老化对猴中颞视区细胞方向选择性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
老化使视觉的正常功能受到严重的削弱。但是眼睛的光学系统老年性改变并不能完全解释很多视觉功能损伤。通常认为神经系统的退化是这种老年性视觉功能降低的主要原因。在过去的几年内,很多研究组发现老年动物视觉皮层细胞的一系列反应特性发生了改变,例如:老年猕猴初级视皮层、次级视皮层细胞的方位方向选择性显著性降低。这些在细胞水平上的变化被认为是老年性视觉功能损伤的神经机制。为了更全面的了解正常老化对视觉皮层细胞功能的影响,本研究采用在体细胞外单位记录方法,从以下两方面进一步比较青年猕猴和老年猕猴视觉皮层细胞反应特性的差异:
     1.中颞视区(MT)细胞方向选择性的功能衰退
     精确感知物体的运动方向和速度的能力对于生存是至关重要的。近年来的许多心理物理学实验表明人们的这种能力在正常老化过程中发生了衰退。但是这种衰退不能完全由眼视光和视网膜的变化来解释。因此,Spear提出假说认为这种衰退来源于视觉中枢的功能性退化。
     关于这种视觉功能的衰退机制使用细胞外记录的方法已经在几个不同的脑区进行了研究。这些研究结果表明老化对外膝体的影响很小,而对V1(PrimaryVisual Cortex、初级视皮层)和V2(Secondary Viusal Cortex、次级视皮层)区的影响比较严重。这些研究表明V1和V2区细胞的方向方位选择性在老化过程中显著退化。同时还发现V2区细胞的方位选择性受老化的影响比V1区的严重。而且过度活动和信噪比降低伴随着这种细胞的退化。过度活动和选择性的降低被认为是由GABA介导的抑制系统衰退导致的。
     众所周知,方向选择性细胞在运动处理的过程中起着非常重要的作用。在运动处理早期主要有V1区细胞起作用。V1区运动敏感细胞的最优运动方向与该细胞最优方位正交,因此学者普遍认为V1细胞对运动刺激的组分进行反应。近来的实验表明老化降低了V1细胞的方向选择性。但是到目前为止,老化对运动处理后期的影响尚不知道。
     中颞视区(Middle Temporal area、MT)和高阶的运动检测处理密切相关。在这个区域,90%以上的细胞都有很强的方向选择性。这些选择性细胞的一部分是PDS细胞(Pattern direction selective cell or pattern cell),他们能检测物体的运动方向。由于这类细胞也存在于人类的MT+区。所以,研究老化对中颢视区细胞,特别是PDS细胞反应特性的影响有着非常重要的意义。为了探讨老化对运动处理后期的影响及其和行为的关系,本实验研究了老化对猕猴的中颢视区(MT)细胞功能的影响。我们还研究了老化对PDS细胞的比例和V1、MT区的方向选择性的影响。结果表明,与青年猕猴的MT细胞相比,老年猕猴的MT细胞方向选择性显著性降低。通过定量和统计的方法比较老化对MT细胞和V1细胞的方向选择性的影响,我们发现MT细胞受老化影响更严重。我们还发现老年猕猴中颢视区的PDS细胞所占的比例显著性下降。这种年龄相关的变化伴随着诱发发放升高、自发发放升高和信噪比降低。总之,我们的实验结果表明年龄依赖的功能性衰退发生在MT和V1区。这种功能性衰退可能导致了正常老化过程中视运动知觉的衰退。
     2.老年猕猴V1区皮层内的方位方向选择性的衰退
     普遍认为灵长类视觉系统分为两个通路,负责物体识别的背侧通路(又称M通路)和负责空间识别和运动知觉的腹侧通路(又称P通路),M通路和P通路并行处理,而各个通路内的信息处理却是逐级的,级别比较高的脑区执行比较复杂的功能。
     在过去的十多年里,有不少研究是使用单细胞记录技术在不同的脑区探讨年龄相关的老化机制。这些研究表明老化对外膝体的影响极小。而在初级视皮层,细胞的方位、方向和对比敏感度都发生了衰退。在V2区的研究表明,V2区细胞的方位选择性的衰退比V1区严重。在MT区的研究也表明,MT细胞的方向选择性和对比敏感度受老化的影响也比V1严重。这种影响从LGN、V1到V2和MT的视觉通路上是逐级增加的。这些实验似乎揭示着一个假设:老化对视觉通路的影响是逐级累积的,即级别越高的脑区功能受老化的影响越严重。
     视觉信息除了脑区之间的功能级别不同外,在脑区内部的功能级别也是不同的。目前研究比较多的是初级视皮层的皮层内功能层级结构。如果前述提出的假设成立的话,我们应该发现复杂细胞的反应特性受老化的影响比简单细胞严重。因此,我们使用在体单细胞记录的方法在麻醉麻痹猕猴上研究这个问题。
     结果发现与青年猕猴相比,老年猕猴简单细胞的方位方向选择性虽然有轻微降低,但是没有达到统计显著性。而复杂细胞的方位方向选择性显著性降低。也就是说简单细胞和复杂细胞受老化影响的程度不同。这表明在正常老化过程中初级视皮层皮层内的高级功能受老化的影响更为严重。这给我们的假设提供了进一步的支持。
     通过上述的两个实验,我们研究了猕猴视皮层细胞老年性功能退化在不同的脑区和不同功能层级的表现特点。结果发现老年猕猴MT细胞的功能,方向选择性,显著性降低,并且比V1细胞的改变更为明显。而且,其中和图像连续性运动感知行为密切相关的一类MT细胞——PDS细胞发生了丢失。MT区细胞发生的老年性功能衰退可能导致了老年人视运动知觉的损伤。另外,我们认为功能级别越高的脑区功能可能受老化的影响更严重。通过研究老化对简单细胞和复杂细胞方位方向选择性的影响,所得结果进一步支持了我们的这个想法。
Visual functions are impaired significantly by aging.The aging-related visual deficits can be observed even after the optical factor has been well controlled.It is suggested that the central nerve system plays an important role in generation of such deficits.In the past two decades,several alterations in response properties of visual cortical cells have been reported in senescent animal models,which were considered as the neural mechanisms underlying the aging-related degradation of vision.In order to a more comprehensive understanding about the aging effects on visual cortices and the relationship between the changes at cellular level and the functional degeneration at the whole system level,in the present study,we used in vivo extracellular single-unit recording techniques to compare the response property of visual cortical cells in young and old monkeys.The study included 2 experiments:
     1.Aging affects the direction selectivity of MT cells in rhesus monkeys.
     The ability to accurately perceive the direction and speed of moving objects is critical for survival.Many psychophysical studies have shown that this ability declines in humans during normal aging.This cannot be due to optical changes or changes in the retina alone.Therefore,it has been hypothesized that this decline results from functional degradation in central visual areas.
     The mechanisms that underlie the visual decline that accompanies aging have been investigated using single-cell recording techniques in different visual areas. Studies have provided evidence that the effects of aging on the dorsal lateral geniculate nucleus(dLGN) are minor,while those in the striate cortex(V1) and extrastriate cortex(V2) are severe.Both the orientation and direction selectivity of V1 and V2 cells degrade during senescence.These declines are accompanied by hyperactivity and decreased signal-to-noise ratios.Such hyperactivity and decreased selectivity are thought to be due to the degradation of GABA-mediated inhibition within the visual cortex.
     It is known that direction-selective neurons play an important role in motion processing.V1 cells are involved in early stages of motion perception. Motion-sensitive neurons in this area respond to the 'component' motion of moving stimuli.These cells signal motion that is orthogonal to their preferred orientations. Recent studies have shown that aging reduces the direction selectivity of V1 cells.To date,nothing is known about age-related changes in later stages of motion processing.
     The middle temporal area(MT or V5) of the extrastriate cortex has been linked to higher order motion detection.In this area,more than 90%of the neurons are direction-selective.A proportion of MT direction-selective neurons are pattern cells. These cells can detect the direction of moving objects independently of their particular spatial pattern.Thus,the responses of these cells can be equated with human perception.In fact,a population of pattern cells exists in human MT+,and the activity of these neurons is closely linked to the perception of coherent pattern motion.
     We studied the effect of aging upon MT cells in macaque monkeys by comparing the proportion of pattern cells and the degree of direction selectivity of MT cells in young and old monkeys.The results show that the proportion of pattern cells in MT decreases in old macaques.A comparison of direction selectivity of areas V1 and MT in old and young monkeys provides evidence that DB in cells in both areas decrease in old monkeys.MT cells showed a larger decrease than V1 cells did.These age-related changes were accompanied by increases in peak response and spontaneous activity,as well as a decrease in signal-to-noise ratio.Taken together,our results indicate that functional degradation occurs in both areas of MT and V1 during normal aging,and that area MT is affected by aging more severely than the striate cortex is. Such functional degradation in area MT may contribute to the decline in perception of moving objects during normal aging.
     2.Degradation of intra-cortical processing in primary visual cortex of senescent monkey.
     The primate visual system is broadly organized into two segregated processing pathways,a ventral stream for object vision and a dorsal stream for space vision, termed as P pathway and M pathway.Within both streams,visual information is processed sequentially such that progressively more complex functions are carried out at progressively higher levels in the hierarchy.
     Over the past decades,the mechanisms underlying visual declines that accompany aging have been investigated using single-cell recording technique in a variety of visual areas and deficits in neuronal response was found,with different extends,along the visual hierarchy.The emerged picture suggested that the aging effect could be inserted into each processing stage and resulted in the progressive functional degradation along the hierarchy of visual information processing.For example,studies have provided evidence that the effects of aging on the dLGN are minor,while those in striate cortex are severe,In P pathway,extrastriate cortex(V2) is found more severe affects by aging than V1.Similarly,in M pathway,MT is also found to be affected more severe than V1.Taken these studies together,it is reasonable to hypothesize that higher hierarchical levels are affected by aging more severe.
     Besides the visual hierarchy composed of different cortical structures or areas, there are similar hierarchies of processing within individual areas.The most well studied example is the simple cell and complex cell in V1.In 1959,Hubel and Wiesel first reported that in the striate cortex,neurons respond selectively to the orientation of local contours and to the direction of motion of a visual stimulus.Also,they found that those neurons could be classified into simple and complex cells based on their receptive field properties.According to hierarchical processing model proposed by Hubel and Wiesel,simple cells receiving inputs from dorsal lateral geniculate nucleus (dLGN) become selective to the orientation of a local contour in a specific location. Complex cells,which carry out more complex functions,integrating information from simple cells become selective to the orientation of a local contour regardless of its exact position within the receptive field.Therefore,the hypothesis that we want to test in the present study is:the complex cells,located at the higher stage of processing, affected by aging more severe than simple cells.To this end,we investigated the visual response of cortical cells in anesthetized and paralyzed monkeys.Orientation and direction selectivity of simple and complex cells between young and old monkeys were compared.
     Our results have shown that the orientation and direction selectivities to stimuli of simple cells are relatively normal in old V1 area.However,the selectivities of complex cells decrease in old monkeys.The differential age-related changes of the two types of cells indicate that intra-cortical information processing suffers impairments in different degree during aging.
     By these two experiments,we studied the different characteristics of aging effects in different brain areas and the degradation of information processing during normal aging.The results indicate that 1) there is more severe functional degradation of higher hierarchy;2) The degradation of MT cells in old monkeys might result in visual motion deficits in old human.3) The hypothesis that higher hierarchical levels are affected by aging more severe was well supported by our experiments and previous studies.
引文
Adams, I. (1987). "Comparison of synaptic changes in the precentral and postcentral cerebral cortex of aging humans: a quantitative ultrastructural study." Neurobiol Aging 8 (3): 203-12.
    Adams, I. (1987). "Plasticity of the synaptic contact zone following loss of synapses in the cerebral cortex of aging humans." Brain Res 424 (2): 343-51.
    Adams, I. and D. G. Jones (1982). "Quantitative ultrastructural changes in rat cortical synapses during early-, mid- and late-adulthood." Brain Res 239 (2): 349-63.
    Adclson, E. H. and J. A. Movshon (1982). "Phenomenal coherence of moving visual patterns." Nature 300 (5892): 523-5.
    Adelson, E. H. and J. R. Bergen (1985). "Spatiotemporal energy models for the perception of motion." J Opt Soc Am A 2 (2): 284-99.
    Albright, T. D. (1984). "Direction and orientation selectivity of neurons in visual area MT of the macaque." J Neurophysiol 52 (6): 1106-30.
    Albright, T. D. and G. R. Stoner (1995). "Visual motion perception." Proc Natl Acad Sci U S A 92 (7): 2433-40.
    Allman, J. M. and J. H. Kaas (1971). "A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus)." Brain Res 31 (1): 85-105.
    Alonso, J. M. and L. M. Martinez (1998). "Functional connectivity between simple cells and complex cells in cat striate cortex." Nat Neurosci 1 (5): 395-403.
    Anderson, B. and V. Rutledge (1996). "Age and hemisphere effects on dendritic structure." Brain 119 (Pt 6): 1983-90.
    Anderson, J. C. and K. A. Martin (2002). "Connection from cortical area V2 to MT in macaque monkey." J Comp Neurol 443 (1): 56-70.
    Anderson, J. C. and T. Binzegger, et al. (1998). "The connection from cortical area V1 to V5: a light and electron microscopic study." J Neurosci 18 (24): 10525-40.
    Arnsten, A. F. and T. A. Contant (1992). "Alpha-2 adrenergic agonists decrease distractibility in aged monkeys performing the delayed response task." Psychopharmacology (Berl) 108 (1-2): 159-69.
    Bachevalier, J. and L. S. Landis, et al. (1991). "Aged monkeys exhibit behavioral deficits indicative of widespread cerebral dysfunction." Neurobiol Aging 12 (2): 99-111.
    Ball, K. and C. Owsley, et al. (1993). "Visual attention problems as a predictor of vehicle crashes in older drivers." Invest Ophthalmol Vis Sci 34 (11): 3110-23.
    Ball, K. and R. Sekuler (1986). "Improving visual perception in older observers." J Gerontol 41 (2): 176-82.
    Barlow, H. B. (1986). "Why have multiple cortical areas?." Vision Res 26 (1): 81-90.
    Barth, E. and A. B. Watson (2000). "A geometric framework for nonlinear visual coding." Optics Express 7 (4): 155-165.
    Bartus, R. T. and D. Fleming, et al. (1978). "Aging in the rhesus monkey: debilitating effects on short-term memory." J Gerontol 33 (6): 858-71.
    Bennett, P. J. and A. B. Sekuler, et al. (1999). "Effects of aging on calculation efficiency and equivalent noise." J Opt Soc Am A Opt Image Sci Vis 16 (3): 654-68.
    Betts, L. R. and C. P. Taylor, et al. (2005). "Aging reduces center-surround antagonism in visual motion processing." Neuron 45 (3): 361-6.
    Bigham, M. H. and M. S. Lidow (1995). "Adrenergic and serotonergic receptors in aged monkey neocortex." Neurobiol Aging 16 (1): 91-104.
    Bowns, L. (1996). "Evidence for a feature tracking explanation of why type II plaids move in the vector sum direction at short durations." Vision Res 36 (22): 3685-94.
    Bradley, D. C. and N. Qian, et al. (1995). "Integration of motion and stereopsis in middle temporal cortical area of macaques." Nature 373 (6515): 609-11.
    Bradley, D. C. and R. A. Andersen (1998). "Center-surround antagonism based on disparity in primate area MT." J Neurosci 18 (18): 7552-65.
    
    Brainard, D. H. (1997). "The Psychophysics Toolbox." Spat Vis 10 (4): 433-6.
    Brewer, A. A. and W. A. Press, et al. (2002). "Visual areas in macaque cortex measured using functional magnetic resonance imaging." J Neurosci 22 (23): 10416-26.
    Britten, K. H. and M. N. Shadlen, et al. (1992). "The analysis of visual motion: a comparison of neuronal and psychophysical performance." J Neurosci 12 (12): 4745-65.
    Brody, H. (1955). "Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex." J Comp Neurol 102 (2): 511-6.
    Brown, T. S. (1963). "Olfactory and visual discrimination in the monkey after selective lesions of the temporal lobe." J Comp Physiol Psychol 56 : 764-8.
    Butler, K. M. and R. T. Zacks (2006). "Age deficits in the control of prepotent responses: evidence for an inhibitory decline." Psychol Aging 21 (3): 638-43.
    Churchland, M. M. and N. J. Priebe, et al. (2005). "Comparison of the spatial limits on direction selectivity in visual areas MT and V1." J Neurophysiol 93 (3): 1235-45.
    Coleman, P. D. and D. G. Flood (1991). "Net dendritic stability of layer II pyramidal neurons in F344 rat entorhinal cortex from 12 to 37 months." Neurobiol Aging 12 (5): 535-41.
    Colon, E. J. (1972). "The elderly brain. A quantitative analysis in the cerebral cortex of two cases." Psychiatr Neurol Neurochir 75 (4): 261-70.
    Cragg, B. G. (1975). "The density of synapses and neurons in normal, mentally defective ageing human brains." Brain 98 (1): 81-90.
    Curran, T. and A. Hills, et al. (2001). "Effects of aging on visuospatial attention: an ERP study." Neuropsychologia 39 (3): 288-301.
    Curcio, C. A. and N. A. McNelly, et al. (1985). "Aging in the rat olfactory system: relative stability of piriform cortex contrasts with changes in olfactory bulb and olfactory epithelium." J Comp Neurol 235 (4): 519-28.
    DeAngelis, G. C. and T. Uka (2003). "Coding of horizontal disparity and velocity by MT neurons in the alert macaque." J Neurophysiol 89 (2): 1094-111.
    DeAngelis, G. C. and W. T. Newsome (1999). "Organization of disparity-selective neurons in macaque area MT." JNeurosci 19 (4): 1398-415.
    DeFelipe, J. and I. Farinas (1992). "The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs." Prog Neurobiol 39 (6): 563-607.
    Devaney, K. O. and H. A. Johnson (1980). "Neuron loss in the aging visual cortex of man." J Gerontol 35 (6): 836-41.
    DeYoe, E. A. and E. D. Van (1985). "Segregation of efferent connections and receptive field properties in visual area V2 of the macaque." Nature 317 (6032): 58-61.
    Diaz, F. and E. Amenedo (1998). "Ageing effects on flash visual evoked potentials (FVEP) recorded from parietal and occipital electrodes." Neurophysiol Clin 28 (5): 399-412.
    Duan, H. and S. L. Wearne, et al. (2003). "Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys." Cereb Cortex 13 (9): 950-61.
    Dubner, R. and S. M. Zeki (1971). "Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey." Brain Res 35 (2): 528-32.
    Dustman, R. E. and R. Y. Emmerson, et al. (1996). "Life span changes in electrophysiological measures of inhibition." Brain Cogn 30 (1): 109-26.
    Ego-Stengel, V. and V. Bringuier, et al. (2002). "Noradrenergic modulation of functional selectivity in the cat visual cortex: an in vivo extracellular and intracellular study." Neuroscience 111 (2): 275-89.
    Eysel, U. T. and I. A. Shevelev, et al. (1998). "Orientation tuning and receptive field structure in cat striate neurons during local blockade of intracortical inhibition." Neuroscience 84 (1): 25-36.
    Faragher, R. G. and B. Mulholland, et al. (1997). "Aging and the cornea." Br J Ophthalmol 81 (10): 814-7.
    Felleman, D. J. and E. D. Van (1991). "Distributed hierarchical processing in the primate cerebral cortex." Cereb Cortex 1 (1): 1-47.
    Fennema, C. L. and W. B. Thompson (1979). "Velocity determination in scenes containing several moving images." Comput. Graphics Image Process. 9 : 301-315.
    Feldman, M. L. and A. Peters (1998). "Ballooning of myelin sheaths in normally aged macaques." JNeurocytol 27(8):605-14.
    Gilmartin, B. (1995). "The aetiology of presbyopia: a summary of the role of lenticular and extralenticular structures." Ophthalmic Physiol Opt 15 (5): 431-7.
    Girard, P. and J. Bullier (1989). "Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey." J Neurophysiol 62 (6): 1287-302.
    Girard, P. and P. A. Salin, et al. (1991). "Visual activity in macaque area V4 depends on area 17 input." Neuroreport 2 (2): 81-4.
    Girard, P. and P. A. Salin, et al. (1992). "Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1." J Neurophysiol 67 (6): 1437-46.
    Gittings, N. S. and J. L. Fozard (1986). "Age related changes in visual acuity." Exp Gerontol 21 (4-5): 423-33.
    Gutierrez, A. and Z. U. Khan, et al. (1997). "GABAA receptor subunit expression changes in the rat cerebellum and cerebral cortex during aging." Brain Res Mol Brain Res 45 (1): 59-70.
    Gunning-Dixon, F. M. and N. Raz (2000). "The cognitive correlates of white matter abnormalities in normal aging: a quantitative review." Neuropsychology 14 (2): 224-32.
    Guttmann, C. R. and F. A. Jolesz, et al. (1998). "White matter changes with normal aging." Neurology 50 (4): 972-8.
    Habak, C. and J. Faubert (2000). "Larger effect of aging on the perception of higher-order stimuli." Vision Res 40 (8): 943-50.
    Haug, H. (1984). "Macroscopic and microscopicmorphometry of the human brain and cortex. A survey in the light of new results." Brain Pathol 1 : 123-149.
    Haug, H., Ed. (1985). Are neurons of the human cerebral cortex really lost during aging? A morphometric evaluation. Senile dementia of the Alzheimer type. Berlin, Springer.
    Haug, H. and S. Kuhl, et al. (1984). "The significance of morphometric procedures in the investigation of age changes in cytoarchitectonic structures of human brain." J Hirnforsch 25 (4): 353-74.
    Heeger, D. J. (1987). "Model for the extraction of image flow." J Opt Soc Am A 4 (8): 1455-71.
    Henderson, G. and B. E. Tomlinson, et al. (1980). "Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer." J Neurol Sci 46 (1): 113-36.
    Higgins, K. E. and M. J. Jaffe, et al. (1988). "Spatial contrast sensitivity: effects of age, test-retest, and psychophysical method." J Opt Soc Am A 5 (12): 2173-80.
    Hirsch, J. A. and L. M. Martinez (2006). "Circuits that build visual cortical receptive fields." Trends Neurosci 19 (1): 30-9.
    Hof, P. R. and H. Duan, et al. (2002). "Age-related changes in GluR2 and NMDAR1 glutamate receptor subunit protein immunoreactivity in corticocortically projecting neurons in macaque and patas monkeys." Brain Res 928 (1-2): 175-86.
    Hu, B. and X. Li, et al. (2000). "Effects of bicuculline on direction-sensitive relay cells in the dorsal lateral geniculate nucleus (LGNd) of cats." Brain Res 885 (1): 87-93.
    Hua, T. and X. Li, et al. (2006). "Functional degradation of visual cortical cells in old cats." Neurobiol Aging 27 (1): 155-62.
    
    Hubcl, D. H. (1988). Eye, Brain, and Vision, W H Freeman & Co (Sd).
    Hubel, D. H. and M. S. Livingstone (1987). "Segregation of form, color, and stereopsis in primate area 18." J Neurosci 7 (11): 3378-415.
    Hubcl, D. H. and T. N. Wiesel (1959). "Receptive fields of single neurones in the cat's striate cortex." JPhysiol 148 : 574-91.
    Hubel, D. H. and T. N. Wiesel (1962). "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex." J Physiol 160 : 106-54.
    Hubel, D. H. and T. N. Wiesel (1968). "Receptive fields and functional architecture of monkey striate cortex." J Physiol 195 (1): 215-43.
    Huk, A. C. and D. J. Heeger (2002). "Pattern-motion responses in human visual cortex." Nat Neurosci 5(1): 72-5.
    Huttenlocher, P. R. (1979). "Synaptic density in human frontal cortex - developmental changes and effects of aging." Brain Res 163 (2): 195-205.
    Jacobs, B. and A. B. Scheibel (1993). "A quantitative dendritic analysis of Wernicke's area in humans. I. Lifespan changes." J Comp Neurol 327 (1): 83-96.
    Jacobs, B. and L. Driscoll, et al. (1997). "Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study." J Comp Neurol 386 (4): 661-80.
    Justino, L. and H. Kergoat, et al. (2001). "Changes in the retinocortical evoked potentials in subjects 75 years of age and older." Clin Neurophysiol 112 (7): 1343-8.
    Kline, D. W. and C. T. Scialfa, et al. (1990). "Age differences in the temporal continuity of gratings as a function of their spatial frequency." Exp Aging Res 16 (1-2): 61-5.
    Kline, D. W. and J. C. Culham, et al. (2001). "Aging effects on vernier hyperacuity: a function of oscillation rate but not target contrast." Optom Vis Sci 78 (9): 676-82.
    Kosnik, W. and L. Winslow, et al. (1988). "Visual changes in daily life throughout adulthood." J Gerontol 43 (3): P63-70.
    Kun, G. P. (2004). "Pattern motion is present in V1 of awake but not anaesthetized monkeys." European Journal of Neuroscience 19 (4): 1055-1066.
    Leuba, G. (1983). "Aging of dendrites in the cerebral cortex of the mouse." Neuropathol Appl Neurobiol 9 (6): 467-75.
    Leventhal, A. G. and K. G. Thompson, et al. (1995). "Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex." J Neurosci 15 (3 Pt 1): 1808-18.
    Leventhal, A. G. and Y. Wang, et al. (2003). "GABA and its agonists improved visual cortical function in senescent monkeys." Science 300 (5620): 812-5.
    Liang, Z. and Y. Yang, et al. (2008). "Aging affects the direction selectivity of MT cells in rhesus monkeys." Neurobiol Aging.
    Lisberger, S. G. and E. J. Morris, et al. (1987). "Visual motion processing and sensory-motor integration for smooth pursuit eye movements." Annu Rev Neurosci 10 : 97-129.
    Lintl, P. and H. Braak (1983). "Loss of intracortical myelinated fibers: a distinctive age-related alteration in the human striate area." Acta Neuropathol 61 (3-4): 178-82.
    Martinez, L. M. and Q. Wang, et al. (2005). "Receptive field structure varies with layer in the primary visual cortex." Nat Neurosci 8 (3): 372-9.
    Maunsell, J. H. and E. D. van (1983). "The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey." J Neurosci 3 (12): 2563-86.
    McLean, J. and B. D. Waterhouse (1994). "Noradrenergic modulation of cat area 17 neuronal responses to moving visual stimuli." Brain Res 667 (1): 83-97.
    McLean, J. and L. A. Palmer (1989). "Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat." Vision Res 29 (6): 675-9.
    Mendelson, J. R. and E. F. Wells (2002). "Age-related changes in the visual cortex." Vision Res 42 (6): 695-703.
    Mervis, R. (1978). "Structural alterations in neurons of aged canine neocortex: a Golgi study." Exp Neurol 62 (2): 417-32.
    Mikami, A. and W. T. Newsome, et al. (1986). "Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT." J Neurophysiol 55 (6): 1308-27.
    Mishkin, M. (1954). "Visual discrimination performance following partial ablations of the temporal lobe. II. Ventral surface vs. hippocampus." J Comp Physiol Psychol 47 (3): 187-93.
    Mishkin, M. and K. H. Pribram (1954). "Visual discrimination performance following partial ablations of the temporal lobe. I. Ventral vs. lateral." J Comp Physiol Psychol 47 (1): 14-20.
    Morrison, J. H. and P. R. Hof (1997). "Life and death of neurons in the aging brain." Science 278 (5337): 412-9.
    Morrison, J. H. and P. R. Hof (2007). "Life and death of neurons in the aging cerebral cortex." Int Rev Neurobiol 81 : 41-57.
    Markus, E. J. and T. L. Petit (1987). "Neocortical synaptogenesis, aging, and behavior: lifespan development in the motor-sensory system of the rat." Exp Neurol 96 (2): 262-78.
    Movshon, J. A. and E. H. Adelson, et al. (1986). "The analysis of moving visual patterns." Exp Brain Res [Suppl 2]: : 117-151.
    Movshon, J. A. and I. D. Thompson, et al. (1978). "Receptive field organization of complex cells in the cat's striate cortex." J Physiol 283 : 79-99.
    Movshon, J. A. and W. T. Newsome (1996). "Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys." J Neurosci 16 (23): 7733-41.
    Mungai, J. M. (1967). "Dendritic patterns in the somatic sensory cortex of the cat." J Anat 101 (Pt 3): 403-18.
    Nauta, W. J. and P. A. Gygax (1954). "Silver impregnation of degenerating axons in the central nervous system: a modified technic." Stain Technol 29 (2): 91-3.
    Newsome, W. T. and E. B. Pare (1988). "A selective impairment of motion perception following lesions of the middle temporal visual area (MT)." J Neurosci 8 (6): 2201-11.
    Newsome, W. T. and K. H. Britten, et al. (1989). "Neuronal correlates of a perceptual decision." Nature 341 (6237): 52-4.
    Nomura, H. and F. Ando, et al. (2003). "Age-related change in contrast sensitivity among Japanese adults." Jpn J Ophthalmol 47 (3): 299-303.
    Norman, J. F. and H. E. Ross, et al. (2003). "Aging and the perception of speed." Perception 32 (1): 85-96.
    O, D. K. and P. R. Rapp, et al. (1999). "Preservation of prefrontal cortical volume in behaviorally characterized aged macaque monkeys." Exp Neurol 160 (1): 300-10.
    Orban, G. A. and H. Kennedy, et al. (1986). "Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity." J Neurophysiol 56 (2): 462-80.
    Owsley, C. and K. Ball, et al. (1995). "Relationship between visual sensitivity and target localization in older adults." Vision Res 35 (4): 579-87.
    Pack, C. C. and R. T. Born, et al. (2003). "Two-dimensional substructure of stereo and motion interactions in macaque visual cortex." Neuron 37 (3): 525-35.
    Page, T. L. and M. Einstein, et al. (2002). "Morphological alterations in neurons forming corticocortical projections in the neocortex of aged Patas monkeys." Neurosci Lett 317 (1): 37-41.
    Pardhan, S. (1996). "A comparison of binocular summation in young and older patients." Curr Eye Res 15 (3): 315-9.
    Pardhan, S. (1997). "A comparison of binocular summation in the peripheral visual field in young and older patients." Curr Eye Res 16 (3): 252-5.
    Pelli, D. G. (1997). "The VideoToolbox software for visual psychophysics: transforming numbers into movies." Spat Vis 10 (4): 437-42.
    Peterhans, E. and H. R. von (1993). "Functional organization of area V2 in the alert macaque." Eur J Neurosci 5 (5): 509-24.
    Peters, A. and C. Sethares, et al. (1998). "The effects of aging on layer 1 in area 46 of prefrontal cortex in the rhesus monkey." Cereb Cortex 8 (8): 671-84.
    Peters, A. and D. L. Rosene, et al. (1996). "Neurobiological bases of age-related cognitive decline in the rhesus monkey." J Neuropathol Exp Neurol 55 (8): 861-74.
    Peters, A. and J. H. Morrison, et al. (1998). "Feature article: are neurons lost from the primate cerebral cortex during normal aging?." Cereb Cortex 8 (4): 295-300.
    Peters, A. and M. B. Moss, et al. (2000). "Effects of aging on myelinated nerve fibers in monkey primary visual cortex." J Comp Neurol 419 (3): 364-76.
    Peters, A. and N. J. Nigro, et al. (1997). "A further evaluation of the effect of age on striate cortex of the rhesus monkey." Neurobiol Aging 18 (1): 29-36.
    Poe, B. H. and C. Linville, et al. (2001). "Age-related decline of presumptive inhibitory synapses in the sensorimotor cortex as revealed by the physical disector." J Comp Neurol 439 (1): 65-72.
    Poe, B. H. and M. C. Linville, et al. (2002). "Insulin-like growth factor-1 does not ameliorate the age-related decline in presumptive inhibitory synapses in layer 2 of rat sensorimotor cortex." Prog Neuropsychopharmacol Biol Psychiatry 26 (1): 97-102.
    Post-Munson, D. J. and J. T. Lum-Ragan, et al. (1994). "Reduced bicuculline response and GABAA agonist binding in aged rat hippocampus." Neurobiol Aging 15 (5): 629-33.
    Poe, B. H. and C. Linville, et al. (2001). "Age-related decline of presumptive inhibitory synapses in the sensorimotor cortex as revealed by the physical disector." J Comp Neurol 439 (1): 65-72.
    Priebe, N. J. and C. R. Cassanello, et al. (2003). "The neural representation of speed in macaque area MT/V5." J Neurosci 23 (13): 5650-61.
    Prince, S. J. and A. D. Pointon, et al. (2000). "The precision of single neuron responses in cortical area V1 during stereoscopic depth judgments." J Neurosci 20 (9): 3387-400.
    Rapp, P. R. and M. Gallagher (1996). "Preserved neuron number in the hippocampus of aged rats with spatial learning deficits." Proc Natl Acad Sci U S A 93 (18): 9926-30.
    Reid, R. C. and R. E. Soodak, et al. (1987). "Linear mechanisms of directional selectivity in simple cells of cat striate cortex." Proc Natl Acad Sci U S A 84 (23): 8740-4.
    Rockland, K. S. (1989). "Bistratified distribution of terminal arbors of individual axons projecting from area V1 to middle temporal area (MT) in the macaque monkey." Vis Neurosci 3 (2): 155-70.
    Rodman, H. R. and C. G. Gross, et al. (1990). "Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal." J Neurosci 10 (4): 1154-64.
    Rubin, G. S. and S. K. West, et al. (1997). "A comprehensive assessment of visual impairment in a population of older Americans. The SEE Study. Salisbury Eye Evaluation Project." Invest Ophthalmol Vis Sci 38 (3): 557-68.
    Rust, N. C. and E. P. Simoncelli, et al. (2005). "Neurons in MT compute pattern direction by pooling excitatory and suppressive inputs." Journal of Vision 5 (8): 1.
    Rust, N. C. and V. Mante, et al. (2006). "How MT cells analyze the motion of visual patterns." Nat Neurosci 9 (11): 1421-1431.
    Salthouse, T. A. and B. L. Somberg (1982). "Isolating the age deficit in speeded performance." J Gerontol 37(1): 59-63.
    Sceniak, M. P. and M. J. Hawken, et al. (2001). "Visual spatial characterization of macaque V1 neurons." J Neurophysiol 85 (5): 1873-87.
    Schefrin, B. E. and S. J. Tregear, et al. (1999). "Senescent changes in scotopic contrast sensitivity." Vision Res 39 (22): 3728-36.
    Scheibel, M. E. and R. D. Lindsay, et al. (1975). "Progressive dendritic changes in aging human cortex." Exp Neurol 47 (3): 392-403.
    Schiller, P. H. and J. G. Malpeli (1977). "The effect of striate cortex cooling on area 18 cells in the monkey." Brain Res 126 (2): 366-9.
    Schmolesky, M. T. and Y. Wang, et al. (2000). "Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys." Nat Neurosci 3 (4): 384-90.
    Seiple, W. and J. P. Szlyk, et al. (1996). "Age-related functional field losses are not eccentricity dependent." Vision Res 36 (12): 1859-66.
    Shefer, V. F. (1973). "Absolute number of neurons and thickness of the cerebral cortex during aging, senile and vascular dementia, and Pick's and Alzheimer's diseases." Neurosci Behav Physiol 6(4):319-24.
    Shipp, S. and S. Zeki (1985). "Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex." Nature 315 (6017): 322-5.
    
    SHOLL, D. A. (1955). "The organization of the visual cortex in the cat." J Anat 89 (1): 33-46.
    Simoncelli, E. P. and D. J. Heeger (1998). "A model of neuronal responses in visual area MT." Vision Res 38 (5): 743-61.
    Sincich, L. C. and K. F. Park, et al. (2004). "Bypassing V1: a direct geniculate input to area MT." Nat Neurosci 7 (10): 1123-8.
    Skottun, B. C. and V. R. De, et al. (1991). "Classifying simple and complex cells on the basis of response modulation." Vision Res 31 (7-8): 1079-86.
    Snowden, R. J. and E. Kavanagh (2006). "Motion perception in the ageing visual system: minimum motion, motion coherence, and speed discrimination thresholds." Perception 35 (1): 9-24.
    
    Spear, P. D. (1993). "Neural bases of visual deficits during aging." Vision Res 33 (18): 2589-609.
    Spear, P. D. and R. J. Moore, et al. (1994). "Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys." J Neurophysiol 72 (1): 402-20.
    Stanford, T. and R. H. Pollack (1984). "Configuration color vision tests: the interaction between aging and the complexity of figure-ground segregation." J Gerontol 39 (5): 568-71.
    Stepniewska, I. and H. X. Qi, et al. (1999). "Do superior colliculus projection zones in the inferior pulvinar project to MT in primates?." Eur J Neurosci 11 (2): 469-80.
    Stoner, G. R. and T. D. Albright (1992). "Neural correlates of perceptual motion coherence." Nature 358 (6385): 412-4.
    Schmiedt, R. A. and J. H. Mills, et al. (1990). "Tuning and suppression in auditory nerve fibers of aged gerbils raised in quiet or noise." Hear Res 45 (3): 221-36.
    Tarnowski, B. I. and R. A. Schmiedt, et al. (1991). "Age-related changes in cochleas of mongolian gerbils." Hear Res 54(1): 123-34.
    Terry, R. D. and R. DeTeresa, et al. (1987). "Neocortical cell counts in normal human adult aging." Ann Neurol 21 (6): 530-9.
    Tigges J, Spatz WB, Tigges M. Reciprocal point-to-point connections between parastriateand striate cortex in the squirrel monkey (Saimiri). J. Comp. Neurol. 148: 481-489,1973.
    Thiele, A. and C. Distler, et al. (2004). "Contribution of inhibitory mechanisms to direction selectivity and response normalization in macaque middle temporal area." Proc Natl Acad Sci U S A 101 (26): 9810-5.
    Thomas, O. M. and B. G. Cumming, et al. (2002). "A specialization for relative disparity in V2." Nat Neurosci 5 (5): 472-8.
    Tinsley, C. J. and B. S. Webb, et al. (2003). "The nature of V1 neural responses to 2D moving patterns depends on receptive-field structure in the marmoset monkey." J Neurophysiol 90 (2): 930-7.
    Tran, D. B. and S. E. Silverman, et al. (1998). "Age-related deterioration of motion perception and detection." Graefes Arch Clin Exp Ophthalmol 236 (4): 269-73.
    Trick, G. L. and S. E. Silverman (1991). "Visual sensitivity to motion: age-related changes and deficits in senile dementia of the Alzheimer type." Neurology 41 (9): 1437-40.
    Tigges, J. and J. G. Herndon, et al. (1996). "Preservation into old age of synaptic number and size in the supragranular layer of the dentate gyrus in rhesus monkeys." Acta Anat (Basel) 157 (1): 63-72.
    Uylings, H. B. and B. J. de (2002). "Ncuronal changes in normal human aging and Alzheimer's disease." Brain Cogn 49 (3): 268-76.
    Vaughan, D. W. (1977). "Age-related deterioration of pyramidal cell basal dendrites in rat auditory cortex." J Comp Neurol 171 (4): 501-15.
    Wang, H. and X. Xie, et al. (2006). "Functional degradation of visual cortical cells in aged rats." Brain Res 1122(1): 93-8.
    Wang, Y. and Y. Zhou, et al. (2005). "Degradation of signal timing in cortical areas V1 and V2 of senescent monkeys." Cereb Cortex 15 (4): 403-8.
    Watson, A. B. and A. J. Ahumada (1983). A look at motion in the frequency domain. Motion: Perception and representation. J. K. Tsotsos. New York, Association for Computing Machinery: 1-10.
    Weiskrantz, L. and M. Mishkin (1958). "Effects of temporal and frontal cortical lesions on auditory discrimination in monkeys." Brain 81 (3): 406-14.
    Weiss, Y. and E. P. Simoncelli, et al. (2002). "Motion illusions as optimal percepts." Nat Neurosci 5 (6): 598-604.
    West, M. J. (1993). "Regionally specific loss of neurons in the aging human hippocampus." Neurobiol Aging 14 (4): 287-93.
    West, M. J. and H. J. Gundersen (1990). "Unbiased stereological estimation of the number of neurons in the human hippocampus." J Comp Neurol 296 (1): 1-22.
    West, M. J. and P. D. Coleman, et al. (1994). "Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease." Lancet 344 (8925): 769-72.
    Whitaker, D. and D. B. Elliott (1992). "Simulating age-related optical changes in the human eye." Doc Ophthalmol 82 (4): 307-16.
    Wickelgren, I. (1996). "For the cortex, neuron loss may be less than thought." Science 273 (5271): 48-50.
    Willis, A. and S. J. Anderson (2000). "Effects of glaucoma and aging on photopic and scotopic motion perception." Invest Ophthalmol Vis Sci 41 (1): 325-35.
    Wilson, H. R. (1998). Non-Fourier cortical processes in texture, form, and motion. Cerebral cortex: models of cortical circuitry. P. S. Ulinski, E. G. Jones, A. Peters and A. Peters. New York, Plenum. 13.
    Wilson, H. R. and V. P. Ferrera, et al. (1992). "A psychophysically motivated model for two-dimensional motion perception." Vis Neurosci 9 (1): 79-97.
    Wist, E. R. and M. Schrauf, et al. (2000). "Dynamic vision based on motion-contrast: changes with age in adults." Exp Brain Res 134 (3): 295-300.
    
    Wong, T. P. (2002). "Aging of the cerebral cortex." McGill J Med 6 : 104 -113.
    Yang, Y. and Z. Liang, et al. (2008). "Aging affects contrast response functions and adaptation of middle temporal visual area neurons in rhesus monkeys." Neuroscience.
    Yo, C. and H. R. Wilson (1992). "Perceived direction of moving two-dimensional patterns depends on duration, contrast and eccentricity." Vision Res 32 (1): 135-47.
    Yu, S. and Y. Wang, et al. (2006). "Functional degradation of extrastriate visual cortex in senescent rhesus monkeys." Neuroscience 140 (3): 1023-9.
    Zeki, S. M. (1978). "Functional specialisation in the visual cortex of the rhesus monkey." Nature 274 (5670): 423-8.
    Zecevic, N. and J. P. Bourgeois, et al. (1989). "Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life." Brain Res Dev Brain Res 50 (1): 11-32.
    Zhang, J. and X. Wang, et al. (2008). "Spatial and temporal sensitivity degradation of primary visual cortical cells in senescent rhesus monkeys." Eur J Neurosci 28 (1): 201-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700