奶山羊IGF-I和IGF-IR基因多态性及其与产奶、体尺性状的相关分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用PCR-SSCP和DNA测序等技术,检测了关中奶山羊和西农萨能奶山羊2个品种共708个个体的胰岛素样促生长因子-I(IGF-I)基因和其受体基因(IGF-IR)14个基因座的遗传变异,分析了其遗传结构和遗传多样性。同时利用SPSS(16.0)软件,运用最小二乘线性模型等方法对2个奶山羊品种在上述基因座中的多态性与产奶、体尺性状进行相关分析,研究这些基因多态性对奶山羊产奶和生长发育性状的遗传效应,以期发现对我国奶山羊品种重要经济性状具有显著效应的遗传标记,为其高效选育提供遗传学依据。本研究获得了以下结果:
     1. 2个奶山羊品种IGF-I基因多态性
     本研究共检测了奶山羊IGF-I基因5个基因座(P1~P5),即外显子1W、1、3、4、5以及部分内含子区域。在所研究的5个基因座中,仅P1和P4基因座发现多态性,分别位于外显子1W和第4内含子上。与已公布的山羊IGF-I基因序列(GeneBank登录号:D26119.2)比对发现,该两处多态性是g.1617 G > A和g.5752 G > C点突变导致的,在羊上为首次发现。
     卡方检验显示:在P1基因座上,关中奶山羊和西农萨能奶山羊均处于Hardy-Weinberg平衡状态( P>0.05 ) ,其群体遗传多态指数Ne/PIC/He分别为:1.16/0.13/0.14,1.23/0.17/0.19。在P4基因座上,西农萨能奶山羊处于Hardy-Weinberg平衡状态(P>0.05),而关中奶山羊则处于不平衡状态(P<0.01)。关中奶山羊和西农萨能奶山羊群体遗传多态指数Ne/PIC/He分别为:1.43/0.26/0.3,1.72/0.33/0.42。
     上述结果表明,P4基因座在这2个奶山羊品种中(关中和西农萨能)多态信息含量中等丰富(0.25     2. IGF-I基因多态性与2个奶山羊品种产奶性状和体尺性状的相关性
     在IGF-I基因P1基因座中检测出AG和GG 2种基因型,其中GG基因型在2个品种中都为优势基因型。利用SPSS(16.0)软件,运用最小二乘线性模型等方法分析发现,P1基因座不同基因型与2个奶山羊品种的体尺性状,西农萨能奶山羊第一胎和第二胎产奶量无显著相关(P>0.05)。在分析西农萨能奶山羊奶成分中的脂肪、蛋白质、干物质、非脂固形物、乳糖含量和乳密度6个指标中,AG基因型个体乳脂率显著高于GG型个体(P<0.05),而其乳密度则显著低于GG型个体(P<0.05),不同的基因型对其他4个指标无显著影响。
     P4基因座上共检测出CC、CG和GG 3种基因型,其中GG基因型在2个奶山羊品种中是优势基因型。在体尺性状上,关中奶山羊GG基因型仅在胸围上显著大于CG型和CC型(P<0.05),而CG型又显著大于CC型(P<0.05);西农萨能奶山羊群体中,CG基因型个体的体长最大,显著大于CC型和GG型(P<0.05),GG型和CC型差异则不显著(P>0.05)。P4基因座不同基因型对于西农萨能奶山羊产奶性状的影响则表现为:CC基因型个体无论是在第一胎还是第二胎产奶量上都显著高于其他两种基因型(P<0.05),CG基因型个体在第二胎产奶量上又显著高于GG基因型(P<0.05),不同基因型对奶成分无显著影响。
     上述结果表明,P1基因座不同基因型与西农萨能奶山羊奶成分中的乳脂率和乳密度存在相关,P4基因座不同基因型与奶山羊体尺性状和产奶量存在相关。
     3. 2个奶山羊品种IGF-IR基因多态性
     本试验共检测了奶山羊IGF-IR基因9个基因座(R1~R9),包含该基因1~10个外显子及部分内含子(除外显子7)。在这9个基因座上,仅在R8和R9基因座上发现了多态性,2个品种在这2个位点上都表现CC、CT、TT 3种基因型。首次在R8基因座外显子9上发现了C>T的突变(NC_007319:g26688C>T),该突变导致了IGF-IR基因编码的蛋白第608位上的Leu氨基酸发生了同义突变。而R9基因座上的多态性是由于第10内含子上T>C(NC_007319:g28273T>C)突变引起的。
     卡方检验显示:在R8和R9基因座中,2个品种均处于Hardy-Weinberg不平衡状态(P<0.01)。在R8中,关中奶山羊和西农萨能奶山羊群体遗传多态指数Ne/PIC/He分别为2.00/0.37/0.50,1.97/0.37/0.50。在R9中则为1.99/0.37/0.50,1.95/0.37/0.50。说明,R8和R9基因座在2个奶山羊品种中多态信息含量为中等丰富(0.25     4. IGF-IR基因多态性与2个奶山羊品种产奶性状和体尺性状的相关
     在IGF-IR基因R8基因座中检测出CC、CT、TT 3种基因型,其中CT型在2个品种中都为优势基因型。但是该基因座上不同的基因型对2个奶山羊品种的体尺性状和西农萨能奶山羊的第一胎、第二胎产奶量都不存在着影响(P>0.05)。在所检测的奶成分共6个指标中,CC基因型的西农萨能奶山羊的乳密度显著高于CT基因型(P<0.05),与TT型差异不显著(P>0.05),TT基因型和CT基因型之间差异也不显著(P>0.05)。
     在R9基因座中同样检测出CC、CT、TT型3种基因型,其中TT基因型占多数。该基因座不同基因型对西农萨能奶山羊的产奶性状不存在着显著影响。在关中奶山羊中,虽然CC和TT基因型个体的体高分别极显著和显著的高于CT基因型(P<0.01和P<0.05),但它们两者之间差异却不显著(P>0.05)。在体长上,CC基因型个体的体长显著长于CT基因型(P<0.05),TT基因型与CT基因型和CC基因型差异不显著(P>0.05)。在西农萨能奶山羊中,CC基因型在体高上则显著地低于CT和TT基因型(P<0.05),CT基因型和TT基因型之间差异不显著。不同基因型对体长和胸围不存在显著影响。
     结果说明,IGF-IR基因R8基因座与西农萨能奶山羊的乳密度相关,R9基因座不同基因型对两个奶山羊品种的体尺性状存在显著或极显著的影响。
Using PCR-SSCP and DNA sequencing techniques, genetic variations of 14 loci of insulin-like growth factor-I (IGF-I) and its receptor (IGF-IR) genes were detected in 708 individuals of two Chinese dairy goat breeds (Guanzhong and Xinong Saanen). Their genetic structure and diversity were analyzed, too. Association analysis were carried out by using SPSS software(16.0) and Least Square Analysis method on milk production traits and body size traits at the candidate genes of the above-mentioned breeds. The objects were to discover the hereditary characteristics of these dairy goat breeds, to explore genetic markers with significant effects on economic important traits for efficient selection, and to provide genetic information for the dairy goat breeding program. The results were as follows:
     1. Polymorphisms of IGF-I gene in two dairy goat breeds
     The variations of five loci (P1~P5) in IGF-I gene were detected in Guanzhong and Xinong Saanen breeds. These loci contained exon1W, exon1, exon3, exon4, exon5 and their partial introns. In those five loci, only P1 and P4 loci demonstrated polymorphisms, locating in 5’- flanking region and intron 4, respectively. Compared with goat IGF-I gene sequence published in GenBank (D26119.2), the polymorphisms were caused by two novel mutations namely g.1617 G > A and g.5752 G > C.
     Chi-square test results were as follows: in P1 locus, both Guanzhong and Xinong Saanen dairy goats were in Hardy-Weinberg equilibrium (P>0.05). Genetic diversity indexes (Ne/PIC/He) were 1.16/0.13/0.14 and 1.23/0.17/0.19 respectively. In P4 locus, Xinong Saanen dairy goat was in Hardy-Weinberg equilibrium (P>0.05), but Guanzhong breed was not (P<0.01). Genetic diversity indexes (Ne/PIC/He) were 1.43/0.26/0.3,1.72/0.33/0.42 for Guanzhon and Xinong Saanen. The result illustrated that, P4 locus owned abundant polymorphic information (0.25     2. Associations between genetic variation of IGF-I gene and milk production and body size traits in two dairy goat breeds
     Two genotypes (AG and GG) were found at P1 locus in IGF-I gene. Genotype GG was the majority genotype. Using SPSS software (16.0) and Least Square Analysis method, the results showed that different genotypes at P1 locus did not have significant influence on the body size in both breeds and on milk yield at the first lactation and the second lactation in Xinong Saanen dairy goat breed. The six indexes of milk composition including fat, protein, TS, SNF, lactose and density were measured in this study. Xinong Saanen dairy goats with AG genotype were significantly higher than that with GG genotype in fat, but their density was significantly lower than that with GG genotype. There was no significant influence on the other four indexes.
     In P4 locus, three genotypes, GG, CG and GG were detected. Genotype GG was the majority genotype in both breeds. About body size trait, Guanzhong dairy goats with GG genotype had larger chest circumference (P<0.05), and ones with CG were larger than CC (P<0.05). In Xinong Saanen breed, the body length of those dairy goats with CG was largest in all the three genotypes, significantly larger than CC and CG ones (P<0.05). In Xinong Saanen breed, individuals with CC genotype can produce higher milk yield than the other two genotypes (P<0.05) at the first and the second lactations, but the ones with CG genotype can get higher milk yield than the ones with GG at the second lactation (P<0.05). Different genotypes did not influence on the milk composition significantly.
     The result illustrate that, different genotypes at P1 locus had association with milk fat and density in Xinong Saanen dairy goats; different genotypes at P4 locus can influence the body size and milk yield in dairy goats.
     3. Polymorphisms of IGF-IR gene in two dairy goat breeds
     Nine loci (R1~R9) in IGF-IR gene, which included exon 1 to exon 10 (without exon 7) and their partial introns were analyzed in 2 dairy goat breeds. Only two (R8 and R 9 loci) of them demonstrated the polymorphisms. Both the loci had three kinds of genotypes(CC, CT and TT). In locus P8, the C>T mutation in exon 9 was found for the first time (NC_007319: g26688 C>T). The mutation resulted in Leu 608 Leu in IGF-IR protein. The polymorphism in P9 locus was caused by T>C mutation in intron 10 (NC_007319: g28273 T>C).
     Chi-square test results were as follows: R8 and R9 loci were not in Hardy-Weinberg equilibrium in the two breeds (P<0.01). Genetic diversity indexes of Ne/PIC/He in Guanzhong and Xinong Saanen dairy goats were 2.00/0.37/0.50, 1.97/0.37/0.50, respectively at P8 locus and 1.99/0.37/0.50, 1.95/0.37/0.50 respectively at R9 locus. The results illustrated that both the R8 and R9 loci owned abundant polymorphic information (0.25     4. Associations between genetic variation of IGF-IR gene and milk production and body size traits in two dairy goat breeds
     Three genotypes (CC, CT and TT) were found at R8 locus in IGF-IR gene. The CT genotype was the majority genotype. But different genotypes at this locus did not have any significant influence on the body size in two breeds and on the milk yield at the first and the second lactations in Xinong Saanen breed (P>0.05). In the milk composition, Xinong Saanen dairy goats with CC genotype had heavier milk density than the CT ones (P<0.05), and the milk density difference between the individuals with TT genotype and CT one was not significant.
     Three kinds of genotypes (CC, CT and TT) were detected at R9 locus, too. TT genotype was the majority one. Different genotypes at this locus did not have any significant influence on milk production traits in Xinong Saanen dairy goats. In Guanzhong breed, the body heights of individuals with CC genotype were greatly significantly higher than those with CT genotype (P<0.01), and the goats with TT genotype had higher body heights than CT one (P<0.05). The individuals with CC genotype were longer in body length than those with TT (P<0.05). In Xinong Saanen dairy goats, individuals with TT and CT genotypes had higher body heights than those with CC genotypes (P<0.05). Different genotypes did not influence significantly on the body length and chest circumference.
     The result illustrate that, the polymorphism at P8 locus had association with the milk density in Xinong Saanen breed; different genotypes at P9 locus had great significant or significant influence on the body size in both breeds.
引文
杜美红,李步高,周忠孝. 2005. RAPD分析山西主要地方山羊品种的遗传多态性.畜牧兽医学报, 32(2): 202~204
    樊斌. 1999.微卫星标记评估中国猪遗传多样性与标记辅助选择效率若干制约因素的研究. [硕士论文],武汉:华中农业大学畜牧兽医学院
    范刚. 2005. IGF-I基因5’-非编码区多态性与新扬州鸡早期生长和产肉性能的关系研究. [硕士学位论文].扬州:扬州大学
    冯涛,赵有璋,储明星,张英杰,狄冉,方丽. 2010.山羊胰岛素样生长因子I基因多态性及序列分析.安徽农业大学学报, 37(1): 26~31
    郭翠华,贾存灵,张微,朱晓萍,贾志海. 2009.辽宁绒山羊IGF-I基因5’调控区多态性与产绒性状相关.生物化学与生物物理进展, 36(5): 566~573
    韩学文,董金芳.1996.生长激素与心脏.国外医学—内分泌分册, 16 (1): 26~28
    贺向阳,绳贺军,王海滨. 2006.陕西富平县关中奶山羊生产现状与发展对策分析.家畜生态学报, 27(1): 109~112
    和玉丹. 2007.胰岛素样生长因子-I的生物学功能及在畜牧业中的应用前景.饲料工业, 28(7): 45~49
    胡沈荣,蓝贤勇,陈宏,苏利红,雷初朝. 2007. 5个山羊品种GH基因第Ⅱ、V外显子的多态性及其应用.西北农林科技大学学报(自然科学版), 35(12): 11~15
    蒋英. 1998.中国山羊.西安:陕西科学技术出版社: 214~215
    蓝贤勇. 2004.西农萨能奶山羊经济性状的DNA分子标记及5个山羊品种DNA多态性研究. [硕士学位论文].杨凌:西北农林科技大学
    蓝贤勇. 2007.山羊重要功能基因遗传分析及其与经济性状的关系. [博士学位论文].杨凌:西北农林科技大学
    李步高. 1998.山西地方山羊血液生化遗传分析及分类地位的研究[硕士学位论文].太谷:山西农业大学
    李成渤,王桂芝,纪志宾,戈新,李培培,王建华,王建民. 2009.崂山奶山羊微卫星标记与泌乳性状的相关分析.中国农业科学, 42(10): 3639~3646
    李加琪,陈赞谋,刘德武,刘小红,孙宝丽,凌飞,张豪,陈瑶生. 2003. IGF-I基因对长白×蓝塘猪资源群生产性能的遗传效应分析.遗传学报, 30 (9): 835~839
    李建文,罗军,姚虎军. 1996.奶山羊高效益饲养技术.陕西:金盾出版社: 114~118
    李俊果. 2008.催产素肌注促进泌乳预防乳汁淤积疗效观察.中国医药导刊, 62(10): 1395~1397
    李俊营. 2007.五个山羊品种微卫星和DQA基因的遗传多样性研究. [硕士学位论文].杨凌:西北农林科技大学
    李瑞彪. 2003.西农萨能奶山羊部分经济性状的分子标记研究. [硕士学位论文].杨凌:西北农林科技大学
    李伟,彭夏雨,孙凤霞,李大全,廖和荣,李应生. 2007.玫瑰冠鸡IGF-I基因多态性与早期生长速度关系研究.石河子大学学报, 25(3): 319 ~322
    李样龙. 1996. mtDNA及其在畜禽遗传多样性研究中的用途. [硕士学位论文].四川雅安:四川农业大学
    李祥龙,田庆义,孙乃权,马广星,刘金福,冯敏山,牛一兵,齐风中. 1999.青龙本地山羊随机扩增多态DNA与体重体尺相关性研究.黑龙江畜牧兽医, 9: 3~4
    李祥龙,田庆义,马国强,刘金福,冯敏山,牛一兵,孙乃权,马广星. 2000a.波尔山羊杂交后代及其亲本随机扩增多态DNA研究.遗传, 22(2): 75~ 77
    李祥龙,张亚平,陈圣偶,曾凡同,邱祥聘,刘相模. 2000b.我国主要地方山羊品种随机扩增多态DNA研究.畜牧兽医学报, 31(5): 416~422
    李雪梅,谷忠新,李奎,彭中镇,龚炎长. 2000.应用微卫星标记对中10个品种猪遗传变异的研究.山东农业大学学报(自然科学版), 31(3): 261~264
    刘畅,张金玉,廉传江,刘晶,白文林,秦立红,张树敏,赵志辉. 2010. IGF-I调控区微卫星座位遗传多态性对松辽黑猪肉质性状的影响.中国兽医学报, 30(1): 119~121
    刘长国,罗军,杨公社,郑新民. 2003.波尔山羊与安哥拉山羊聚为另一支陕西省境内5个山羊品种遗传背景的RAPD分析.西北农林科技大学学报(自然科学版), 31(3): 20~24
    刘臻,鲁双庆,张建社,刘红玉,张林达,谢帝芝. 2008.黄颡鱼微卫星标记筛选及特征分析.农业生物技术学报, 16(4): 604~609
    闵令江,潘庆杰,陈宏,雷初朝,李美玉,孙国强. 2005.寿光鸡IGF-I基因多态性与体重及屠体性状关系的研究.畜牧兽医学报, 36 (7): 645~648
    倪利平,郑云胜,武士强,刘海军,王建军,宏伟. 2007.我国与世界山羊业发展现状的对比分析. 畜牧与饲料科学, 6: 30~34
    欧阳建华,黄建华,孙汉. 2003.鸡IGF-I基因的遗传多态性与繁殖性状的相关研究.江西畜牧兽医杂志, (6) : 6~8
    戚豫,黄丽英. 1997. DNA单链构象多态性的原理.北京医科大学学报, 19(1): 81~82
    宋宇轩,朱广琴,王益兵,王建刚,曹斌云. 2008. 2个山羊品种多胎性状的微卫星标记研究.畜牧兽医学报, 39(1): 16 ~23
    苏静,孙辉. 2003.影响乳房生理功能的内分泌激素及其调节.中国社区医师, 19(7): 7
    孙瑞萍,王利心,朱广琴,王建刚,宋宇轩,梁昭义,曹斌云. 2008a. GHR基因exon 9和exon 10多态性与西农萨能奶山羊产奶性能的相关分析.中国农业大学学报, 13(5): 70~74
    孙瑞萍,王利心,朱广琴,王建刚,宋宇轩,梁昭义,曹斌云. 2008b. PRLR基因外显子10多态性与西农萨能奶山羊产奶性能的相关分析.畜牧兽医学报, 39(12): 1654~1660
    万秋蓓,王志跃,朱金金,施寿荣,徐馨馨. 2007a.新扬州鸡IGF-1基因5’-调控区Hinf I位点多态性与产蛋性状关系的研究.扬州大学学报(农业与生命科学版), 28(2) : 24~27
    万秋蓓,王志跃,杨海明,郭春燕,赖毓妍. 2007b.新扬州鸡IGF-I基因5’-调控区Pst I位点多态性与繁殖性状关系的研究.中国畜牧杂志, 43(21): 1~4
    王继华,王茂增,李连缺. 1999.家畜育种学.北京:中国农业出版社: 165~166
    王建民,孙允东,李宏滨,王桂芝,尚友国,关伟军,马月辉. 2006.探讨微卫星作为地方山羊品种生长性状的遗传标记.畜牧兽医学报, 37 (10): 961~966
    王志跃,范刚,杨海明. 2004.新扬州鸡IGF-I基因多态性与早期生长速度关系的研究.中国家禽, 26(24): 9~12
    魏笑笑,王宝维,王雷,杨志刚,贾晓晖,王亚超,于世浩,荆丽珍,岳斌. 2008.琅琊鸡IGF-I基因多态性与肉用性的相关性.福建农林大学学报(自然科学版), 37(4): 389~393
    吴泽辉,储明星,李学伟,方丽,叶素成,刘忠慧,陈国宏. 2006.山羊生长分化因子9基因外显子2的PCR-SSCP分析.中国农业科学, 39(4): 802~808
    肖书奇,张嘉保,李爽,赵志辉,任文陟,赵中利,张树敏,戴立胜,高妍,李毅. 2007.松辽黑猪IGF-I基因外显子4多态性及与部分生产性能的关系.中国畜牧兽医, 34(2): 55~57
    徐鹏,周令华,田丽萍,相建海. 2003.从中国对虾ESTs中筛选微卫星标记的研究.水产学报, 27(3): 213~218
    薛慧良,周忠孝. 2006.猪IGF-I基因的一个遗传多态性及其遗传效应分析.中国生物化学与分子生物学报, 22(11): 876~879
    薛慧良. 2007.莱芜猪和沂蒙黑猪IGF-I基因的多态性及生长性状的关联性分析.曲阜师范大学学报, 33(3): 109~112
    姚玉妮. 2008.牦牛IGF-I基因及IGF-IR基因多态性与生长发育性状关系的研究[硕士学位论文].兰州:甘肃农业大学
    于姣. 2006.两个奶山羊品种CSN1S1、BMPR-B、BMP15和IGFBP3基因遗传变异研究. [硕士学位论文].杨凌:西北农林科技大学
    袁志栋,刘海生,李建凡. 2003.胰岛素样生长因子系统在动物生产中的研究进展.中国畜牧兽医, 30(3): 34~37
    云振宇,张和平. 2004.牛初乳及过渡乳中类胰岛素生长因子IGF- I含量测定及其变化.中国乳品工业, ( 4): 6~9
    张春香,罗海玲,陈喻,张国俊,贾志海. 2008. IGF-I基因内含子4多态性与南江黄羊生长性状的关系.中国草食动物, 28(5): 14~16
    张丽萍,金俊浩,曹冬梅,王霞. 1999.牛乳中脂肪、密度、干物质之间的相关关系测算.中国乳品工业, 27(2): 15~17
    张润锋,陈宏,雷初朝,顾勇,支立峰,徐平. 2008.南阳牛IGF-IR基因遗传多态性与生长性状的相关分析.第五届广东、湖南、江西、湖北四省动物学学术研讨会论文摘要汇编.武汉:湖北科技出版社: 158
    张细权,吕雪梅,杨玉华,刘敬顺,杨关福,吴显华. 1998.用微卫星多态性和RAPD分析广东地方鸡种的群体遗传变异.遗传学报, 25(2): 112~119
    张英杰,赵有璋,刘月琴,李玉,孙少华,李菲. 2003.微卫星标记OarAE101和MCM38在三个山羊品种中的遗传多态性研究.草食家畜, 119(2): 24~26
    赵有璋. 1994.羊生产学.北京:中国农业出版社: 204~205
    郑丕留. 1988.中国羊品种志.上海:上海科技出版社: 125~126
    Adam C.L, Gadd T.S, Findlay P.A, Wathes D.C. 2000. IGF-I stimulation of luteinizing hormone secretion, IGF-binding proteins (IGFBPs) and expression of mRNAs for IGFs, IGF receptors and IGFBPs in the bovine pituitary gland. J Endo-crinol, 166: 247~254
    Alfrez M.J.M, Barrionuevo M. 2001. Digestive utilization of goat and cow milk fat in malabsorption syndrome. Dairy Res, 64: 451~461
    Bayne M.L, Applebaum J, Chicchi G.G, Miller R. E, Cascieri M.A. 1990. The roles of tyrosines 24, 31, and 60 in the high affinity binding of insulin-like growth factor-I to the type I insulin-like growth factor receptor. Journal of Biological Chemistry, 265: 15648~15652
    Bergersen Oand Braend M. 1990. Characterization by Rflp Analysis, of the Caprineβ-Globin Gene Cluster in Norwegian Dairy Goats. Hemoglobin, 14(1): 87~102
    Bonnette S.G, Haskell D.L. 2001. Targeted disruption of the IGF-I receptor gene decreases cellular proliferation in mammary terminal end buds. Endocrinology, 142: 4937~4945
    Botstein D, White R.L, Skolnick M, Davis R.W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics, 32(3): 314~331
    Carboni J.M, Lee A.V, Hadsell D.L, Rowley B.R, Lee F.Y, Bol D.K, Camuso A.E, Gottardis M, Greer A.F, Ho C.P, Hurlburt W, Li A, Saulnier M, Velaparthi U, Wang C,. Wen M.L, Westhouse R.A, Wittman M, Zimmermann K, Rupnow B.A, Wong T.W. 2005. Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res, 65: 3781~3787
    Caroli A, Chiatti F, Chessa S, Rignanese D, Ibeagha-Awemu E.M, Erhardt G. 2007.
    Characterization of the Casein Gene Complex in West African Goats and Description of a Newαs1-Casein Polymorphism. Journal of Dairy Science, 90(6): 2989~2996
    Chandan R.C, Attaie R, Sahani K.M. 1992. Nutritional aspects of goat milk and its products. Proc. V International Conference on Goats. New Delhi: ICAR: 399~420
    Chen H, Leibenguth F. 1995. Studies on multilocus fingerprints RAPD markers and mitochondrial DNA of a gynogenetic fish (carassius auratus gibelio). Biochem Genet, 33: 297~306
    Chessa S, Budelli E, Gutscher K, Caroli A, Erhardt G. 2003. Simultaneous Identification of Five -Casein (CSN3) Alleles in Domestic Goat by Polymerase Chain Reaction-Single Strand Conformation Polymorphism. Journal of Dairy Science, 86: 3726~3729
    Chung E.R, Kim W.T, Kim Y.S. 2000. PCR–SSCP genotype effects of growth prolactin and insulin-like growth factor-I genes on milk yield in Korean cattle (Hanwoo). Asian-Australian Journal of Animal Science, (S): 223
    Cosenza G, Pauciullo A, Gallo D, Colimoro L, Avino A.D, Mancusi A, Ramunno L. 2008. Genotyping at the CSN1S1 locus by PCR-RFLP and AS-PCR in a Neapolitan goat population. Small Ruminant Research, 74(1): 84~90
    Curi R.A, Oliceira H.N, Silceira A.C, Lopes C.R. 2005. Effects of polymorphic microsatellites in the regulatory region of IGF-I and GHR on growth and carcass traits in beef cattle. Animal Genetics, 36: 58~62
    Daughaday W.H, Rotwein P. 1989. Insulin-like growth factors I and II Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr. Rev, 10: 68~91
    Davis M.E, Simmen R.C.M. 1997. Genetic parameter estimates for serum insulin-like growth factor concentration and performance traits in Angus beef cattle. Journal of Animal Science, 75: 317~324
    Dehnhard M, Claus R, Munz O, Weiler U. 2000. Course of Epidermal Growth Factor (EGF) and Insulin-like Growth Factor I (IGF- I) in Mammary Secretions of the Goat during End Pregnancy and Early Lactation. J Vet Med Ser A, (9): 533~540
    Dehoff M.H. 1988. Both typeⅠandⅡinsulin-like growth factor receptor binding increase during Lactogenesis in bovine mammary tissue. J Biochemical, 122: 2412
    Eulalia Siadkowska, Lech Zwierzchowski, Jolanta Oprz?dek, Nina Strza?kowska, Emilia Bagnicka, Józef Krzy?ewski. 2006. Effect of polymorphism in IGF-I gene on production traits in Polish Holstein-Friesian cattle. Animal Science Papers and Reports, 24(3): 225~237
    Fielder P.J. 1996 Differential long-term effects of insulin-like growth factor-I (IGF-I), growth hormone (GH) and IGF-I plus GH on body and IGF binding proteins in hypophysectomized rats. Endocrinology, 137: 1913~1920
    Froesh E. R.1985. Action of insulin-like growth factors. Ann Rev Physiology, 47: 443~467
    Ge W, Davis M.E, Hines H.C, Irvin K.M, Simmen R.C.M. 2001. Associations of a genetic marker with blood serum insulin-like growth factor-I concentration and growth traits in Angus cattle. Journal of Animal Science, 79: 1757~1762
    Greenwooda T.A, Kelsoe J.R. 2003. Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics, 82(5): 511~520
    Haenlein G.F.W. 1992. Role of goat meat and milk in human nutrition. Proc. V International Conference on Goats. New Delhi: ICAR: 575~580
    Hernandez E.R, Resnick C.E, Svoboda M.E, Vanwyk J.J, Payne D.W, Adashi E. 1998. Somatomedin-C/Insulin-Like Growth Factor I as an Enhancer of Androgen Biosynthesis by Cultured Rat Ovarian Cells. Endocrinology, 122(4): 1603~1612
    Hines H.C, Ge W, Zhao Q. Davis M.E. 1998. Association of genetic markers in growth hormone and insulin-like growth factor-I loci with lactation traits in Holsteins. Animal Genetics, 29(1): 69
    Howard H.J, Ford J.J. 1994. Differential Steroidogenic Response of Subpopulations of Porcine Granulosa Cells to Insulin-Like Growth Factor-I (IGF-I) or IGF-I Analogs. Biology of Reproduction, 51(1): 108~115
    Islam K.K, Vinsky M, Crews R.E, Okine E, Moor e S.S, Crews Jr D.H, Li C. 2009. Association analyses of a SNP in the promoter of IGF-I with fat deposition and carcass merit traits in hybrid, Angus and Charolais beef cattle. Animal Genetics, 40: 766~769
    Jaouen L. 1981. Milking and the Technology of Milk and Milk Products. In: Devendra C and Burns M. Goat Production. London: Academic Press: 345~376
    Jodie M.F, Gwena?lle D, Tiffany A, Polanco, Wendie S, Cohick. 2006. Insulin-Like Growth Factor-I and Epidermal Growth Factor Receptors Recruit Distinct Upstream Signaling Molecules to Enhance AKT Activation in Mammary Epithelial Cells. Endocrinology, 147: 6027~6035
    Kanazawa H, Nouni T, Futai M. 1986. Analysis of Escherichia coli mutations of the H+-transporting ATPase: determination of altered sites of the structural gene. Methods in Enzymology, 126: 595~603
    Kasukawa Y. 2002. Insulin-like growth factor-I effect on the number of osteoblast progenitors is impaired in ovariectomized mice. Bone Miner Res, 17(9): 1579~1587
    Kirkpatrick B.W. 1992. Identification of a conserved microsatellite site in the porcine and bovine insulin-like growth factor-I gene 5’flank. Animal Genetics, 23: 543~548
    Kirkpatrick B.W. 1993. Dialleic single-strand conformation polymorphism in the bovine insulin-like growth factor-I third intron. Animal Genetics, 24: 144
    Klein S, Morrice D.R, Sang H.S. 1996. Gentic and physical mapping of the chicken IGF-I gene to chromosome1 and conservation of synteny with other vertebrate genomes. J Heredity, 87: 10~14
    Komar,Anton A.2007. Silent SNPs: impact on gene function and phenotype. Pharmacogenomics, 8(8): 1075~1080
    Lan X.Y, Pan C.Y, Chen H, Zhang C.L, Li M.J, Zhao M, Lei C.Z, Zhang A.L, Zhang L.Z. 2007. An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Research, 73(1): 8~12
    LeHir H, Nott A, Moore M. 2003. How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci, 28:215~220.
    Li C, Basarab J, Snelling W.M, Benkel B, Murdoch B, Hansen C, Moore S.S. 2004. Assessment of positional candidate genes myf5 and IGF-I for growth on bovine chromosome 5 in commercial lines of Bos taurus. Animal Science, 82(1): 1~7
    Lien S, Karlsen A, Klemetsdal G, Vage D.I, Olsaker I, Klungland H, Aasland M, Heringstad B, Ruane J, Gomezrayal. 2000. A primary screen of the bovine genome for quantitative trait loci affecting twinning rate. Mammalian Genome, 11: 877~882
    Marcos D.D, Dan S, Gallagher Jr, Cathy L, Clare G, Taylor J.F. 2003. Molecular cytogenetic assignment of gene to bovine chromosome 5. Genet Mol Res, (3): 260~270
    Marques P.X, Pereira M, Marques M.R, Santos I.C, Belo C.C, Renaville R, Cravador A. 2003. Association of milk traits with SSCP polymorphisms at the growth hormone gene in the Serrana goat. Small Ruminant Research, 50(2): 177~185
    McBride B.W, Barton J.L, Gibson J.P. 1990. Use of recombinant bovine Somatotropin for up to two consecutive lactations on dairy production traits. J Dairy Sci, 73: 3448
    Meidan R, Girsh E, Blum O, Aberdam E. 1990. In vitro differentiation of bovine theca and granulosa cells into small and large luteal-like cells: morphological and functional characteristics. Biology of Reproduction, 43(6): 913~921
    Mikawa S, Yoshikawa G, Aoki H. 1995. Dynamic aspects in the expression of the goat insulin-like growth factor-I (IGF-I) gene: diversity in transcription and post-transcription. Biosci Biotech Biochem, (1): 87~92
    Moody D.E, Pomp D, Newman S, Macneil M.D 1996. Characterization of DNA polymorphisms in three populations of Hereford cattle and their associations with growth and maternal EPD in line 1 Herefords. Journal of Animal Science, 74: 1784~1793
    Morton C.C, Rall L, Bell G, Shows T.B. 1985. Human insulin-like growth factor-1(IGF-1) is encoded at 12q22-q24.1 and insulin-like growth factor-2 (IGF-2) is at 11p15. Cytogenetic Cell Genet, 40: 703
    Morton C.C, Byers M.G, Nakai H, Bell G.I, Shows T.B. 1986. Human genes for insulin-like growth factors I and II and epidermal growth factor are located on 12q22-q24.1, 11p15, and 4q25-q27, respectively. Cytogenetic Cell Genet, (4): 245~249
    Nagaraja S.C, Aggrey S.E, Yao J, Zadworny D.2000. Brief communication trait association of a genetic marker near the IGF-I gene in egg-laying chickens. J Hered, 91: 150~156
    Nozawa K, Shinjo A, Shotake T. 1978. Blood-Protein variation in the meat goat in Okinawa Island of Japan. Zeitschrift fuer Tierzuechtung und zuechtungsbiologe, 95: 60~77
    Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. PNAS, 86(8): 2766~2770
    Pereira A.P, Alencar M.M, Oliveira H.N, Regitano L.C.A. 2005. Association of GH and IGF-I polymorphisms with growth traits in a synthetic beef cattle breed. Genetics and Molecular Biology, 28(2): 230~236
    Prinzenberg E.M, Gutscher K, Chessa S, Caroli A, Erhardt G. 2005. Caprine -Casein (CSN3) Polymorphism: New Developments in Molecular Knowledge. Journal of Dairy Science, 88: 1490~1498
    Ramos Morales E, Torre Adarve G dela, Carmona López F.D, Gil Extremera F, Sanz Sampelayo M.R, Boza J. 2005. Nutritional value of goat and cow milk protein. Options Mditérranéennes, 67: 167~170
    Rosen C.J, Kurland E.S, Vereault D. 1998. Association between serum insulin growth factor- I (IGF-I) and a simple sequence repeat in IGF-I gene:implications for genetic studies of bone mineral density. J Clin Endocrinol Metab, 83(7): 2286~2290
    Salmon W.D.J, Daughaday W.H. 1957. A hormonally controlled serum factor which stimulates sulfate in corporation by cartilage in vitro. Journal of Lab Clinic Medicine, 1957, 49: 825~836
    Sano H.I, Narahara S.S. 1993. Insulin responsiveness to glucose and tissue responsiveness to insuin during lactation in dairy cows. Domestic Animal Endocrinol, 10 (3): 191
    Schlee P, Graml R, Schallenberger E, Schams D, Rormann O, Olbrichbludan A, Pirchner F. 1994. Growth hormone and insulin-like growth factor concentrations in bulls of various growth hormone genotypes. Theoretical and Applied Genetics, 88: 497~500
    Shah J.H, Maguire D.J, Munce T.B. 2008. Alanine in HI: A silent mutation cries out. Adcances in Experimental Medicine and Biology, 614: 145~150
    Shen W.H, Wisniowski P, Ahmed L, Boyle D.W, Denne S.C, Liechty E.A. 2003. Protein anabolic effects of insulin and IGF-I in the ovine fetus. Am J Physiol Endocrinol Metab, 284: E748~E756
    Sirotkin A.V, Chrenek P, Makarevich A.V, Huba J, Bulla J. 2000.Interrelationships between breed, growth hormone, plasma IGF-I level and meat performance in bulls of different ages. Archiv fuer Tierzucht, 6: 591~596
    Sobrier M.L, Dastot F, Duquesnoy P, Kandemir N, Yordam N, Goossens M, Amselem S. 1997. Nine novel growth hormone receptor gene mutations in patients with Laron syndrome. J Clin Endocrinol Metab, 82: 435~437
    Su H.Y, Cheng W.T.K. 2004. Increased milk yield in transgenic mice expressing insulin -like growth factor-I. AnimBio, (1): 9~19
    Taylor B.A, Grieco D. 1991. Localization of the gene encoding insulin-like growth factor I on mouse chromosome 10. Cytogenetic Cell Genet, (1): 57~58
    Vaessen N, Heutink P, Janssen J.A, Witteman J.C.M, Testers L, Hofman A, Lamberts S.W.J, Oostra B.A, Pols H.A.P, Duijn C.M.V. 2001. A polymorphismin the gene for IGF-I:functional properties and risk for type 2 diabetes and myocardial infarction. Diabetes, 50(3): 637~642
    Winter A.K, Fredholm M, Andersson L. 1994. Assignment of the gene for insulin-like growth factor I (IGF-I) to chromosome 5 by linkage mapping. Anim Genet, (1): 37~39
    Woo A.H. 1984. Quantification of major free fatty acid in several sheese varieties. Dairy Sci, 67: 874~878
    Yilmaz A, Davis M.E, Hines H.C, Chung H.Y. 2005. Detection of two nucleotide substitutions and putative promoters in the 5’flanking region of the ovine IGF-I gene. J Appl Genet, 46(3): 307~309
    Zapf J, Froesch E.R. 1986. Insulin-like growth factors/somatomedins: structure, secretion, biological actions and physiological role. Horm. Res, 24: 121~130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700