细胞毒抗肿瘤药物的共同基因表达谱的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因表达谱芯片技术是近年来发展起来的一项前沿生物技术,可以对成千上万种基因的表达水平进行平行、快速、准确、高效的检测。基因芯片技术对于药物作用分子机制研究、药物靶标的发现、多靶点高通量药物筛选、药物活性及毒性评价等领域具有无可比拟的优势。
     细胞毒抗肿瘤药物与不同的靶点结合后发挥抑制肿瘤细胞增殖、诱导细胞周期阻滞和细胞凋亡的作用。虽然目前已有大量的文献报道有关细胞增殖和凋亡的调控分子和反应通路,但是这些药物作用靶点与细胞内其它的调控分子或反应通路尚不完全清楚。由于不同的细胞毒抗肿瘤药物所致的细胞表型变化相似,因此可以推测:不同的抗肿瘤药物可能共享某些细胞内信号传导通路,而这些细胞内传导通路中的分子则可能与调控肿瘤细胞增殖和凋亡有关。因此,寻找新的细胞增殖和凋亡的调控分子和反应通路对于进一步了解药物的作用机制和发现新的药物靶点具有重要的意义。
     本研究基于上述的设想,选择了喜树碱、紫杉醇、高三尖杉酯碱和放线菌素D作用于白血病HL-60细胞和肝癌QGY7703细胞,利用基因芯片技术研究药物反应的基因表达谱,并应用Genmapp分析软件和Access软件,对药物反应基因进行聚类分析和药物反应通路分析。并应用实时定量PCR对一些重要基因进行确证。结果如下:
     1.为研究抗肿瘤药物早期敏感反应基因表达谱,我们首先研究4个细胞毒抗肿瘤药物对白血病HL-60和肝癌QGY7703细胞表型的影响。采用噻唑蓝(MTT)法检测紫杉醇、高三尖杉酯碱、喜树碱、放线菌素D作用于HL-60细胞和QGY-7703肝癌细胞24h的药物半数抑制浓度(IC50)分别为0.025、320、79.85、2.67、μmol/mL和2.26、52.77、19.09、0.48、μmol/mL;实验同时采用形态学观察和流式细胞仪检测细胞凋亡以及细胞周期,实验表明,两种肿瘤细胞与各药物孵育1h,细胞形态未见变化,作用24h可见细胞破碎、数目减少;流式细胞仪检测结果显示,紫杉醇和高三尖杉酯碱作用24h可加速白血病细胞和肝癌细胞通过G1/S期,导致G2/M期阻和细胞凋亡。
     2. HL-60细胞和QGY-7703肝癌细胞分别用上述药物的IC50处理1h后,实验同时设加药物溶剂的对照组。抽提细胞RNA,然后用荧光试剂制备cDNA探针,再与14400型基因表达谱芯片杂交,用ScanArray 3000扫描芯片和ImaGene软件分析荧光信号的强度和比值。选择三次实验杂交比值的平均值自然对数绝对值≥0.69作为判定基因表达差异标准,筛选出各药物作用的早期反应基因。结果显示,4个抗肿瘤药物均诱发强烈的细胞基因表达改变,其中紫杉醇和高三尖杉酯碱诱导HL-60和QGY7703细胞的反应基因最多。
     3.应用Genmapp分析软件对药物反应基因进行聚类分析和药物反应通路分析,发现4个抗肿瘤药物可调控细胞内许多反应通路、功能基因或细胞组分。例如,紫杉醇可调控mRNA加工过程;高三尖杉酯碱可抑制蛋白酶体组分26S亚单位PSMC3、PSMD2和PSMD11表达;喜树碱影响G蛋白信号通路中多条基因的表达;放线菌素D可调节丝裂素活化的蛋白激酶(MAPK)通路、TNF-NFkB通路等,这些结果说明药物起始靶点与许多已知的调控细胞增殖和凋亡的通路相连,而这些通路可以很好地解释药物的作用。此外,细胞毒抗肿瘤药物还调节了一群组织特异的基因,如喜树碱影响一些内脏器官、内分泌系统和中枢神经系统的基因,放线菌素D也能调节一些正常胚胎干细胞基因表达,提示这些基因的改变可能与其毒性有关。
     4.应用microsoft office Access软件对药物反应基因和药物反应通路进行统计分析,发现细胞毒抗肿瘤药物之间在转录水平上可共享某些同向改变的基因或反应通路,其中2个药物之间最多,共用反应基因和通路在3个药物之间,甚至全部4个药物都可见到,例如全部4个药物在HL-60和QGY7703细胞中分别有17条和40条共用反应基因以及7条和9条反应通路。在2个细胞系中,4个抗肿瘤药物也有6条的共同反应基因,它们是GRN、MLL3、PSAP、ERP29、LRPAP1、ST3GAL4 ,也共享肌动蛋白-细胞骨架调节通路( Regulation of Actin Cytoskeleton)和粘着斑功能调节通路(Focal adhesion)。这些结果提示拓朴酶抑制、微管、核糖体和DNA模板干扰在转录水平上具有共同的下游作用,通过这些下游通路或分子可能最终导致相似的表型变化。
     5.共用反应基因在功能上可分为:生长增殖相关基因、凋亡相关基因、糖代谢相关基因及其它功能基因4类,这些共用基因所编码的蛋白生物功能多样,分别参与了细胞周期调节,DNA、RNA和蛋白质合成,能量代谢,泛素(类泛素)蛋白酶体依赖的蛋白质降解,信号传导通路、抗凋亡或促凋亡等重要的细胞生命活动以及内质网以及线粒体等构成。(1)抗肿瘤药物能显著抑制细胞表达细胞周期相关基因,如蛋白磷酸酶2A、翻译延长因子1、HnRNPB1等,这些基因参与了细胞有丝分裂、核酸合成、DNA复制和修复以及RNA加工和蛋白质合成;此外,还能抑制具有促增殖作用的肿瘤相关蛋白基因(如GRN、MLL3 )的表达,表明抗肿瘤药物可通过调节细胞增殖基因的表达,来抑制肿瘤细胞的生长甚至导致死亡;(2)抗肿瘤药物能诱导细胞表达促凋亡基因PMAIP1以及抑制抗凋亡基因PSAP的表达,说明调节凋亡相关基因的表达也是抗肿瘤药物诱导细胞凋亡的一个重要机制;(3)抗肿瘤药物能调节内质网以及线粒体构成诱导细胞凋亡,如ERP29是内质网腔膜蛋白,作为氧化还原酶和分子伴侣,参与蛋白质折叠和运输。ARF5是囊泡转运包被复合体形成所必需,参与了内质网和高尔基体间的蛋白转运。抗肿瘤药物抑制两者表达,可能阻断蛋白在内质网与高尔基体的转运,从而诱导内质网应激而使细胞凋亡。mitochondrial ribosomal protein S18A是线粒体核糖体组分,衰老细胞线粒体核糖体蛋白合成的准确性下降。isocitrate dehydrogenase 2参与三羧酸循环, SLC25A6为ADP/ATP转运子,因此,抑制参与能量代谢的基因表达可能会引起线粒体呼吸链功能缺陷或者ATP耗竭而导致细胞死亡。(4)抗肿瘤药物能抑制泛素(类泛素)蛋白体蛋白降解系统相关基因PSMC3、VCP和SAE1表达。PSMC3是蛋白酶体26S蛋白酶体19S调节亚基的核心组分,VCP/p97是一种AAA ATP酶,在辅助因子协助下,可使错误折叠的蛋白从内质网膜脱位进入胞浆,经泛素蛋白酶体系统降解。SAE1/SAE2是小泛素相关修饰剂(Small Ubiquitin-related Modifier, SUMO-1)活化酶,参与类泛素途径调节,由于蛋白酶体参与细胞周期、增殖和凋亡调节,因此抑制泛素蛋白酶体途径可能也是抗肿瘤药物的一个重要机制(5)抗肿瘤药物能抑制唾液酸转移酶4C和糖苷转运子SLC35D1表达,而这二者均在多种肿瘤中表达增加,参与肿瘤的转移。因此,抑制蛋白糖基化可能与药物的抗转移作用有关。
     文献检索发现,有些共用基因已作为抗肿瘤药物筛选靶点,例如,蛋白酶体抑制剂是一种新型的抗肿瘤药物,已进入临床实验;基于蛋白磷酸酶PP2A分子模建,目前已设计了系列蛋白磷酸酶抑制剂,体内外结果显示蛋白磷酸酶抑制剂具有广谱的抗肿瘤效果。此外,唾液酸转移酶抑制剂也能显著抑制肿瘤生长和抗肿瘤转移的作用。这些结果提示通过进一步的研究有望从这些共用反应基因中发现一些新药靶。此外,以共用反应基因为基础制成芯片,可以建立针对基因群的多靶标高效筛药和评价模型。
     综上所述,应用基因芯片技术和多个细胞毒抗肿瘤药物寻找得到的共同反应基因对于阐明抗肿瘤药物作用机制和发现新药靶具有重要的意义。
Gene expression microarray is a newly-developed biotechnology in recent years, permits the simultaneous and rapid measurement of the expression levels of thousands of genes, and allows the analysis of molecular events of drug response and potentially identifying novel drug targets. It is also suitable for high-throughput drug screening with multi-targets and evaluation of drug activity and toxicology.
     Cytotoxic anticancan drugs inhibit cell proliferation, disturb cellcycle and induce cell apoptosis after binding to diverse molecular targets. The growing numbers of documents have shown the key regulatory molecules and cellular pathways control cell apoptosis and the cell cycle. However, the connectivity of known mechanisms with other regulators or pathways remains unclear. Although the anticancer drugs have diverse initial molecular targets, cellular phenotypic outcomes are similar for different drug treatments. Therefore, it appears reasonable to assume that some of genetic alternations among the different drug responses might be likely shared as common key effects of the drug-target interactions. Analysis of these intersection genes may provide new insights into the molecular mechanisms of the antitumor agents and discover new potential target molecules for the development of novel antineoplastic drugs.
     This study was designed to test above hopothesis with microarray analysis of the sensitive early gene expression profiles in QGY-7703 hepatoma cells and HL-60 leukemia cells stimulated with the chosen representative drug paclitaxel (Taxol), dactinomycin (ACD), camptothecin (CPT), and homoharringtonine (HHRT), based on their identical cell growth inhibition actions. Drug response genes were then clustered and cellular pathways were analyzed by Genmapp anlysis software and Microsoft Ascess software. Realtime PCR was also conducted for some interest genes to comfirm our microarray results. Results are shown as follows:
     1. To analyze the sensitive early gene expression profiles, cell phenotypes of growth inhibition, apoptosis and cell cycle in response to drug treatment were determined by MTT assay and flow cytometry. 50% of inhibitory concentration (IC50) of Taxol, HHRT, CPT and ACD was 0.025、320、79.85、2.67、μmol/mL and 2.26、52.77、19.09、0.48、μmol/mL respectively in HL-60 leukemia cells and QGY-7703 hepatoma cells after 24 cluture. Morphological changes were not observed by microscope after 1 h incubation of drugs with both cell lines, wheras the decreased cell numbers and cell pieces were seen in both cells treated with the chosen drugs for 24 h. Flow cytometry results showed that treatment of paclitaxel and homoharringtonine for 24 h markedly accelerated leukaemia and heptoma cells through G1/S interface resulting G2/M arrest and apoptotic cell death. These results are consitent with the reported actions of these drugs.
     2. Total RNA was isolated from drug treated cells and from control (equal volume of drug solvent) cells after 1 h incubation. Labeling of cDNA, microarray hybrization and fluorescence detection was performed as standard protocol of Unite Gene Corpoation. Genes were identified as differentially expressed if the absolute value of the natural logarithm of the average ratios of three independent experiments was > 0.69. The number of regulated genes differed significantly among drugs, with paclitaxel and homoharringtonine causing the strongest responses in HL-60 and QGY7703 cells respectively.
     3. Genmapp software was used to gene cluster and pathway analysis of the drug response genes. A number of cellular pathways, functional molecules and cellular components were found as classied by the used software. For example, paclitaxel reglulated mRNA processing; homoharringtonine inhibited the expression of protesome component PSMC3、PSMD2 and PSMD11;camptothecin affected G protein signaling pathways and dactinomycin modulated MAPK pathways and TNF-NFkB pathways. These results indicate initial tagets are connected with many known pathways responsible for cell proliferation and apoptosis, which may clearly explain actions of these antitumor agents. In addition, cytotoxic agents also regulated several groups of genes specific to internal organs, endocrine and CNS as well as embryo stem cells, suggesting these genes may be related to the cytotoxicities of antitumor drugs.
     4. Microsoft office Access software was used to sort common drug response genes and common cellular pathways. Our results demonstrated that antitumor agents shared many cellular pathways and genes with the same regulated direction in the transcriptional levels. The largest overlap was found between two agents. Common response genes and pathways were also identified among three drugs, even in all four four drugs. For exaple, 17 and 40 common response genes and 7 and 9 pathways were obtained in HL-60 cell and in QGY7703 cells respectively. There were 6 common response genes including granulin (GRN)、myeloid/lymphoid or mixed-lineage leukemia 3 (MLL3)、prosaposin (variant Gaucher disease and variant metachromatic leukodystrophy, PSAP)、endoplasmic reticulum protein 29 (ERP29)、low density lipoprotein receptor-related protein associated protein 1 (LRPAP1)、ST3 beta-galactoside alpha-2,3-sialyltransferase 4 (ST3GAL4) and 2 pathways (regulation of Actin Cytoskeleton and focal adhesion) shared by all drugs in both cell lines. These results provided evidence for common down stream effects of topoisomerase inhibition and microtubular dynamics or ribosome function interference as well as DNA template corruption, which may result in final similar phenotypic outcomes.
     5. The common response genes may be classied into four categrories including growth and proliferation related genes, apoptosis related genes, carbohydrate metabolism related genes and unkown function genes. The biochemical functions of intersection response genes are diverse and include cell cycle regulators, proapoptotic and antiapoptotic factors, growth factors, signal mediators, metabolic regulators, proteases and glycosyltransferases, and proteins of miscellaneous or unknown function. (1) Chemotherapeutical agents-treated cells decreased expression of a cluster of genes involved in cell proliferation. For example, a broad range of genes is associated with cell cycle and mitosis (QSCN6,PPP2R1A),gene transcription [general transcription factor IIIC (GTF3C5) , activating transcription factor 5 (ATF5)],RNA processing[heterogeneous nuclear ribonucleoprotein A/B (HNRPAB),PRP6 pre-mRNA processing factor 6 homolog (S. cerevisiae) (PRPF6),nucleolin (NCL)] and protein synthesis[eukaryotic translation elongation factor 1 delta EEF1D, Eukaryotic translation initiation factor 4A, isoform 1,EIF4A1]。In addition, tumor associated genes granulin、myeloid/lymphoid or mixed-lineage leukemia 3 were also inhibited upon multiple treatment.The alterations in these specific genes functionally related to cell proliferation might determine tumor cell growth arrest, even ultimate cell death, correlating well with the cytotoxic agents-mediated cytotoxicity. (2) Treatment of antitumor agents induced proapototic genes phorbol-12-myristate- 13-acetate-induced protein 1(PMAIP1) and decreased antipoptotic gene prosaposin (PSAP), suggesting the involvement of cell apoptotic mechanisms in these drug actions. (3) Regulation of endoplasmic reticulum (ER) and mitochondrial components was shown by drug treatment, for example, ERP29, a disulfide isomerase (PDI)-like proteina, is involved in oxidative stress and regulates protein unfolding and facilitates the transport of secretory proteins. ARF5 is a member of ADP-ribosylation factors necessary for the formation of clathrin- and coatomer protein (COP) I-coated vesiclesare, and isivovled in protein transport between ER and Golgi compartments. Inhibition of tese ER associated genes by antitumor agents may result in ER stress leading to cell apoptosis. Moreover, the expression of mitochondrial components was also observed in response to antitumor drugs. Isocitrate dehydrogenase 2 participates in tricarboxylic acid cycle and solute carrier family 25 (SLC25A6) is adenine nucleotide translocator. Thus the decresed energy production and transport may be responsible for cytotoxic agents-mediated apoptosis. (4) Cells exposed to cytotoxic agents resulted in the down regulation of a cluster of Ubiquitin/proteasome degradation pathways (UPDP) related genes, such as PSMC3, VCP and SAE1. PSMC3 is a core component of the 19S regulatory particle of the 26S proteasome, VCP helps dislocateing misfolded proteins from the ER membrane into the cytosol for proteasomal degradation, and SAE1/SAE2 is the activating enzyme E1 of small ubiquitin-related modifier (SUMO) responsible for post-translational modifications of proteins. Since ubiquitin/proteasome degradation pathways have function in regulating cell proliferation and apoptosis, the decraesed expression of UPDP related genes may be contributed to cytotoxic effects of antitumor drugs. (5) Genes functioned in the intracellular glycoprotein glycosylation pathway such as sialyltransferase 4C and SLC35D1expression were reduced in drug responses, which may imply the modulating effects of these antitumor drugs on the tumor invasion and metastasis due to the involvement of specific carbohydrate structures in cellular recognition processes and cancer metastasis.
     6. Some common response genes have been documented to be the targets for drug design and screening. For example, proteasome becomes a new target for novel drug therapy. Based on a modelled structure of PP2A, a new class of protein phosphatase inhibitors, cantharimides, are designed and exhibit broad-spectrum anti-cancer activity. Suppression of sialyltransferases by chemicals has been shown to reduce the potentiality of growth and metastasis of various tumors. These suggest that another unexplored drug targets might be discovered from these intersection genes. In addition, these common response genes may also be used for screening and evaluation of antitumor agents as made of multiple-target microarray chip.
     Taken togethe, determination of the common response genes with microarrays and multiple tool agents is of great value for our deciphering complex regulatory pathways and discovering new potential target molecules.
引文
1. Marton MJ, DeRisi JL, Bennett HA et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat.Med. 1998;4:1293-1301.
    2. Cristillo AD, Bierer BE. Identification of novel targets of immunosuppressive agents by cDNA-based microarray analysis. J.Biol.Chem. 2002;277:4465-4476.
    3. Fodor SP, Read JL, Pirrung MC et al. Light-directed, spatially addressable parallel chemical synthesis. Science 1991;251:767-773.
    4. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995;270:467-470.
    5. Schena M, Shalon D, Heller R et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc.Natl.Acad.Sci.U.S.A 1996;93:10614-10619.
    6. Doniger SW, Salomonis N, Dahlquist KD et al. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 2003;4:R7.
    7. Wesselkamper SC, Case LM, Henning LN et al. Gene expression changes during the development of acute lung injury: role of transforming growth factor beta. Am.J.Respir.Crit Care Med. 2005;172:1399-1411.
    8. Wesselkamper SC, McDowell SA, Medvedovic M et al. The role of metallothionein in the pathogenesis of acute lung injury. Am.J.Respir.Cell Mol.Biol. 2006;34:73-82.
    9. Olivier RI, van BM, Veer LJ. The role of gene expression profiling in the clinical management of ovarian cancer. Eur.J.Cancer 2006;42:2930-2938.
    10. Goto T, Takano M, Sakamoto M et al. Gene expression profiles with cDNA microarray reveal RhoGDI as a predictive marker for paclitaxel resistance in ovarian cancers. Oncol.Rep. 2006;15:1265-1271.
    11. Villeneuve DJ, Hembruff SL, Veitch Z et al. cDNA microarray analysis of isogenic paclitaxel- and doxorubicin-resistant breast tumor cell lines reveals distinct drug-specific genetic signatures of resistance. Breast Cancer Res.Treat. 2006;96:17-39.
    12. Lu KH, Lue KH, Chou MC, Chung JG. Paclitaxel induces apoptosis via caspase-3 activation in human osteogenic sarcoma cells (U-2 OS). J.Orthop.Res. 2005;23:988-994.
    13. Wan YF, Guo XQ, Wang ZH, Ying K, Yao MH. Effects of paclitaxel on proliferation and apoptosis in human acute myeloid leukemia HL-60 cells. Acta Pharmacol.Sin. 2004;25:378-384.
    14. Guo X, Zhang J, Fu X et al. Analysis of common gene expression patterns in four human tumor cell lines exposed to camptothecin using cDNA microarray: identification of topoisomerase-mediated DNA damageresponse pathways. Front Biosci 2006;11:1924-1931.
    15. Zhang JP, Ying K, Xiao ZY et al. Analysis of gene expression profiles in human HL-60 cell exposed to cantharidin using cDNA microarray. Int.J.Cancer 2004;108:212-218.
    16. Nair S, Xu C, Shen G et al. Toxicogenomics of endoplasmic reticulum stress inducer tunicamycin in the small intestine and liver of Nrf2 knockout and C57BL/6J mice. Toxicol.Lett. 2007;168:21-39.
    17. Liu J, Xie Y, Ducharme DM et al. Global gene expression associated with hepatocarcinogenesis in adult male mice induced by in utero arsenic exposure. Environ.Health Perspect. 2006;114:404-411.
    18. Marcotte ER, Srivastava LK, Quirion R. DNA microarrays in neuropsychopharmacology. Trends Pharmacol.Sci. 2001;22:426-436.
    19. Burczynski ME, McMillian M, Ciervo J et al. Toxicogenomics-based discrimination of toxic mechanism in HepG2 human hepatoma cells. Toxicol.Sci. 2000;58:399-415.
    20. Afshari CA, Nuwaysir EF, Barrett JC. Application of complementary DNA microarray technology to carcinogen identification, toxicology, and drug safety evaluation. Cancer Res. 1999;59:4759-4760.
    21. Li Y, Hong X, Hussain M et al. Gene expression profiling revealed novel molecular targets of docetaxel and estramustine combination treatment in prostate cancer cells. Mol.Cancer Ther. 2005;4:389-398.
    22. Brachat A, Pierrat B, Xynos A et al. A microarray-based, integrated approach to identify novel regulators of cancer drug response and apoptosis. Oncogene 2002;21:8361-8371.
    23. Szakacs G, Annereau JP, Lababidi S et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 2004;6:129-137.
    24. Liu B, Li S, Hu J. Technological advances in high-throughput screening. Am.J.Pharmacogenomics. 2004;4:263-276.
    25. Reynolds AR, Kyprianou N. Growth factor signalling in prostatic growth: significance in tumour development and therapeutic targeting. Br.J.Pharmacol. 2006;147 Suppl 2:S144-S152.
    26. Hoglund P. DNA damage and tumor surveillance: one trigger for two pathways. Sci.STKE. 2006;2006:e2.
    27. Georgakis GV, Younes A. From Rapa Nui to rapamycin: targeting PI3K/Akt/mTOR for cancer therapy. Expert.Rev.Anticancer Ther. 2006;6:131-140.
    28. Watson AJ. An overview of apoptosis and the prevention of colorectal cancer. Crit Rev.Oncol.Hematol. 2006;57:107-121.
    29. Moscat J, Rennert P, az-Meco MT. PKCzeta at the crossroad of NF-kappaB and Jak1/Stat6 signaling pathways. Cell Death.Differ. 2006;13:702-711.
    30. Heyninck K, Beyaert R. A novel link between Lck, Bak expression and chemosensitivity. Oncogene 2006;25:1693-1695.
    31. Friesen C, Herr I, Krammer PH, Debatin KM. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat.Med. 1996;2:574-577.
    32. Herr I, Wilhelm D, Bohler T, Angel P, Debatin KM. Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J. 1997;16:6200-6208.
    33. Kasibhatla S, Brunner T, Genestier L et al. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol.Cell 1998;1:543-551.
    34. Muller M, Strand S, Hug H et al. Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J.Clin.Invest 1997;99:403-413.
    35. Houghton JA, Harwood FG, Tillman DM. Thymineless death in colon carcinoma cells is mediated via fas signaling. Proc.Natl.Acad.Sci.U.S.A 1997;94:8144-8149.
    36. Kottke TJ, Blajeski AL, Martins LM et al. Comparison of paclitaxel-, 5-fluoro-2'-deoxyuridine-, and epidermal growth factor (EGF)-induced apoptosis. Evidence for EGF-induced anoikis. J.Biol.Chem. 1999;274:15927-15936.
    37. Germain M, Affar EB, D'Amours D et al. Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. Evidence for involvement of caspase-7. J.Biol.Chem. 1999;274:28379-28384.
    38. Tabata M, Tabata R, Grabowski DR et al. Roles of NF-kappaB and 26 S proteasome in apoptotic cell death induced by topoisomerase I and II poisons in human nonsmall cell lung carcinoma. J.Biol.Chem. 2001;276:8029-8036.
    39. Huang TT, Wuerzberger-Davis SM, Seufzer BJ et al. NF-kappaB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events. J.Biol.Chem. 2000;275:9501-9509.
    40. Sun Y. E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia. 2006;8:645-654.
    41. Montagut C, Rovira A, Albanell J. The proteasome: a novel target for anticancer therapy. Clin.Transl.Oncol. 2006;8:313-317.
    42. Taylor RC, Adrain C, Martin SJ. Proteases, proteasomes and apoptosis: breaking Ub is hard to do. Cell Death.Differ. 2005;12:1213-1217.
    43. Zhang WG, Yu JP, Wu QM et al. Inhibitory effect of ubiquitin-proteasome pathway on proliferation of esophageal carcinoma cells. World J.Gastroenterol. 2004;10:2779-2784.
    44. Ishizawa J, Yoshida S, Oya M et al. Inhibition of the ubiquitin-proteasome pathway activates stress kinases and induces apoptosis in renal cancer cells. Int.J.Oncol. 2004;25:697-702.
    45. Corn PG, McDonald ER, III, Herman JG, El-Deiry WS. Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel-Lindau protein. Nat.Genet.2003;35:229-237.
    46. Nelbock P, Dillon PJ, Perkins A, Rosen CA. A cDNA for a protein that interacts with the human immunodeficiency virus Tat transactivator. Science 1990;248:1650-1653.
    47. Boldin MP, Mett IL, Wallach D. A protein related to a proteasomal subunit binds to the intracellular domain of the p55 TNF receptor upstream to its 'death domain'. FEBS Lett. 1995;367:39-44.
    48. Desai SD, Li TK, Rodriguez-Bauman A, Rubin EH, Liu LF. Ubiquitin/26S proteasome-mediated degradation of topoisomerase I as a resistance mechanism to camptothecin in tumor cells. Cancer Res. 2001;61:5926-5932.
    49. Yan L, Herrmann V, Hofer JK, Insel PA. beta-adrenergic receptor/cAMP-mediated signaling and apoptosis of S49 lymphoma cells. Am.J.Physiol Cell Physiol 2000;279:C1665-C1674.
    50. Gu C, Ma YC, Benjamin J et al. Apoptotic signaling through the beta -adrenergic receptor. A new Gs effector pathway. J.Biol.Chem. 2000;275:20726-20733.
    51. Ayensu WK, Tchounwou PB. Microarray analysis of mercury-induced changes in gene expression in human liver carcinoma (HepG2) cells: importance in immune responses. Int.J.Environ.Res.Public Health 2006;3:141-173.
    52. Danial NN, Gramm CF, Scorrano L et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 2003;424:952-956.
    53. Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2003;2:339-345.
    54. Rokudai S, Fujita N, Kitahara O, Nakamura Y, Tsuruo T. Involvement of FKHR-dependent TRADD expression in chemotherapeutic drug-induced apoptosis. Mol.Cell Biol. 2002;22:8695-8708.
    55. Li B, Desai SA, Corkle-Chosnek RA, Fan L, Spencer DM. A novel conditional Akt 'survival switch' reversibly protects cells from apoptosis. Gene Ther. 2002;9:233-244.
    56. Gajate C, Mollinedo F. Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J.Biol.Chem. 2005;280:11641-11647.
    57. Croft DR, Coleman ML, Li S et al. Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J.Cell Biol. 2005;168:245-255.
    58. Luchetti F, Mannello F, Canonico B et al. Integrin and cytoskeleton behaviour in human neuroblastoma cells during hyperthermia-related apoptosis. Apoptosis. 2004;9:635-648.
    59. Deschesnes RG, Patenaude A, Rousseau JL et al. Microtubule-destabilizing agents induce focal adhesion structure disorganization and anoikis in cancer cells. J.Pharmacol.Exp.Ther.2007;320:853-864.
    60. Knuefermann C, Lu Y, Liu B et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 2003;22:3205-3212.
    61. Cheung ST, Wong SY, Leung KL et al. Granulin-epithelin precursor overexpression promotes growth and invasion of hepatocellular carcinoma. Clin.Cancer Res. 2004;10:7629-7636.
    62. Jones MB, Houwink AP, Freeman BK et al. The granulin-epithelin precursor is a steroid-regulated growth factor in endometrial cancer. J.Soc.Gynecol.Investig. 2006;13:304-311.
    63. Liu Y, Xi L, Liao G et al. Inhibition of PC cell-derived growth factor (PCDGF)/granulin-epithelin precursor (GEP) decreased cell proliferation and invasion through downregulation of cyclin D and CDK4 and inactivation of MMP-2. BMC.Cancer 2007;7:22.
    64. Kinzy TG, Merrick WC. Characterization of a limited trypsin digestion form of eukaryotic elongation factor 1 alpha. J.Biol.Chem. 1991;266:4099-4105.
    65. Coppock DL, Cina-Poppe D, Gilleran S. The quiescin Q6 gene (QSCN6) is a fusion of two ancient gene families: thioredoxin and ERV1. Genomics 1998;54:460-468.
    66. Yano S, Matsuyama H, Hirata H et al. Identification of genes linked to gefitinib treatment in prostate cancer cell lines with or without resistance to androgen: a clue to application of gefitinib to hormone-resistant prostate cancer. Oncol.Rep. 2006;15:1453-1460.
    67. Coppock D, Kopman C, Gudas J, Cina-Poppe DA. Regulation of the quiescence-induced genes: quiescin Q6, decorin, and ribosomal protein S29. Biochem.Biophys.Res.Commun. 2000;269:604-610.
    68. Nguyen P, Awwad RT, Smart DD, Spitz DR, Gius D. Thioredoxin reductase as a novel molecular target for cancer therapy. Cancer Lett. 2006;236:164-174.
    69. Powis G, Wipf P, Lynch SM, Birmingham A, Kirkpatrick DL. Molecular pharmacology and antitumor activity of palmarumycin-based inhibitors of thioredoxin reductase. Mol.Cancer Ther. 2006;5:630-636.
    70. Zolnierowicz S. Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochem.Pharmacol. 2000;60:1225-1235.
    71. Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem.J. 2001;353:417-439.
    72. McCluskey A, Ackland SP, Gardiner E, Walkom CC, Sakoff JA. The inhibition of protein phosphatases 1 and 2A: a new target for rational anti-cancer drug design? Anticancer Drug Des 2001;16:291-303.
    73. Zhao Q, Morales CR. Identification of a novel sequence involved in lysosomal sorting of the sphingolipid activator protein prosaposin. J.Biol.Chem. 2000;275:24829-24839.
    74. Kishimoto Y, Hiraiwa M, O'Brien JS. Saposins: structure, function, distribution, and molecular genetics. J.Lipid Res. 1992;33:1255-1267.
    75. Oda E, Ohki R, Murasawa H et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000;288:1053-1058.
    76. Willis SN, Fletcher JI, Kaufmann T et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 2007;315:856-859.
    77. Tahir SK, Yang X, Anderson MG et al. Influence of Bcl-2 family members on the cellular response of small-cell lung cancer cell lines to ABT-737. Cancer Res. 2007;67:1176-1183.
    78. Yu F, Watts RN, Zhang XD, Borrow JM, Hersey P. Involvement of BH3-only proapoptotic proteins in mitochondrial-dependent Phenoxodiol-induced apoptosis of human melanoma cells. Anticancer Drugs 2006;17:1151-1161.
    79. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 2003;22:8608-8618.
    80. Tamaki H, Yamashina S. Structural integrity of the Golgi stack is essential for normal secretory functions of rat parotid acinar cells: effects of brefeldin A and okadaic acid. J.Histochem.Cytochem. 2002;50:1611-1623.
    81. Rainey-Barger EK, Mkrtchian S, Tsai B. Dimerization of ERp29, a PDI-like protein, is essential for its diverse functions. Mol.Biol.Cell 2007;18:1253-1260.
    82. Bo Z, Yongping S, Fengchao W, Guoping A, Yongjiang W. Identification of differentially expressed proteins of gamma-ray irradiated rat intestinal epithelial IEC-6 cells by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. Proteomics. 2005;5:426-432.
    83. Huang YH, Chang AY, Huang CM, Huang SW, Chan SH. Proteomic analysis of lipopolysaccharide-induced apoptosis in PC12 cells. Proteomics. 2002;2:1220-1228.
    84. Zavrski I, Kleeberg L, Kaiser M et al. Proteasome as an emerging therapeutic target in cancer. Curr.Pharm.Des 2007;13:471-485.
    85. Ballar P, Shen Y, Yang H, Fang S. The role of a novel p97/valosin-containing protein-interacting motif of gp78 in endoplasmic reticulum-associated degradation. J.Biol.Chem. 2006;281:35359-35368.
    86. Zhang B, Tomita Y, Qiu Y et al. E74-like factor 2 regulates valosin-containing protein expression. Biochem.Biophys.Res.Commun. 2007;356:536-541.
    87. Vandermoere F, El Yazidi-Belkoura I, Slomianny C et al. The valosin-containing protein (VCP) is a target of Akt signaling required for cell survival. J.Biol.Chem. 2006;281:14307-14313.
    88. Dou T, Gu S, Liu J et al. Isolation and characterization ofubiquitin-activating enzyme E1-domain containing 1, UBE1DC1. Mol.Biol.Rep. 2005;32:265-271.
    89. Yang M, Hsu CT, Ting CY, Liu LF, Hwang J. Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. J.Biol.Chem. 2006;281:8264-8274.
    90. Kannagi R. Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconj.J. 1997;14:577-584.
    91. Petretti T, Kemmner W, Schulze B, Schlag PM. Altered mRNA expression of glycosyltransferases in human colorectal carcinomas and liver metastases. Gut 2000;46:359-366.
    92. Wang X, Zhang LH, Ye XS. Recent development in the design of sialyltransferase inhibitors. Med.Res.Rev. 2003;23:32-47.
    1. Doniger SW, Salomonis N, Dahlquist KD et al. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 2003;4:R7.
    2. Wesselkamper SC, Case LM, Henning LN et al. Gene expression changes during the development of acute lung injury: role of transforming growth factor beta. Am.J.Respir.Crit Care Med. 2005;172:1399-1411.
    3. Semizarov D, Kroeger P, Fesik S. siRNA-mediated gene silencing: a global genome view. Nucleic Acids Res. 2004;32:3836-3845.
    4. Scherf U, Ross DT, Waltham M et al. A gene expression database for the molecular pharmacology of cancer. Nat.Genet. 2000;24:236-244.
    5. Staunton JE, Slonim DK, Coller HA et al. Chemosensitivity prediction by transcriptional profiling. Proc.Natl.Acad.Sci.U.S.A 2001;98:10787-10792.
    6. Dan S, Tsunoda T, Kitahara O et al. An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines. Cancer Res. 2002;62:1139-1147.
    7. Moriyama M, Hoshida Y, Otsuka M et al. Relevance network between chemosensitivity and transcriptome in human hepatoma cells. Mol.Cancer Ther. 2003;2:199-205.
    8. Kudoh K, Ramanna M, Ravatn R et al. Monitoring the expression profiles of doxorubicin-induced and doxorubicin-resistant cancer cells by cDNA microarray. Cancer Res. 2000;60:4161-4166.
    9. Wittig R, Nessling M, Will RD et al. Candidate genes for cross-resistance against DNA-damaging drugs. Cancer Res. 2002;62:6698-6705.
    10. Zembutsu H, Ohnishi Y, Tsunoda T et al. Genome-wide cDNA microarray screening to correlate gene expression profiles with sensitivity of 85 human cancer xenografts to anticancer drugs. Cancer Res. 2002;62:518-527.
    11. Te KG, Timeus F, Rinaldi A et al. Imatinib mesylate (STI571) interference with growth of neuroectodermal tumour cell lines does not critically involvec-Kit inhibition. Int.J.Mol.Med. 2004;14:373-382.
    12. Li Y, Sarkar FH. Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett. 2002;186:157-164.
    13. Denoyelle C, Albanese P, Uzan G et al. Molecular mechanism of the anti-cancer activity of cerivastatin, an inhibitor of HMG-CoA reductase, on aggressive human breast cancer cells. Cell Signal. 2003;15:327-338.
    14. Zhang JP, Ying K, Xiao ZY et al. Analysis of gene expression profiles in human HL-60 cell exposed to cantharidin using cDNA microarray. Int.J.Cancer 2004;108:212-218.
    15. Kapp U, Yeh WC, Patterson B et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J.Exp.Med. 1999;189:1939-1946.
    16. Brachat A, Pierrat B, Xynos A et al. A microarray-based, integrated approach to identify novel regulators of cancer drug response and apoptosis. Oncogene 2002;21:8361-8371.
    17. Bradshaw TD, Matthews CS, Cookson J et al. Elucidation of thioredoxin as a molecular target for antitumor quinols. Cancer Res. 2005;65:3911-3919.
    18. Nair S, Xu C, Shen G et al. Toxicogenomics of endoplasmic reticulum stress inducer tunicamycin in the small intestine and liver of Nrf2 knockout and C57BL/6J mice. Toxicol.Lett. 2007;168:21-39.
    19. Liu J, Xie Y, Ducharme DM et al. Global gene expression associated with hepatocarcinogenesis in adult male mice induced by in utero arsenic exposure. Environ.Health Perspect. 2006;114:404-411.
    20. Marcotte ER, Srivastava LK, Quirion R. DNA microarrays in neuropsychopharmacology. Trends Pharmacol.Sci. 2001;22:426-436.
    21. Burczynski ME, McMillian M, Ciervo J et al. Toxicogenomics-based discrimination of toxic mechanism in HepG2 human hepatoma cells. Toxicol.Sci. 2000;58:399-415.
    22. Afshari CA, Nuwaysir EF, Barrett JC. Application of complementary DNA microarray technology to carcinogen identification, toxicology, and drug safety evaluation. Cancer Res. 1999;59:4759-4760.
    23. Liu B, Li S, Hu J. Technological advances in high-throughput screening. Am.J.Pharmacogenomics. 2004;4:263-276.
    24. Szakacs G, Annereau JP, Lababidi S et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 2004;6:129-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700