plants in relation to induced resistance agalnst Phytophthora infestans. Physiol. Mol. Plant Pathol, 45:441-456
    33. Cohen Y, Niederman T, Mosinger E, Fluhr R. 1994a. Aminobutyric acid inguces the accummulation of pathogensis related proteins in tomato (Lycopersicon escμlentum L. ) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiol, 104:59-66
    34. Cohen Y, Reuveni M, Baider A. 1999.Local and systemic activity of BABA (DL-3-aminobutyric acid) against Plasmopara viticola in grapevines. Eur. J. Plant Pathol, 105:351-361
    35. Cohen Y. 1994.3-Aminobutyric acid induces system resistance against Peronospora tabaina. Physiol. Mol. Plant Pathol, 44:273-288
    36. Cohen Y. 1994b. Local and systemic control of Phytophthora infestans in tomato plants by DL-3-amino-n-butanoic acids. Phytopathology, 84:55-59
    37. Cohen Y. 2000.Methods for protecting plants from fungal infection. U. S. Patent, 6,075,051
    38. Cohen Y. 1998.Synergistic fungicidal mixtures of selected amino acids. Isreal Patent: 12,346
    39. Cohen Y. 2001.Synergistic mixtures of an amino acid. Isreal Patent , 123722
    40. Cohen Y. 2002.β-aminobutyric acid-induced resistance against plant pathogens[J]. Plant Dis, 86(5): 448-457
    41. Cohen, Y. 1996.Induced resistance against fungal diseases by aminobutyric acid . Modern Fungicides and Antifungal Compounds, 461-466
    42. Coulomb C, PolianC, LizziY. 1994.Ultrastructural changes concerning the photosynthetic apparatus during Phytophthora capsici infection of susceptible and induced pepper leaves. Physiological and Molecular Plant Pathology, 45(6): 441-456
    43. Diatchenko L, Lau YF, Campbell AP, Chenchik A, MoqadamF, Huang B, Lukyanov S, Lukyanov K, GurskayaN, Sverdlov ED, Siebert PD. 1996.Suppression subtractive hybrization: a method for generating differentially regulated or tissue-specific cDNA probes and liabraries. Proc Natl Acid Sci USA, 93(12): 6025-6030
    44. Dunphy J L, Balic A, Carry J et. 2000.Isolation and characterization of a novel inducible mammalian galectin. J Biol CHem, 275(41): 32106—32113
    45. Dubos C, Le Provost G, Pot D, Salin F, Lalane C, Madur D, Frigerio JM, PlomionC. 2003.Identification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings. Tree Physiol, 23(3): 168-179
    46. Durrant WE, Rowland O, Piedras P, Hammond-Kosack KE, DG Jones J. 2000. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profile. Plant Cell, 12(6): 963-977
    47. Eckey C, Korell M, Leib K, Biedenkopf D, Jansen C, Kogel KH. 2004.Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase. Plant Mol Biol, 55(1): 1-15
    48. Evans D E, Williams E. L. 1998. P-type calcium ATPases in higher plants-biochemical, molecular and functional properties. BBA, 1376: 1—25.
    49. Ferrol N, Bennett A B. 1996. A single gene may encode differentially localized Ca~(2+)-ATPase in tomato. The Plant Cell , 8:1159—1169.
    50. Fischer W, Christ U, Baumgartner M, Erismann KH. 1989.Mosinger E. Pathogenesis-related proteins of tomato: II. Biochemical and immunological characterization. Physiol. Mol. Plant Pathol, 35:67-83
    51. George P Yang, Douglas T Rossi, Wayne W Kuang et. 1999. Weigel Combining SSH and cDNA microarrays for rapid identification of diffentially expressed genes. Nucleic Acids Res, 27(6): 1517—1523
    52. Giannini J L, Gildensoph L H, Reynolds-Niesman I. 1987a. Calciumtransport in sealed vesicles from red beet (Beta vulgaris L. ) storage tissue. I . Characterization of a Ca~(2+)-pumping ATPase associated with the endoplasmic reticulum. Plant Physiol, 85: 1129— 1136.
    53. Giannini J L, Ruiz-Cristin J, Brisldn D P. 1987b. Calcium transport in sealed vesicles from red beet (Beta vulgaris L.) storage tissue. Ⅱ. Characterization of ~(45)Ca~(2+) uptake into plasma membrane vesicles. Plant Physiol 85:1137~1142.
    54. Greyerbiehl J A, Hammerschmidt R. 1998. Induced resistance against Fusarium sambucinum in potato tuber tissue. (Abstr.)Phytopathology, 88:S34
    55. Harper JF, Hong B, Hwang I, Guo HQ, Stoddard R, Huang JF, Palmgren MG, Sze H. 1998. Anovel calmodulin-regulated Ca~(2+)-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain. J Biol Chern, 273 : 1099-1106
    56. Harper J L, Hong B, Hwang I. 1998. A novel calmodulin-regulated Ca~(2+)-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain. J Biol Chem, 273: 1099~1106.
    57. Harper JF. 2001. Dissection calcium oscillators in plant cells. Plant Science, (6): 395-397.
    58. Hiromu Ito, Haruhiko Akiyama, Hiroshi Iguchi et. 2001. Molecularcloning and biological activity of a novel lysyl oxidase—relatd geneexpressed in cartilage. Biol chem, 276(26): 24023~24029
    59. Hirschi KD. 2001. Vacuolar H~+/Ca~(2+) transport: Who's directing the traffic Trends. Plant Science, (6): 100-104.
    60. Hong B A, Ichida S, Wang y et al. 1999. Identification of a calmodulin-regulated calcium ATPase in the ER. Plant Physiol Plant Mol Bio, 119: 1165~1176.
    61. Hou L, Xiao YH, Li XB, Wang WF, Luo XY, Pei Y. 2002. The cDNA-AFLP differential display in developing anthers between cotton male sterile line. Dong A Yi Chuan Xue Bao, 29(4): 359-363
    62. Hsieh WL , Pierce W S , Sze H. 1991. Calcium-pumping ATPases in vesicles from carrot cells. Stimulation by calmodulin or phosphatidylserine , and formation of a 120 kilodalton phosphoenzyme. Plant Physiol Plant Mol Bio, 97: 1535~1544.
    63. Huang L , Berkelman T , Franklin A E, Hoffman NE. 1993. Characterization of a gene encoding a Ca~(2+)-ATPase-like protein in the plastid envelope. Proc Natl Acad Sci UAS, 90 : 10066-10070
    64. Hubank M and Schatz D C. 1994. Identifing differences in mRNA expression by Rpresentational difference analysis of cDNA.Nucleic Acids Res, 22(25): 5640~5048
    65. Hwang B K, Sunwoo J Y, Kim Y J, Kim BS. 1997. Accumulation of beta-1, 3, -glucanase and chitinase isoforms and salicylic acid in the DL-beta-amino-n-butyric acid -induced resistance response of pepper stems to Phytophthora capsici . Physiol. Mol. Plant Pathol, 51:305-322
    66. Hwang I , Ratterman DM, Sze H. 1997. Distinction between endoplasmic reticulum-type and plasma membrane-type Ca~(2+)pumps. Plant Physiol, 113: 535~548.
    67. Jakab G, Cottier V, Toquin V, Rigoli G, Zimmerli L, Metraux JP. 2001. β-Aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol, 107:29-37
    68. Jasinski M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M. 2001. A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell, 13:1095-1107
    69. Jasinski M, Ducos E, Martinoia E, Boutry M. 2003. The ATP-Binding Cassette Transporters: Structure, Function and Gene Family Comparison between Rice and Arabidopsis. Plant Physiology, 131:1169-1177
    70. Jeun Y C, Siegrist J, Buchenauer H. 2000. Biochemical and cytological studies on mechanisms of systemically induced resistance to Phytiphthota infestans in tomato plants. Phytopathol, 148:129-140
    71. Jeun Y C. 2000. Immunolocalization of PR-protein P14 in leaves of tomato plants exhibiting systemic acquired resistance against Phytophthora infestans induced by pretreatment with 3-aminobutyric acid and preinoculation with tobacco necrosis virus. Z. Pflanzenkrankh. Pflanzenschutz, 107:352-367
    72. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P. 2001. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol, 126(4): 1358-69
    73. Johansson I, Larsson C, Ek B, Kjellbom P. 1996. The major intergral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca~(2+) and apoplastic water potential. Plant Cell, 8:1181-1191
    74. Jorda L, Coego A, Conejero V, Vera P. 1999. A genomic cluster containing four differentially regμlated subtilisin-like processing protease genes is in tomato plants. J Biol Chem, 274(4): 2360-5
    75. Kaoru T Y. 1994. cDNA cloning of regeneration-specific genes in rice by differential screening of randomly amplified cDNA using RAPD primers. Plant Cell Physioh 35(7): 1003-1007
    76. Kessinger RH. 1976. Calcium-binding proteins. Annu Rev Biochem, 45:239-266
    77. Kemp, B. P, Beeching, J.R. 2005. cDNA-AFLP reveals genes differentially expressed during the hypersensitive response of cassava. JOURNAL Mol Plant Pathol, 6(2): 113-123.
    78. Kessmann H, StaubT, Hofmann C, Maetzke T, Herzog J, Ward E, Ukne S.1994. Induction of systemic acquired resistance in plants by chemicals. Annu. Rev. Phytopathol, 32:439-459
    79. Klusener B, Boheim G, Lib H. 1995. Gadolinim-sensitive, voltage-dependent calcium releasechannels in the endoplasmic reticulum of higher plant mechanoreceptor organ[J]. EMBO Journal, 14:2708~2714.
    80. liang P, Authur B P, 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 257(14): 967~971
    81. Liang F, Cunningham KW, Harper J F et al. 1997. ECA1 complements yeast mutants defective in Ca~(2+) pumps and encodes an endoplasmic reticulum-type Ca~(2+)-ATPase in Arabidopsis thaliana. Proc Natl Acad Sci UAS, 94: 8579~8584.
    82. Li ? H, Weiler E W. 1994. Ion-translocating ATPases in tendrils of Bryonia dioica Jacq. Planta, 194: 169~180.
    83. Li Y J, LI Z, LI Z S. 1998. Study Progress of differential display revese transcription PCR in Eukaryotes. Biotechnology Information (生物技术通报), 5:23~30
    84. Lisitsyn N, Wigler M. 1993. Cloning the differences between two complex genomes. Science, 259: 946~951
    85. Linthorst H J M. 1991. Pathogenesis-related proteins of plants. Crit. Rev. Plant Sci, 10: 123-150
    86. Lopez-Gomez;Gomez-lim MA. 1992. A method for extracting intact RNA from fruits rich in polysaccharides using ripe mango mesocarp[J].HortScience, 27:440-442
    87. Liu JJ,Goh CJ,Loh CS,et al. 1998. A method for isolation of total RNA from fruits tissure of banana[J]. Plant Mol Biol Rep, 16:1-6
    88. Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N, Guevara-Garcia A, Day P, Raina R, Fedoroff NV. 2003. Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biology, 4:R20
    89. Malmstrom S, Askerlund P, Palmgren M G. A calmodulin-stimulated Ca~(2+)-ATPase fromplant vacuolar membranes with a putative regulatory domain at its N-terminus. FEBS Lett, 1997, 400 : 324-328
    90. Maclennan D H, Kuc J, Williams E B. 1963. hemotherapy of the apple scab disease with butyric acid derivatives. Phytopathology, 53:1261-1266
    91. Marcia R Saban, Helen Hellmich, Ngoc-Bich et. 2001. Tune course of LPS induced gene expression in a mouse model of genitourinary inflammation. Physial Genomies, 5. 147~160
    92. Motoaki Sekia, Mad Narusaiaa, Hiroshi Abec et . 2001.Monitoring theexpression pattern of 1300 Arabidopsis genes under drought and cold stress by using a full-lendh cDNA microarray. Plant Cel, 13, 61~72
    93. Monroy AF and Dhindsa RS. 1995. Low-temperature signal transduction : induction of cold acclimationspecific genes of alfalfa by calcium at 25℃. The Plant Cell, 7: 321-331
    94. Muchhalus, Liu C, Thama K G. 1997. Ca~(2+) ATPase is expressed differentially in phosphatest raved roots of tomato. Physiol Plant, 101: 540-544
    95. Oka Y, Cohen Y. 2001. Induced resistance to cyst and root-knot nematodes in cereals by DL-β-amino-n-butyric acid. Eur. J. Plant Pathol, 107:219-227
    96. Oka Y, Cohen Y, Spiegel Y. 1999.Local and systemic induced resistance to the root-knot nematode in tomato by DL-β-amino-n-butyric acid. Phytopathology, 89:1138-1143
    97. Oka Y, Spiegel Y, Cohen Y. 2001. Methods and compositions to protect crops against plant parasitic nematodes. U. S. Patent, 6,201,023B1
    98. Olbe M, Widell S, Sommarin M. 1997. Active calcium transporters in isolated membranes of wheat root cells. J Exp Bot, 48:1767-1777
    99. Oort AJP, Van Andel O M. 1960. Aspects in chemotherapy. Mededel Opz Gent, 25:961-992
    100. Papavizas G C, Davey C B. 1963. Effect of amino compounds and related substances lacking sμlfur on Aphanomyces root rot of peas. Phytopathology. 53. 116-122
    101. Perez-Prat E , Narasimhan ML , Binzel ML etal. 1992. Induction of a putative Ca~(2+)-ATPase mRNA in Nacl-adapted cells. Plant Physiol, 100: 1471~1478.
    102. Prassinos C, Ko JH, Yang J, Han KH. 2005. Transcriptome Profiling of Vertical Stem Segments Provides Insights into the Genetic Regulation of Secondary Growth in Hybrid Aspen Trees. Plant Cell Physiol, May 20
    103. Pfeiffer W, Hager A. 1993. A Ca~(2+)-ATPase and a Mg~(2+)/H~+-antiporter are present on tonoplast membranes flom roots of Zea mays L. Planta, 191: 377~385.
    104. Radhika Desikan, Soheila A H MacKerness, John Hancock et. 2001. Regulation of the ambidopsis transcriptome by oxidative stress. Plant Physial. 127: 159~172
    105. Ramamurthy M, Nina F. 2001. Screening insertion libraries for mutations in many genes simultaneously using DNA microarrays. Proc Nail Acad Sci USA. 98(13): 7420~7425
    106. Rasi-caldognof, Pugliarellomc, Olivaric. 1989. Identification and characterization of the Ca~(2+)-ATPase which drives active transport of Ca~(2+) at the plasmamembrane of radish seedlings. Plant Physiol, 90: 1429~1434.
    107. Rasi-Caldogno F, Carnelli A, De Michelis MI. 1995. Identification of the plasma membrane Ca~(2+) pump of higher plants. A comparison with the effect of calmodulin in plasma membrane Ca~(2+)-ATPase and of its autoinhibitory domain. Plant Physiol , 108 105~113.
    108. Raviv A. 1994.The mode of action of β-aminobutyric acid in inducing resistance in tomato plants against late blight. PH. D. thesis. Bar-Ilan University, Ramat-Gan, Isreal.
    109. Reuven M, Zahavi T, Cohen Y. 2001. Controlling downy mildew (Plasmopara viticola) in field-grown grapevine with β-aminobutyfic acid (BABA). Phytoparasitica, 29:125-133
    110. Rudd JJ , Franklin-Tong VE. 2001. Unravelling response-specificity in Ca~(2+) signaling pathways in plant cells. New Phytol, 151: 7~33.
    111. Sanders D, Brownlee C, Harper JF. 2002. Calcium at the crossroad of signaling. Plant Cell, 14:S401~S417.
    112. Sasabe M, Toyoda K, Shiraishi T, Inagaki Y , Ichinose Y. 2002. cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor-responsive gene. FEBS Lett, 518:164-168
    113. Schena M, Shalon D, Davis S, Brown PO. 1995.Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270:467-470
    114. Sze H, Liang F, Hwang L. 2000. Diversity and regulation of plant Ca~(2+) pumps:insights from expression in yeast. Annu. Rev. Plant PhysiolPlant MolBiol, 51: 433~462.
    115. Shailasree S, Sarosh B R, Vasanthi N, Shetty H S. 2001. Seed treatmeat with β-aminobutyric acid protects Pennisetum glaucum systemically from Sclerospora graminicola. Pest Manag. Sci, 57:721-728
    116. Shepard K A, Purugganan M D. 2002. The genetics of Plant morphological evolution. Curr opin Plant Biol, 5(1): 49~55.
    117. Siegrist J, Orober M, Buchenauer H. 2000. Beta-aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumμlation of salicylic acid[J]. Physiol. Mol. Plant Pathol, 56:95-106
    118. Silue D, Pajot E, Cohen Y. 2002. Induction of resistance to downy mildew(Peronospora parasitica) in caμliflower by DL-β-amino-n-butyric acid(BABA). Plant Pathol, 51:97-102
    119. Smart C C, Fleming A J. 1996. Hormonal and environmental regulation of a plant PDR5-like ABC transporter. J Biol Chem, 271:19351-19357
    120. Snedden W A, Fromm H. 2001. Calmodulin as a versatile calcium signal transducer in Plants. New Phytol, 151: 35~66.
    121. Sturevant V.2001. Applications of differential—display revese transcription-PCR to molecular pathogenesis and medical mycology. Clinical Microbiology reviews, 13(3): 408~427
    122. Sticher L, Mauch-Mani B, Metraux JP. 1997. Systemic acquired resistance. Annu. Rev. Phytopathol, 35:235-270
    123. Thomson L T, Xing T, Hall J L. 1993. Investigation of the calcium-transporting ATPase at the endoplasmic reticulum and plasma membrane of red beet (Bata vulgaris). Plant Physiol, 102: 553~564.
    124. van den Brule S, Smart CC. 2002. The plant PDR family of ABC transporters. Planta, 216(1): 95-106
    125. Vera P, Conejero V. 1989. The induction and accumμlation of the pathogenesis-related P69 proteinase in tomato during citrus exocortis viroid infection and in response to chemical treatments. Physiol. Mol. Plant Pathol. 34:323-334
    126. Vera P, Conejero V. 1990. Effect of Ethephon on Protein Degradation and the Accumμlation of "Pathogenesis-Related' (PR) Proteins in Tomato Leaf Discs. Plant Physiol, 92:227-233
    127. Vera P, Conejero V. 1988. Pathogenesis-related proteins of tomato. P-69 as an alkaline endoproteinase. Plant Physiol, 87:58-63
    128. Von Stein O D, Thies W C, Hormann M. 1997. A high throughput screening for rarely trannscribed differentially expressed genes. Nucleic Acids Res, 25(13): 2598~2602
    129. Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 23: 4407-4414
    130. Wang YJ, Li YD, Luo GZ, TianAG, Wang HW, Zhang JS, Chen SY. 2005. Cloning and characterization of an HDZip I gene GmHZ1 from soybean. Planta. Mar 8
    131. White PJ, Broaley MM. 2003. Calcium in plant[J]. Annals of Botany, 92:487-511.
    132. Wimmers L, Ewing N, Bennett AB. 1992. Higher plant Ca~(2+)- ATPase: primary structure and regμlation of mRNA abundance by salt. Proc Natl Acad Sci USA, 89: 9205-9209
    133. Zimmerli L, Jakab C, Metraux J P, Mauch-Mani B. 2000. Protentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc. Nat. Acad. Sci. USA, 97: 12920-12925
    134. Zimmerli L, Metraux J P, Mauch-Mani B. 2001.β-aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol, 126:517-523

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700