基于Hadoop的大规模语义Web本体数据查询与推理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
语义Web是Tim Berners-Lee提出的下一代互联网远景,通过引入了哲学领域本体的概念,使得计算机能够理解Web上的资源,并能实现计算机之间的语义信息共享。在世界万维网联盟(World Wide Web Consortium, W3C)提出的语义Web体系结构中,基于SPARQL的资源描述框架(Resource Description Framework, RDF)数据查询、基于描述逻辑的Web本体描述语言(Web Ontology Language, OWL)一致性检测推理和基于语义Web规则语言(Semantic Web Rule Language, SWRL)的OWL本体规则推理构成了语义Web领域的研究核心。
     然而,随着语义Web技术的不断快速发展,本体数据已呈现出大规模性、高速增长性、多样性等大数据特性。然而,传统的本体数据查询与推理工具由于设计运行于单机环境下,不可避免地存在计算性能和可扩展性不足等问题,影响了语义Web技术的进一步推广应用。
     近年来,云计算因其具备高性能、易扩展的海量数据存储和计算能力已经成为产业界和学术界在信息技术领域的最新研究方向之一,其中开源Hadoop云计算工具已成为当前大数据处理的事实标准。目前,国内外研究人员已开始将Hadoop关键技术引入语义Web研究领域,以探寻分布式环境下的高效率本体数据查询与推理方法,并已逐步形成了以语义Web和云计算技术相结合的新研究方向,但其研究仍然处于起步阶段,存在许多关键问题尚待解决。
     本文通过结合云计算和语义Web理论和关键技术,研究基于Hadoop的本体数据查询与推理并行化方法,为实现面向大规模语义Web本体的数据管理云服务奠定理论研究基础。主要研究内容和创新性成果包括以下五个方面:
     (1)以W3C提出的语义Web体系结构为基础,结合云计算Hadoop关键技术特性,提出了一种大规模语义Web本体数据查询与推理云计算框架。首先,对该框架进行了功能层级划分,自底向上分别由物理层、存储层、数据层、逻辑层、接口层、网络层和应用层组成。然后,基于本体查询与推理理论,设计了核心的逻辑层由数据预处理器、数据适配器、查询与推理分析器、查询与推理计划生成器、MapReduce SPARQL查询引擎、MapReduce SWRL规则推理引擎和MapReduceTableau推理引擎构成。该框架的提出为实现高性能、易扩展的语义Web数据管理云服务提供体系结构和数据交互流程支持和借鉴,为进一步研究其中的关键技术理论奠定基础。
     (2)基于语义Web中RDF三元组数据特性和基于描述逻辑的OWL本体描述语言形式化语义,结合HBase基于列的数据存储模式特性,提出了由三个HBase数据表T_OS_P、T_PO_S和T_SP_O构成的本体数据分布式存储策略,分析了在进行基于MapReduce的本体查询和推理任务时的数据检索机制,并通过与现有的数据存储策略进行对比和分析,论证了本文提出方法能够在本体数据存储空间开销和检索性能方面实现较好的平衡。
     (3)基于SPARQL语法和形式化语义,结合MapReduce键值对的计算特性,提出了SPARQL复杂组图模式在MapReduce环境下的分布式查询方法。首先提出了SPARQL复杂组图模式查询的相关解析模型定义。然后提出了基于MapReduce的SPARQL复杂组图模式查询任务生成算法,实现了查询任务数的优化,并以此为基础,提出了在map和reduce函数中的SPARQL复杂组图模式分布式查询算法。最后,通过使用语义Web研究领域广泛采用的SP2Bench本体测试数据集和标准测试语句,对提出方法与现有的Jena、Sesame和RDF-3X查询引擎进行了对比实验和可扩展性实验。实验结果表明,提出方法在面向大规模RDF数据的SPARQL复杂组图模式进行查询时,其计算性能和可扩展性均优于传统的单机环境下运行的查询引擎。
     (4)基于OWL Lite本体所对应的描述逻辑SHIF语义及其Tableau推理算法,结合MapReduce键值对的数据计算特性,提出了基于MapReduce的OWL本体一致性分布式检测推理方法。首先定义了OWL本体一致性检测的相关解析模型。然后提出了基于MapReduce的OWL Lite本体数据划分方法和分布式Tableau推理算法。最后通过使用LUBM本体测试数据集,对提出方法与现有Pellet、RacerPro和HermiT推理引擎进行了对比实验和可扩展性实验,证明了提出方法在进行大规模OWL本体的一致性检测推理时,在计算性能和可扩展性方面均优于传统单机环境下运行的描述逻辑推理引擎。
     (5)基于SWRL规则语法和形式化语义,结合MapReduce键值对的数据计算特性,提出了基于MapReduce的SWRL规则分布式推理方法。首先提出了SWRL规则推理的相关解析模型定义。然后提出了基于MapReduce的SWRL规则推理计划生成算法,实现了推理任务数的优化。其次,为保证推理的可判定性,提出了DL-safe限制下SWRL规则在map和reduce函数中的分布式推理算法。最后通过使用LUBM本体数据集和自定义SWRL测试规则,对提出方法与Jess和Pellet推理引擎进行了对比实验和可扩展性实验,证明了在处理大规模OWL本体的SWRL规则推理时,提出方法较传统规则推理引擎具备更好的计算性能和可扩展性。
Semantic Web, which is proposed by Tim Berners-Lee, is the vision of nextgeneration of Web. Through combining the concepts of ontology from philosophy intocomputer science domain, computers can understand the information published in theSemantic Web, and it is possible to exchange semantic information among computers.In the World Wide Web Consortium (W3C) proposed semantic web stack,SPARQL-based Resource Description Framework (RDF) data querying, descriptionlogic-based Web Ontology Language (OWL) reasoning, and Semantic Web RuleLanguage (SWRL)-based OWL ontologies rule reasoning are the core contents ofsemantic web research.
     However, large-scaled ontologies have existed with the explosion of the semanticweb technologies, and the amounts of it is rapidly growing ever year. Therefore, theseconventional semantic web data querying and reasoning tools do not scale well for largeamounts of ontologies because they are designed for use on a single-machine context.
     Recent years, cloud computing has become one of the latest research area in bothacademe and IT industry because of its high-performance and scalability for storing andcomputing on large-scaled data. Nowadays, Hadoop technologies have become thede-facto standard of Big Data processing. Several researchers have started to combinecloud computing and semantic web technologies to explore high-performance ontologyquerying and reasoning solutions in the distributed computing context. However, thisnovel research area is still in the initial stage, lots of key problems need to be solved.
     To overcome the drawbacks, this thesis researches on the approaches of distributedquerying and reasoning for large-scaled ontology data by utilizing cloud computingtechnologies. This thesis can establish the theoretical research basis for implementinglarge-scaled semantic web ontology data management cloud services in the future. Themain research contents and innovative results are listed as follows.
     (1) Based on the W3C proposed semantic web stack, MapReduce distributedcomputing model and HBase distributed database technology, this thesis proposes aarchitecuture of large-scaled semantic web ontology data management cloud service.First, the author designs the architecuture according to querying and reasoning functions,the layers from bottom to up consists of physical layer, storage layer, data layer, logicallayer, interface layer, network layer and application layer. And then, the author designs the logical layer, which is the core component of proposed architecutre, to be consistedof data preprocessor, data adapter, querying and reasoning analyser, querying andreasoning plan generator, MapReduce SPARQL querying engine, MapReduce SWRLrule reasoning engine and MapReduce Tebleau reasoning engine. The proposedframework can provide a completed architecture and data exchange workflow toimplement high-performance and scalable ontology data management cloud service inthe future, and it can establish the basis for the key technologies researching.
     (2) Based on the features of RDF triple and the formalized semantics of descriptionlogic-based OWL ontologies, this thesis proposes a novel data storage solution forlarge-scaled semantic web ontologies according to the HBase distributed databaseschema. The ontologies are designed to store in three HBase tables named T_OS_P,T_PO_S and T_SP_O, respectively. The MapReduce-based querying and reasoningapproach is analysed as well. Through comparing with the existing ontology storageschema, this thesis prove that the proposed schema can achieve the balance of the datastorage space and performance.
     (3) Based on the syntax and semantics of SPARQL and the features of MapReducekey-value pairs, this thesis proposes a novel MapReduce-based SPARQL GraphPatterns distributed querying approach for large-scaled RDF data. First, the authordefines several data models to represent RDF and SPARQL queries. Second, to reducethe number of MapReduce jobs and optimize the performance, a query plan generationalgorithm is proposed to determine jobs based on a greedy selection strategy.Furthermore, several query algorithms are also presented to answer SPARQL GraphPattern queries in MapReduce paradigm. An experiment on a simulation cloudcomputing environment shows that our approach is more scalable and efficient thantraditional approaches when storing and retrieving large volumes of RDF data.
     (4) Based on the semantics of OWL Lite ontologies and the Tableau algorithm ofdescription logic SHIF, this thesis proposes a novel MapReduce-based distributedTableau reasoning approach to check the consistency of large OWL ontologies. First, byexploiting MapReduce paradigm, OWL individual assertions are first partitioned intomultiple independent units with the form of key-value pair, and then the consistency ofeach unit with respect to the OWL terminologies is checked in parallel. Last, throughusing LUBM benchmark and comparing with Pellet, RacerPro and HermiT reasoners,an experiment on a simulation cloud computing environment shows that our approach ismore scalable and efficient than traditional tools when reasoning over large-scaled OWL ontologies.
     (5) Based on the syntax and semantics of SWRL rules, this thesis proposes a novelMapReduce-based SWRL distributed reasoning approach. First, some novel datamodels for representing SWRL rules and intermediate key-value data are defined.Second, a MapReduce paradigm based distributed SWRL reasoning algorithm isproposed under DL-safe restriction. Last, through using LUBM benchmark andself-defined SWRL rules, an experiment on a simulation environment shows ourapproach is more efficient and scalable than conventional rule engines Jess and Pelletwhen reasoning over large-scale of OWL data.
引文
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web [J]. Scientific American,2001.
    [2]李善平,尹奇韡,胡玉杰,郭鸣,付相君.本体论研究综述[J].计算机研究与发展,2004,41(7):1041-1052.
    [3] F. Manola and E.Miller. RDF Primer [EB/OL].W3C Recommendation,2004, http://www.w3.org/TR/rdf-syntax/.
    [4] D. Brickley and R.V. Guha. RDF Vocabulary Description Language1.0: RDF Schema[EB/OL]. W3C Recommendation,2004, http://www.w3. org/TR/rdf-schema/.
    [5]梅婧,林作铨.从ALC到SHOQ(D):描述逻辑及其Tableau算法[J].计算机科学,2005,32(3):1-11.
    [6] D. McGuinness and F. van Harmelen. OWL web ontology language overview [EB/OL]. W3CRecommendation,2004, http://www.w3.org/TR/owl-features/.
    [7] I. Horrocks, P.F. Patel-Schneider and F. van Harmelen. From SHIQ and RDF to OWL: TheMaking of a Web Ontology Language [J]. Journal of Web Semantics,2003,1(1):7-26.
    [8]高志强,潘越,马力,谢国彤,刘升平,张雷.语义Web原理及应用[M],北京:机械工业出版社,2009.
    [9] W3C OWL Working Group. OWL2Web Ontology Language Document Overview (SecondEdition)[EB/OL]. W3C Recommendation,2012, http://www.w3.org/TR/owl2-overview/.
    [10]何克清,何扬帆,王翀,梁鹏,刘进.本体元建模理论与方法及其应用[M].北京:科学出版社,2008.
    [11]张维明,宋峻峰.面向语义Web的领域本体表示、推理与集成研究[J].计算机研究与发展,2006,43(1):101-108.
    [12] R. Fikes, P. Hayes and I. Horrocks. OWL-QL: A language for deductive query answering onthe semantic web [J]. Journal of Web Semantics,2004,2(1):1929.
    [13] G. Karvounarakis, S. Alexaki and V. Christophides. RQL: A declarative query language forRDF [C]. Proceeding of the WWW2002, New York, USA,2002:592603.
    [14] A. Seaborne. RDQL: A query language for RDF [EB/OL]. W3C,2004. http://www.w3.org/Submission/RDQL/.
    [15] E. Prud’hommeaux and A.Seaborne. SPARQL query language for RDF [EB/OL]. W3C,2008.http://www.w3.org/TR/rdf-sparql-query/.
    [16] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean. SWRL: asemantic web rule language combining OWL and RuleML [EB/OL]. http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.
    [17] I. Horrocks, P. F. Patel-Schneider, S. Bechhofer and D. Tsarkov. OWL rules: a proposal andprototype implementation [J]. Journal of Web Semantics,2005,3(1):23-40.
    [18] R. B. Mishra and S. Kumar. Semantic Web Reasoners and Languages [J]. ArtificialIntelligence Review,2011,35(4):339–368.
    [19] J. Pérez, M. Arenas and C. Gutierrez. Semantics and Complexity of SPARQL [C].Proceedings of the5th International Semantic Web Conference,2006:30–43.
    [20] J.J. Carroll, I. Dickinson, C. Dollin, D.Reynolds, A. Seaborne and K. Wilkinson. Jena:Implementing the Semantic Web Recommendations [C]. Proceedings of the13th InternationalWorld Wide Web Conference,2004:806–815.
    [21] J. Broekstra and A. Kampman. Sesame: A Generic Architecture for Storing and QueryingRDF and RDF Schema [C], Proceedings of the1st International Semantic Web Conference,2002.
    [22] T. Neumann and G. Weikum. The RDF-3X Engine for Scalable Management of RDF Data [J],VLDB Journal,2010,19(1):91–113.
    [23] B.C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider and U. Sattler. OWL2: Thenext step for OWL [J]. Journal of Web Semantics,2008,6(4):309322.
    [24] FaCT++[EB/OL]. http://owl.man.ac.uk/factplusplus/.
    [25] V. Haarslev and R. M ller. RACER system description [C]. In: Proc. of the IJCAR2001.LNCS2083, PP.701705,2001.
    [26] Pellet [EB/OL]. http://pellet.owldl.com/.
    [27] Hermit [EB/OL]. http://hermit-reasoner.com/.
    [28] I. Horrocks and U. Sattler. A tableau decision procedure for SHOIQ [J]. Journal of AutomatedReasoning,2007,39(3):249276.
    [29] A. Riazanov. Implementing an efficient theorem prover [D]. Manchester: University ofManchester,2003.
    [30]徐贵红,张健.语义网的一阶逻辑推理技术支持[J].软件学报,2008,19(12):091-3099.
    [31] M. Horridge et al. A practical guide to building owl ontologies using protégé4and CO-ODEtools editiion1.1[EB/OL]. University Of Manchester,2007, http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial-p4.0.pdf.
    [32] SWRLLanguageFAQ [EB/OL]. http://protege.cim3.net/cgi-bin/wiki.pl?swrllanguagefaq.
    [33] B. Motik and R. Studer. KAON2: A Scalable Reasoning Tool for the Semantic Web [C].Proceedings of the2nd European Semantic Web Conference, Heraklion, Greece,2005.
    [34] M. Boris, S. Ulrike and S. Rudi. Query answering for OWL-DL with rules [J]. Journal of WebSemantics,2005,3(1):41-60.
    [35] C. Bizer, A. Jentzsch and R. Cyganiak. State of the LOD Cloud [EB/OL], http://lod-cloud.net/state/.
    [36]孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169.
    [37]王珊,王会举,覃雄派,周烜.架构大数据:挑战、现状与展望[J].计算机学报,2011,34(10):1741-1752.
    [38]杜小勇,王琰,吕彬.语义Web数据管理研究进展[J].软件学报,2009,20(11):2950-2964.
    [39]冯登国,张敏,张妍,徐震.云计算安全研究[J].软件学报,2011,22(1):71-83.
    [40] K. Jorissen, F.D. Vila and J.J. Rehr. A high performance scientific cloud computingenvironment for materials simulations [J]. Computer Physics Communications,2012,183(9):1911-1919.
    [41] J. Z. Wang, P. Varman and C. S. Xie. Optimizing storage performance in public cloudplatforms [J]. Journal of Zhengjiang University-Science C-Computer&Electronics,2011,12(12):951-964.
    [42] M. Armbrust, A. Fox, R. Griffith, et al. A View of Cloud Computing [J]. Communication ofthe ACM,2010,53(4):50-58.
    [43] S. Ghemawat, H. Gobioff and S.T. Leung. The google file system [C]. Proceeding of the19thACM symposium on Operating systems principles, New York, USA,2003:29-43.
    [44] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters [J].Communications of the ACM,2008,51(1):107-113.
    [45] F. Chang, J. Dean, S. Ghemawat, et al. BigTable: a distributed storage system for structureddata [J]. ACM Transactions on Computer Systems,2008,26(2), Article4.
    [46] Apache. Hadoop[EB/OL]. http://hadoop.apache.org/.
    [47]王鹏,孟丹,詹剑锋,涂碧波.数据密集型计算编程模型研究进展[J].计算机研究与发展,2010,47(11):1993-2002.
    [48] Semantic Web Challenge [EB/OL]. http://challenge.semanticweb.org/.
    [49] P. Mika and G. Tummarello. Web semantics in the clouds [J]. IEEE Intelligent Systems,2008,23(5):82-87.
    [50] Y. Guo, Z. Pan and J. Heflin. LUBM: A benchmark for OWL knowledge base systems [J],Journal of Web Semantics,2005,3(2-3):158-182.
    [51] M. Schmidt, T. Hornung, G. Lausen and C. Pinkel. SP2Bech: A SPARQL performancebenchmark [C], Proceedings of the25th IEEE International Conference on Data Engineering,2009:222–233.
    [52] C. Bizer and A. Schultz. The Berlin SPARQL Benchmark [J]. International Journal onSemantic Web&Information Systems,2009,5(2):1-24.
    [53] M. Uschold and M. Gruninger. Ontologies: principles, methods, and applications [J].Knowledge Engineering Review,1996,11(2):93-155.
    [54] T. Gruber. A translation approach to portable Ontology specifications [J]. KnowledgeAcquisition,1993,5(2):199-220.
    [55] W. Borst. Construction of engineering ontologies for knowledge sharing and reuse [D]. PhDthesis, University of Twente, the Netherlands.1997.
    [56] R. Studer, V. Benjamins and D. Fensel. Knowledge engineering, principles and methods [J].Data and Knowledge Engineering,1998,25(1-2):161-197.
    [57] The Unicode Consortium [EB/OL], http://www.unicode.org/.
    [58] Uniform Resource Identifier [EB/OL], http://www.w3.org/Addressing/URL/URI_Overview.html.
    [59] W3C. Extensible Markup Language (XML)[EB/OL], http://www.w3.org/XML/.
    [60] T. Gruber. Toward principles for the design of ontologies used for knowledge sharing [J].International Journal of Human-Computer Studies,1995,43(5-6):907-928.
    [61] D. Ga vi, N. Kaviani and M. Milanovi. Ontologies and software engineering. In Staab&Studer ed, Handbook on Ontologies (2ndedition)[M]. Springer, Berlin,2009:593-615.
    [62] G. Klyne and J. J. Carroll. Rescource Description Framework (RDF): Concepts and AbstractSyntax [EB/OL]. W3C Recommendation,10February,2004, http://www.w3.org/TR/rdf-concepts/
    [63] S. Elbassuoni and R. Blanco. Keyword Search over RDF Graphs [C]. Proceedings of the20thACM Conference on Information and Knowledge Management, CIKM'11, October24-28,2011, Glasgow, Scotland, UK.
    [64] W3C. N-Triples, W3C RDF Core WG Internal Working Draft [EB/OL], http://www.w3.org/2001/sw/RDFCore/ntriples/.
    [65] T. Berners-Lee and D. Connolly. Notation3(N3): A readable RDF syntax [EB/OL].http://www. w3.org/TeamSubmission/n3/.
    [66] R. Oldakowski, C. Bizer and D. Westphal. RAP: RDF API for PHP [C]. Proceedings of theInternational Workshop on Interpreted Languages,2004.
    [67] J. Broekstra and A. Kampman. Inferencing and Truth Maintenance in RDF Schema:exploring a naive practical approach [C]. In Workshop on Practical and Scalable SemanticSystems (PSSS),2003.
    [68] R. Cyganiak. A relational algebra for SPARQL [EB/OL], HP-Labs Technical Report,HPL-2005-170. http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html.
    [69] M. Arenas and J. Pérez. Querying semantic web data with SPARQL [C]. Proceedings of the30th ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,2011:305-316.
    [70] I. Kollia, B. Glimm and I. Horrocks. SPARQL Querying Answering over OWL Ontologies [J].Lecture Notes in Computer Science,2011,6643LNCS(PART1):382-396.
    [71] M. Schmidt, M. Meier and G. Lausen. Foundations of SPARQL query optimization [C].Proceedings of the13th International Conference on Database Theory,2010:4-33.
    [72] S. Harris and A. Seaborne. SPARQL1.1Query Language, W3C Proposed Recommendation08November2012[EB/OL]. http://www.w3.org/TR/sparql11-query/.
    [73] Apache. ARQ-A SPARQL Processor for Jena [EB/OL]. http://jena.apache.org/documentation/query/index.html.
    [74] S. A. Mcllraith, T. C. Son and H. L. Zeng. Semantic Web services [J]. IEEE IntelligentSystems&Their Applications,2001,16(2):46-53.
    [75] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF [C]. Proceedings of theVLDB Endowment,2008,1(1):647-659.
    [76] D. Fensel, F. Van Harmelen, I. Horrocks, D. McGuinness and P. Patel-Schneider. OIL: Anontology infrastructure for the semantic web [J]. IEEE Intelligent Systems,2001,16(2):38-45.
    [77] DARRPA. The DARRPA agent markup language [EB/OL].2000, http://www.daml.org/.
    [78] I. Horrocks and P. Patel-Schneider. Reducing OWL entailment to description logicsatisfiablity [C]. International Semantic Web Conference2003, Web Semantics,2004,1(4).
    [79]古华茂,王勋,凌云,高济.完全析取范式群判定SHOIN(D)-可满足性[J],软件学报,2010,21(8):1863-1877.
    [80] I. Horrocks. OWL: A descritption logic based ontology language [C].11th InternationalConference on Principles and Practice of Constraint Programming-CP2005, Sitges, Spain,October1,2005-October5,2005, Lecture Notes in Computer Science (including subseriesLecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),3709LNCS:5-8.
    [81] B. Konev, M. Ludwig, D. Walther and F. Wolter. The logical difference for the lightweightdescription logic EL [J]. Journal of Artificial Intelligence Research,2012,44:633-708.
    [82] M. Kr tzsch. OWL2profiles: An introduction to lightweight ontology languages [C]. In8thInternational Summer School on Reasoning Web,2012, Vienna, Austria, September3,2012-September8,2012, Lecture Notes in Computer Science (including subseries Lecture Notes inArtificial Intelligence and Lecture Notes in Bioinformatics),7487LNCS:112-183.
    [83] S. T. Cao, L. A. Nguyen and A. Szaas. On the web ontology rule language OWL2RL [C]. In3rd International Conference on Computational Collective Intelligence, ICCCI2011,September21,2011-September23,2011, Gdynia, Poland, Lecture Notes in ComputerScience (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes inBioinformatics),2011,6922LNAI, PART1:254-264.
    [84] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The descriptionlogic handbook: theory, implementation, applications [D]. Cambridge University Press,Cambridge, UK,2003.
    [85] F. Baader, I. Horrocks and U.Sattler. Description Logics (book chapter). In van Harmelen F.,Lifschitz V., and Porter B., eds, Handbook of Knowledge Representation [M]. Elsevier,Amsterdam, The Netherlands,2007.
    [86] A. Manuel. Frames, semantic networks, and object-oriented programming in APL2[J]. IBMJournal of Research and Development,1989,33(5):502-510.
    [87] G. Meditskos and N. Bassiliades. A rule-based object-oriented OWL reasoner [J]. IEEETransactions on Knowledge and Data Engineering,2008,20(3):397-410.
    [88] S. Klarman, U. Endriss and S. Scholbach. ABox abduction in the description logic ALC [J].Journal of Automated Reasoning,2011,46(1):43-80.
    [89] F. Baader and U. Sattler. An overview of Tableau algorithms for description logics [J]. StudiaLogica,2001,69(1):5-40.
    [90]石莲,孙吉贵.描述逻辑综述[J].计算机科学,2006,33(1):194-197.
    [91] K. Wu and V. Haarslev. A parallel reasoner for the description logic ALC [C]. Proceedings ofthe25th International Workshop on Description Logics, DL2012, June7,2012-June10,2012, Rome, Italy,2012:378-388.
    [92] H. Boley, A. Paschke and O. Shafiq. RuleML1.0: The overarching specification of web rules[C].4th International Web Rule Symposium, RuleML2010, October21,2010-October23,2010, Washington, DC, United states. Lecture Notes in Computer Science (includingsubseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),2010,6403LNCS:162-178,
    [93] R. Reiter. On closed world data bases [R]. Technical Report, University of British Columbia;Vancouver, BC, Canada,1977.
    [94] V. Kolovski, B. Parsia and E. Sirin. Extending the SHOIQ(D) tableaux with DL-safe rules:First results [C]. Proceedings of the2006International Workshop on Description Logics, DL2006,189:192-199.
    [95] J. Mei and E. Paslaru Bontas. Reasoning paradigms for SWRL-enabled ontologies [C]. InWorkshop of Protégé With Rules, Madrid.2005.
    [96] P. F. Patel-Schneider. Safe rules for owl1.1[C]. In Fourth International Workshop OWL:Experiences and Directions (OWLED2008DC), Washington, DC,2008.
    [97]李乔,郑啸.云计算研究现状综述[J].计算机科学,2011,38(4):32-37.
    [98] P. Mell and T.Grance. The NIST definition of cloud computing [J]. NIST special publication,2011,800:145.
    [99] G. Boss, P. Malladi, D. Quan, L. Legregni and H. Hall. Cloud computing [EB/OL]. IBMWhite Paper,2007. http://download.boulder.ibm.com/ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf.
    [100]陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348.
    [101] B. Hayes. Cloud computing [J]. Communications of the ACM,2008,51(7):9-11.
    [102] K. Jorissen, F. D. Vila and J. J. Rehr. A high performance scientific cloud computingenvironment for materials simulations [J]. Computer Physics Communications,2012,183(9):1911-1919.
    [103] I. Palit and C.K. Reddy. Scalable and Parallel Boosting with MapReduce [J]. IEEETransaction on Knowledge and Data Engineering,2012,24(10):1904-1916.
    [104] A. Srinivasan, T. A. Faruquie and S. Joshi. Data and task parallelism in ILP using MapReduce[J], Machine Learning,2012,86(1):141-168.
    [105] D. Zinn, S. Bowers, S. Kohler and B. Ludascher. Parallelizing XML data-streamingworkflows via MapReduce [J]. Journal of Computer and System Sciences,2010,76(6):447-463.
    [106] C. Moretti, K. Steinhaeuser, D. Thain, and N. Chawla. Scaling Up Classifiers to CloudComputers [C]. Proceedings of8th IEEE International Conference on Data Mining(ICDM’08),2008:472-481.
    [107] C.T. Chu, S.K. Kim, Y.A. Lin, Y. Yu, G. Bradski, A.Y. Ng and K.Olukotun. Map-Reduce forMachine Learning on Multicore [C]. Proceedings of the20th Annual Conference on NeuralInformation Processing Systems, Neural information processing system foundation, Canada,2007:281-288.
    [108] T.White. Hadoop: The definitive guide [M]. O'Reilly Media,2012.
    [109] V. Srinivasan, M. J. Carey. Performance of B+tree concurrency control algorithms [J]. TheVLDB Journal,1993,2(4):361-406.
    [110] H. Choi, J. Son, Y. H. Cho, M. K. Sung and Y. D. Chung. SPIDER: a system for scalable,parallel/distributed evaluation of large-scale RDF data [C]. Proceedings of the18th ACMconference on Information and knowledge management. ACM,2009:2087-2088.
    [111] J. Myung, J. Yeon, S. Lee. SPARQL basic graph pattern processing with iterative MapReduce[C]. Proceedings of the2010Workshop on Massive Data Analytics on the Cloud. ACM,2010:6.
    [112] M. F. Husain, J. McGlothlin, M. M. Masud, L. R.Khan and B. Thuraisingham.Heuristics-based Query Processing for Large RDF Graphs using Cloud Computing [J]. IEEETransactions on Knowledge and Data Engineering,2011,23(9):1312–1327.
    [113] C. Weiss, P. Karras and A. Bernstein. Hexastore: sextuple indexing for semantic web datamanagement [J]. Proceedings of the VLDB Endowment,2008,1(1):1008-1019.
    [114] J. Sun and Q. Jin. Scalable RDF store based on HBase and MapReduce [C]. AdvancedComputer Theory and Engineering (ICACTE),20103rd International Conference on. IEEE,2010,1: V1-633-636.
    [115] C. Franke, S. Morin, A. Chebotko, J. Abraham and P. Brazier. Distributed Semantic Web DataManagement in HBase and MySQL Cluster [C]. Proceedings of2011IEEE4th InternationalConference on Cloud Computing,2011:105–112.
    [116] J. Urbani, S. Kotoulas, J. Maassen, F.V. Harmelen and H. Bal. WebPIE: A Web-scale ParallelInference Engine using MapReduce [J], Journal of Web Semantics,2012,10:59–75.
    [117] FactForge [EB/OL]. http://www.factforge.com.
    [118] Linked Life Data (LLD)[EB/OL]. http://linkedlifedata.com.
    [119] R. Mutharaju, F. Maier and P. Hitzler. A MapReduce Algorithm for EL+[C]. Proceedings ofthe23rd International Workshop on Description Logics,2010:464–474.
    [120]潘超,古辉.本体推理机及应用[J].计算机系统应用,2010,19(9):163-167.
    [121]李乔,郑啸.云计算研究现状综述[J].计算机科学,2011,38(4):32-37.
    [122] M. Li. Study on ontology repository management system [D], Beijing: Renmin University ofChina,2006.
    [123] A. Harth and S. Decker. Optimized index structures for querying RDF from the Web [C],Proceedings of the LA-WEB2005:71-80.
    [124] D.J. Abadi, A. Marcus, S.R. Madden and K. Hollenbach. Scalable semantic Web datamanagement using vertical partitioning [C]. In: Koch C, Gehrke J, Garofalakis MN,Srivastava D, Aberer K, Deshpande A, Florescu D, Chan CY, Ganti V, Kanne CC, Klas W,Neuhold EJ, eds. Proc. of the VLDB2007. New York: ACM Press,2007.411422.
    [125] G. Qin. Some key issues of ontology repository managment system [D], Beijing: RenminUniversity of China,2006.
    [126] E. Chu, A. Baid, T. Chen, A.H. Doan and J. Naughton. A relational approach to incrementallyextracting and querying structure in unstructured data [C]. In: Koch C, Gehrke J, GarofalakisMN, Srivastava D, Aberer K, Deshpande A, Florescu D, Chan CY, Ganti V, Kanne CC, KlasW, Neuhold EJ, eds. Proc. of the VLDB2007. New York: ACM Press,2007.10451056.
    [127] Y. Shu, W. X. Pin and W. Gang. Analysis of semantic query performance for jena-basedstorage model [C]. Proceedings2010IEEE International Conference on Software Engineeringand Service Sciences, ICSESS2010, July16,2010-July18,2010, Beijing, China:553-556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700