奶山羊CSN1S1和CSN1S2基因多态性及其与经济性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以708只西农萨能奶山羊和关中奶山羊为试验材料,利用生物信息学、DNA测序、PCR-SSCP、PCR-RFLP和AS-PCR技术,研究了西农萨能和关中奶山羊CSN1S1基因(外显子2、9、12、17、19和内含子14)、CSN1S2基因(外显子2、3、9、11、16)共2个候选基因11个基因位点的遗传变异,同时探讨这两个奶山羊品种遗传多态性与奶山羊体尺性状(体高、体长、胸围)、产奶量和奶成分(奶蛋白、奶脂肪、总乳固体、非脂固形物、乳糖、乳密度)的关系,旨在获取与经济性状相关的分子遗传标记,为奶山羊遗传资源的保护、开发与利用提供科学依据。本研究获得以下重要研究结果:
     1、CSN1S1基因的遗传变异及其与奶山羊经济性状的关系
     在西农萨能奶山羊、关中奶山羊品种中检测了CSN1S1基因6个基因位点(P1~P6)的多态性。在CSN1S1基因的6个基因位点中,在P2和P6基因位点上分别发现1bp (C)和7bp (TTATCTA)的缺失,在P3位点上验证了前人发现的突变,而在P1、P4和P5位点上没有发现多态。①在CSN1S1基因P2基因位点检测到三种基因型:AA、AB和BB,其中西农萨能和关中奶山羊A/B等位基因的频率分别为0.198/0.802, 0.361/0.639;西农萨能和关中奶山羊在P2位点均为中度多态(0.25     多态基因位点与奶山羊经济性状的关联分析表明:①P2基因位点显著的影响关中奶山羊的体长,AB型个体的体长显著的高于AA和BB型(P<0.05);P2基因位点对西农萨能奶山羊品种的第一胎产奶量影响显著,AA和AB型个体的第一胎产奶量显著的高于BB型个体(P<0.05)。②在P6基因位点,关中奶山羊CC基因个体的胸围显著低于TT和CT型(P<0.05);西农萨能奶山羊CT和TT型个体的第一胎产奶量分别极显著(P<0.01)和显著(P<0.05)的高于CC型。③关中奶山羊FF基因型个体的胸围明显比FN、FO、NO和NN基因型高(P<0.05);西农萨能奶山羊NN基因型个体乳中蛋白含量极显著的低于其他基因型个体(P<0.01);西农萨能奶山羊FF基因型个体第一胎奶产量显著的高于NO基因型个体(P<0.05)。
     2、CSN1S2基因的遗传变异及其与奶山羊经济性状的关联
     对西农萨能和关中奶山羊品种CSN1S2基因5个基因位点的研究发现,仅L2位点表现多态。试验证明在目前已发现的7种CSN1S2等位基因中,本试验研究的品种只存在A和F等位基因。西农萨能和关中奶山羊群体品种中A/F等位基因的频率分别为0.795/0.205和0.739/0.261,两个品种在L2位点均为中度多态(0.25     多态基因位点与奶山羊经济性状的关联分析表明:L2基因位点对西农萨能奶山羊的奶成分影响显著,FF基因型个体乳中脂肪和总乳固体的含量均显著的高于AA和AF基因型个体(P<0.05)。
To obtain molecular genetic marker related to economic traits in dairy goats, the genetic variations of 11 loci from CSN1S1(exon 2, 9, 12, 17, 19 and intron 14) and CSN1S2 (exon 2, 3, 9, 11, 16) genes and their associations with body size (withers height, body length and heart girth), milk yield, and milk composition (fat, protein, lactose, total solids, solids-not-fat and density) traits in 708 samples of Xinong Sannen (XS, n=440) and Guanzhong (GZ, n=268) breeds were analyzed using bioinformatics, DNA sequencing, PCR-SSCP,PCR-RFLP and AS-PCR techniques. The important results were in the followings:
     1. Genetic variation of CSN1S1 gene and their assosiations with economic traits in dairy goats
     The varations of six loci (P1~P6) in CSN1S1 gene were studied in populations of XS and GZ. In these six loci, one nucleotide (C) and seven nuleotides (TTATCA) deletions were detected in P2 and P6 locus respectively, as well as P3 locus, the same mutation was found as the previously published result, while no polymorphisms were detected in P1, P4 and P5 locus.①There were three genotypes in the P2 locus of CSN1S1 gene: AA,AB and BB. The frequences of A/B allele were 0.198/0.802 and 0.361/0.639 in XS and GZ breeds respectivelyAt the P2 locus, both of the populations were moderate polymorphic (0.25     The GLM analysis result between every polymophic locus and eonomic traits in the GZ and XS population showed that:①The different genotypes of P2 locus significantly affect body length and first lacation milk yield in GZ and XS population. Individuals of AB genotype have advantage body length than AA and BB genotypes in GZ population(P<0.05), while individuals of AA and AB genotypes have better record than BB genotype in the first lacation milk yiled in XS population (P<0.05).②At the P6 locus, the body height of GZ individuals containing CC genotype is significant lower than TT and CT genotypes (P<0.05), while individuals exhibiting TT and CT genotypes have more volume of milk yield than CC genotype in XS population (P<0.01, P<0.05).③Individuals of FF genotype get significant larger heart girth than FN, FO, NO and NN genotypes in GZ population (P<0.05), and their volume of the first milk yield is significant higher than NO genotype in XS population. The NN genotype contained signiciant lower protein content than other genotypes in XS population (P<0.01).
     2. Genetic variations of CSN1S2 gene and their assosiations with economic traits in dairy goats
     According to five loci (L1~L5) detected in CSN1S2 from GZ and XS population, the polymorphism was only detected at the L2 loucs in this study. The results indicated that there were A and F alleles in XS and GZ population, which were the two alleles from seven existing alleles in CSN1S2 gene until now. Allelic frequences of A/F were 0.795/0.205 and 0.739/0.261 in XS and GZ population respectively. Both of the populations were moderate polymorphic (0.25     The results of the association of polymorphisms with economic traits showed that: L2 locus significantly affect milk composition in XS population, the individuals of FF genotype have better milk fat and total soild than AA and AF genotypes (P<0.05).
引文
陈宏,蓝贤勇,李瑞彪,等. 2005. CSN1S2、CSN3和β-lg基因对西农萨能奶山羊产奶性能的影响.遗传学报, 32 (8): 804~810
    陈宏,雷初朝,胡沈荣. 2007.分子遗传学实验指导.西北农林科技大学
    付小波,昝林森,张佳兰,等. 2006.中国荷斯坦奶牛CSN1S2基因第二外显子SSCP多态性与产奶性状的关系.西北农林科技大学学报(自然科学版), 34(8):21~24
    宫照娟,侯文军,董以爱,等. 2003.文登奶山羊的品种特性与管理要点.家畜生态,24(4): 79~80
    贺向阳,绳贺军,王海滨,等. 2006.陕西富平县关中奶山羊生产现状与发展对策分析.家畜生态学报, 27 (1) : 109~112
    蓝贤勇,陈宏,张润锋,等. 2005a. 5个山羊品种CSN1S2基因的Alw26Ⅰ酶切多态性分析.遗传, 27(3): 363~366
    蓝贤勇,陈宏,张润锋,等. 2005b.西农萨能奶山羊CSN1S2基因多态与产奶量、体尺指标的相关分析.畜牧兽医学报, 36(4) : 318~322
    蓝贤勇,陈宏,潘传英,等. 2005c. CSN3、CSN1S2和β-1g基因多态与西农萨能奶山羊产羔数的相关性研究.中国农业科学, 11 (38): 2333~2338
    蓝贤勇. 2007.山羊重要功能基因遗传分析及其与经济性状的关系. [博士学位论文].杨凌:西北农林科技大学
    李建文,罗军,姚虎军,等.奶山羊高效益饲养技术.陕西:金盾出版社, 1996
    刘洪波,施兆红. 2005.山羊奶—现代人类健康的营养佳品.中国畜牧杂志, 11: 52~53
    扬威,刁其玉. 2005.奶山羊营养特性与奶山羊的发展趋势.第二届中国羊业发展大会会刊,224~228
    袁志发,周静芋主编.试验设计与分析.北京:高等教育出版社, 2000
    郑丕留.中国羊品种志.上海:上海科技出版社, 1988
    赵有璋.羊生产学.北京:中国农业出版社, 1994
    Anfredi E M, Barbieri M E, Ouillon J B, et al. 1993. Effects of alpha (S1) casein variants on dairy performance in goats. Lait, 73: 567~572
    Alferez M J M, Barrionuevo M, Lopez Aliaga I, et al. 2001. Digestive utilization of goat and cow milk fat in malabsorption syndrome. Journal of Dairy Research, 68: 451~461
    Angiolillo A, Yahyaoui M H, Sanchez A. 2002. Short communication: Characterization of a new genetic variant in the caprineκ-casein gene. Journal of Dairy Science, 85: 2679~2680
    Boulanger A, Grosclaude F, Mahe M F. 1984. Polymorphism of as1 and as2 casein of goat (Capra hircus). Genetic Selection and Evolution, 16(2): 157~175
    Bonsing J, Mackinlay A G. 1987. Recent studies on nucleotide sequence encoding the caseins. Journal of dairy Research, 54: 447~461
    Brignon G, MahéM F, Grosclaude F, et al. 1989. Sequence of caprineαs1-casein and characterization of those of its genetics variants which are synthesized at high levelαs1-CnA, B et C. Protein Sequences Data Analysis, 2: 181~188
    Brignon G, MahéM F, Ribadeau Dumas B, et al. 1990. Two of the three genetic variants of goat αs1-casein which synthesized at a reduced level have an internal deletion possibly due to altered RNA splicing. European Journal of Biochemistry, 193: 237~241
    Bouniol C, Brignon G, MahéM F, et al. 1994. Biochemical and genetic analysis of variant C of caprineαs2-casein (Capra hircus). Animal Genetics, 25: 173~177
    Barbieri M E, Anfredi E M, Elsen J M, et al. 1995. Effects of the alpha (S1)-casein locus on dairy performances and genetic parameters of alpine goats. Genetics, 27: 437~450
    Barrionuevo M, Alferez M J M, Lopez Aliaga I, et al. 2002. Beneficial effect of goat milk on nutritive utilization of iron and copper in malabsorption syndrome. Journal of Dairy Science, 85: 657~664
    Bevilacqua C, Ferranti P, Garro G, et al. 2002. Interallelic recombination is probably responsible for the occurrence of a new alpha (s1)-casein variant found in the goat species. European Journal of Biochemistry, 269(4): 1293~1303
    Ciafarone N and Addeo F. 1984. Casein composition and goat milk properties. Vergaro, 11: 17~24 Chianese L, Garro G, Nicola M A, et al. 1993. The nature ofβ-casein heterogeneity in caprine. Lait, 73: 533~547
    Coll A, Folch J M, Sanchez A. 1993. Nucleotide sequence of the goatκ-casein cDNA. Journal of Animal Science, 71: 2833
    Coll A, Folch J M, Sanchez A. 1993. Nucleotide sequence of the goatκ-casein cDNA. Journal of Animal Science, 71: 28~33
    Coll A, Folch J M, Sanchez A. 1995. Structural features of the 5’flanking region of the caprine κ-casein gene. Journal of Dairy Science, 78: 973~977
    Chianese L, Ferranti P, Garro G, et al. 1997. Occurrence of three novel alpha s1-casein variants in goat milk. Milk Protein Polymorphism FIL-IDF. Palmerton North, New Zealand, pp. 259~267
    Cosenza G, Rando A, Longobardi E, et al. 1998. A MseI RFLP at the goat alpha s2-casein gene. Animal Genetics, 29 (2): 150
    Coni E, Bocca B, Caroli S. 1999. Minor and trace element content of two tyPICal Italian sheep dairy products. Journal of Dairy Research, 66: 589~598
    Clark S and Sherbon J W. 2000. Genetic variants of alpha S1-CN in goat milk. Small Ruminat Research, 38: 135~143
    Chianese L, Portolano B, Troncone E. 2000. The quality of Girgentana goat milk, in: Proceedings 7th International Conference on Goats, Tour, France, pp. 946~949
    Caroli A, Jann O, Budelli E. 2001. Genetic polymorphism of goatκ-casein (CSN3) in di
    Cunsolo V, Galliano F, Muccilli V, et al. 2005. Detection and characterization by high performance liquid chromatography and mass spectrometry of a goatβ-casein associated with a CSN2 null allele. Rapid Communications in Mass Spectrometry, 19: 2943~2949
    Cosenza G, Pauciullo A, Gallo D, et al. 2005. A SspI PCR- RFLP detecting a silent allele at the goat CSN2 locus. Journal of Dairy Research, 72: 1~4
    Caroli A, Chiatti F, Chessa S, et al. 2006. Focusing on the goat casein complex. Journal of Dairy Science, 89: 3178~3187
    Cunsolo V, Muccilli V, Saletti R, et al. 2006. Detection and characterization by high-performance liquid chromatography and mass spectrometry of two truncated goatαs2-caseins. Rapid Communications in Mass Spectrometry, 20: 1061~1070
    Caroli A, Chiatti F, Chessa S. 2007. Characterization of the Casein Gene Complex in West African Goats and Description of a Newαs1-Casein Polymorphism. Journal of Dairy Science, 90: 2989~2996
    Cosenza G, Pauciullo A, Gallo D, et al. 2008. Genotyping at the CSN1S1 locus by PCR-RFLP and AS-PCR in a Neapolitan goat population. Small Ruminant Research, 74: 84~90
    Debski B, PICciano M F, Milner J A. 1987. Selenium content and distribution of human, cow and goat milk. Journal of Nutrition, 117: 35~46
    Dall’Olio S, Davoli R, Russo V. 1989. A new goatβ-casein variant. Sci Tec Latt. Casearia, 40: 24~28 Di Luccia A, Mauriello R, Chianese L. 1990.κ-Casein polymorphism in caprine milk. Sci. Tec. Latt. Casearia, 41: 305~314
    Dettori M L, Vacca G M, Carcangiu V, et al. 2009. A reliable method for characterization of goat CSN1S1 E allele. Livestock Science, 125: 105~108
    Emeuf R. 1993. Influence of genetic-polymorphism of caprine alpha (S1)-casein on physicochemical and technological properties of goat’s milk. Lait, 73: 549~557
    Ferretti L, Leone P, Sgaramella V, et al. 1990. Long range restriction analysis of the bovine casein genes. Nucleic Acids Research, 18(23): 6829~6833
    Grodzicker T, Anderson C, Sharp P A, et al. 1974. Conditional lethal mutants of adenovirus 2-simian virus 40 hybrids,I. Host range mutants of Ad2+ND1. Virology, 13(6): 1237~1244
    Gaye P, Gautron J P, Mercier J C, et al. 1977. Amino-terminal sequences of the precursors of bovine caseins. Biochemical and Biophyscial Research Communications, 79(3): 903~911
    Grosclaude F, Brignon G, Jeunet R, et al. 1987. A Mendelian polymorphism underlying quantitative variations of goatαS1-casein. Gent, 19: 399~412
    Gebhardt S E, Matthews R H. 1991. Nutritive Value of Foods.USDA, Human Nutrition Information Service Publ., Washington, DC, USA, Home&GardenBulletin, pp. 72~72
    Groenen M A, Dijkhof R J M, Verstege A J M, et al. 1993. The complete sequence of the gene encoding bovineαs2–casein. Gene,123: 187~193
    Grosclaude F, Martin P. 1997. Casein polymorphism in the goat, in: Milk Protein Polymorphism Seminar (II), Proceedings IDF Int. Dairy Fed., Bruxelles, Belgium, pp. 241~253
    Galliano F, Saletti R, Cunsolo V, et al. 2004. Identification and characterization of a newβ-casein variant in goat milk by high-performance liquid chromatography with electrospray ionization mass spectrometry and matrix assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 18: 1~11
    Haenlein G F W, Caccese R. 1984. Goat milk versus cow milk. In:Haenlein, G.F.W., Ace, D.L. (Eds.), Extension Goat Handbook.USDA Publ.,Washington, D C, pp.1,E-1
    Hachelaf W, Boukhrelda M, Benbouabdellah, et al. 1993. Comparative digestibility of goat’s versus cow’s milk fats in children with digestive malnutrition. Lait, 73: 593~599
    Hatey F, Tosser klopp G, Clouscard martinaco C, et al. 1998. Expressed sequence tags for genes. Genetics Selection Evolution, 30(5): 521~541
    Hartmut R K, Lan K M, Ack I E, et al. 1999, Fish species identification in canned tuna by PCR-SSCP validation by a collaborative study and investigation of intra species variability of the DNA patterns. Food Chemistry, 64: 263~268
    Hayes B, Hagesaether N, Adnoy T. 2006. Effects on Production Traits of Haplotypes Among Casein Genes in Norwegian Goats and Evidence for a Site of Preferential Recombination. Genetics, 174: 455~464
    Jenness R. 1980. Composition and characteristics of goat milk:review 1968–1979. Journal of Dairy Science, 63: 1605~1630
    Jeffreys A. 1985. Hyper variable minisatellite region in human DNA. Nature, 314: 67~73
    Jaubert A, Martin P. 1992. Reverse phase HPLC analysis of goat caseins:Identification ofαs1 andαs2 genetic variants. Lait, 72: 235~247
    Jansà-Perez M J, Leroux C, Bonastre A S, et al. 1994. Occurrence of a LINE sequence in the 3’UTR of the goat alpha s1-casein E-encoding allele associated with reduced protein synthesis level. Gene, 147: 179~187
    Jeffrey E, Polwman, Warren G, et al. 2000. Application of proteomics for determining protein markers for wool quality traits. Electrophoresis, 21: 1899~1906
    Jann O C, Prinzenberg E M, Luikart G. 2004. High polymorphism in theκ-casein (CSN3) gene from wild and domestic caprine species revealed by DNA sequencing. Journal of Dairy Research, 71: 188~195
    Kumar A, Rout P K, Mandal A, et al. 2007. Identification of the CSN1S1 allele in Indian goats by the PCR-RFLP method. Animal, 1(8): 1099~1104
    Kusza S, Veress G, Kukovics S, et al. 2007. Genetic polymorphism ofαs1 andαs2-caseins in Hungarian Milking Goats. Small Ruminant Research, 68: 329~332
    Lander E S, Botsten D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121: 185~199
    Leroux C, Mazure N, Martin P. 1992. Mutations away from splice site recognition sequences might cis-modulate alternative splicing of goatαS1-casein transcripts. Structural organization of the relevant gene. Journal of Biology Chemistry, 267: 6147~6157
    Law A J R, Tziboula A. 1993. Fractionation of caprineκ-casein and examination of polymorphism by FPLC. Milchwissenschaft, 48: 68~71
    Lagonigro R, Pietrosa E, D’Andrea M, 2001. Molecular genetic characterization of the goatαs2-casein E allele. Animal Genetics, 32: 391~393
    Mack P B. 1952. A Preliminary Nutrition Study of the Value of Goat’s Milk in the Diet of Children. Yearbook. American Goat Society Publishers, Mena, Arkansas, USA, pp. 106~132
    Mercier J C, Chobert J M, Addeo F. 1976. Comparative analysis of the amino acid sequences of caseinomacropeptides from seven species. FEBS Letters, 72: 208~214
    Mullis K. 1985. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Methods Enzgmol, 155: 338~350
    Mens P L. 1985. physico-chemical nutritional and chemical properties. In: Milk and Milk Products from Cows, Sheep and Goats, vol.I. Apria, Paris, pp. 349~367
    MahéM F, Grosclaude F. 1989.αs1 -Cn D, another allele associated with a decreased synthesis rate at the caprineαs1-casein locus. Genetic Selection and evolution, 21: 127~129
    MahéM F, Grosclaude F. 1993. Polymorphism ofβ-casein in the Creole goat of Guadeloupe: evidence for a null allele. Genetic Selection and evolution, 25: 403~408
    Montgomery G W, Crawford A M, Penty J M, et al. 1993. The ovine Booroola fecundity gene (FecB) is linked to markers form a region of human chromosome 4q. Nature Genetics, 4: 410~414
    Mercier J C, Vilotte J L. 1993. Structure and function of milk protein genes. Journal of Dairy Science, 76: 3079~3098
    Martin P, Leroux C. 1994. Characterization of a furtherαs1-casein variant generated by exon skipping, in: Proceedings XXIV International Conference on Animal Genetics, Prague, Cz., Abs E. 43, pp. 88
    Mahe M, Anfredi E M, Ricordeau G, et al. 1994. Effects of the alpha-S1-casein polymorphism on goat dairy performances-a within-sire analysis of alpine bucks. Genetic Selection and evolution, 26: 151~157
    Martin P, Ollivier-Bousquet M, Grosclaude F. 1999. Genetic polymorphism of caseins: a tool to investigate casein micelle organization. International Dairy Journal, 9: 163~171
    Moreno F J, Recio I, Olano A. 2001. Heterogeneity of caprineκ-casein macropeptide. Journal of Dairy Research, 68: 197~208
    Marletta D, Bordonaro S, Galliano F, et al. 2002. Identification of CSN1S2 0 allele in a Sicilian goat breed and characterization ofαs2-casein fraction by HPLC/ESI-MS, in: Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, pp. 09~32
    Marletta D, Bordonaro S, Gusatella A M, et al. 2004a. Genetic polymorphism at CSN1S2 locus in two endangered Sicilian goat breeds. Journal of Animal Breed Genetics, 121: 52~56
    Marletta D, Bordonaro S, Guastella A M, et al. 2004b. Goat milk with differentαs2-casein content: analysis of allergenic potency by REAST-inhibition assay. Small Ruminant Research, 52: 19~24
    Moioli B, D’Andrea M, Pilla F, et al. 2007. Candidate genes affecting sheep and goat milk quality. Small Ruminant Research, 68:179~192
    Neveu C, MolléD, Moreno F J, et al. 2002. Heterogeneity of caprine beta-casein elucidated by RP-HPLC/MS: genetic variants and phosphorilations, Journal of Protein Chemistry, 21: 557~567
    Ojala M, Famula T R, Medrano J F, et al. 1997. Effects of milk protein genotypes on the variation for milk production traits of Holstein and Jersey cows in California. Journal of Dairy Science, 80: 1776~1785 Orita M K, Suzuki Y K. 1989. Rapid and sensitive detection of mutations and DNA polymorphisms using the polymerase chain reaction. Genomics, 5: 8739~8741
    Posati L P, Orr M L. 1976. Composition of Foods, Dairy and Egg Products, Agriculture Handbook No. 8-1. USDA-ARS, Consumer and Food Economics Institute Publishers, Washington, DC, pp. 77~109
    Park Y W, Mahoney A W, Hendricks D G. 1986. Bioavailability of iron in goat milk compared with cow milk fed to anaemic rats. Journal of Dairy Science, 69: 2608~2615
    Park Y W, Chukwu H I. 1988. Macro-mineral concentrations in milk of two goat breeds atdifferent stages of lactation. Small Ruminant Research, 1: 157~165
    Park Y W, Chukwu H I. 1989. Trace mineral concentrations in goat milk from French-Alpineand Anglo-Nubian breeds during the first 5 months of lactation. Journal of Food CompostionAnalysis, 2: 161~169
    Park Y W. 1994. Hypo-allergenic and the rapeutic significance of goat milk. Small RuminantResearch, 14: 151~161
    Persuy M A, Printz C, Medrano J F, et al. 1996. One mutation might be responsible for the absenceof beta-casein in two breeds of goats. Animal Genetics, 27: 96
    Persuy M A, Printz C, Medrano J F, et al. 1999. A single nucleotide deletion resulting in a prematurestop codon is associated with marked reduction of transcripts from a goat beta-casein null allele. AnimalGenetics, 30: 444~451
    Primmer C R, Borge T, Lindell J, et al. 2002. Single nucleotide polymorphism characterization inspecies with limited available sequence information: GH nucleotide diversity revealed in the avian genome.Molecular Ecology, 11(3): 603~612
    Prinzenberg E M, Gutscher K, Chessa S. 2005. Caprineκ-casein (CSN3) polymorphism: newdevelopments of the molecular knowledge. Journal of Dairy Science, 88: 1490~1498
    Russo V, Davoli R, Dall’Olio S. 1986. Research on goat milk polymorphism. Zoot Nutr Animal, 12:55~62
    Roberts B T, Di Tullio P, Vitale J, et al. 1992. Cloning of the goatβ-casein coding gene and expressionin transgenic mice. Gene, 121: 255~262
    Rando A, Pappalardo M, Capuano M, et al. 1996. Two mutations might be responsible for the absenceofβ-casein in goat milk. Animal Genetics, 27: 31
    Ramunno L, Mariani P, Pappalardo M, et al. 1995. major effect gene forβ-casein content in goat milk,in: Atti XI Congresso Nazionale ASPA, Grado, Italy, pp. 185~186
    Ramunno L, Longobardi E, Cosenza G, et al. 1999. A PstI PCR-RFLP at the goat CSN1S2 gene.Animal Genetics, 30 (3) : 242
    Ramunno L, Cosenza G, M Pappalardo, et al. 2000. Identification of goat CSN1S1 allele by means ofPCR-RFLP method. Animal Genetics, 31: 333
    Ramunno L, Cosenza G, Pappalardo M, et al. 2001a. Characterization of two new alleles at the goatCSN1S2 locus. Animal Genetics, 32: 264~268
    Ramunno L, Longobardi E, Pappalardo M, et al. 2001b. An allele associated with a non detectableamount ofαs2-casein in goat milk. Animal Genetics, 32: 19~26
    Rijnkels M. 2002. Multispecies comparison of the casein gene loci and evolution of casein genefamily . Journal of Mammary Gland Biology and Neoplasia, 7: 327~345
    Ramunno L, Cosenza G, Rando A, et al. 2004. The goatαs1-casein gene: gene structure and promoteranalysis. Gene, 334: 105~111
    Ramunno L, Cosenza G, Rando A, et al. 2005. Comparative analysis of gene sequence of goat CSN1S1F and N alleles and characterization of CSN1S1 transcript variants in mammary gland. Gene, 345: 289~299
    Swaisgood H E. 1992. Chemistry of the caseins. Advanced Dairy Chemistry, 1: 63~110
    Seker. 1993. Milk protein polymorphism effects on varies prodution traits in Jersey cows. Jayyancilik Arastirma Dergisi, 3 (1): 43~47
    Sacchi P, Chessa S, Budelli E. 2005. Casein haplotype structure in five Italian goat breeds. Journal of Dairy Science, 88: 1561~1568
    Sztankoova Z, Kott T, Czernekova V, et al. 2006. A new allele specific polymerase chain reaction method (AS-PCR) for detection of the goat CSN1S101 allele. Small Ruminant Research, 66: 282~285
    Threadgil D W, Womack E J, et al. 1990. Genomic analysis of the major bovine milk protein genes. Nucleic Acids Research, 18(23): 6935~6942
    Veltri C, Lagonigro R, PietrolàE, et al. 2000. Molecular characterization of the goat αs2-casein E allele and its detection in goat breeds of Italy, in: Proceedings 7th International Conference on Goats, Tour, France, p. 727
    Wang Q, Huang Z, Chen M J, et al. 2001. available on http://www.ncbi.nlm.nih.gov/
    Yahyaoui M H, Coll A, Sanchez A. 2001. Genetic polymorphism of the caprineκ-casein gene. Journal of Dairy Research, 68: 209~216
    Yahyaoui M H, Angiolillo A, Pilla F. 2003. Characterization and genotyping of the caprine κ-casein variants. Journal of Dairy Science, 86: 2715~2720
    Zittle C A, Custer J H. 1966. Identification of theκ-casein among the components of whole goat casein. Journal of Dairy Science, 49: 788~791

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700