用户名: 密码: 验证码:
重庆酸雨区受害马尾松林的结构与水文功能特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸沉降对森林生态系统的长期影响还未消除,然而以极端干旱事件频发为代表的全球气候变化对酸雨区的受害森林又带来新的挑战,研究变化环境下的生态水文过程和功能响应已成为21世纪生态环境与水资源管理的热点。为全面深入理解气候变化背景下酸害森林的健康变化,丰富森林生态水文学的理论内容和专业视角,并为受害森林的生态水文服务功能评价和管理提供理论指导和决策支持,本文在重庆铁山坪酸雨区调查了受害马尾松林(林龄40-60年)的结构特征和定位监测了其水文过程,并参考国内健康森林(马尾松林)的结构特征和水文功能文献数据,对比分析了酸害马尾松林的结构特征变化和其生态水文特征。主要结论如下:
     1.受害马尾松林的林分结构特征变化明显
     在所研究的马尾松林中,以马尾松为主构成了主林冠层,且在下木层中几乎没有马尾松分布;研究林分的树种组成较简单(4-9种),其多样性指数(Simposon)较低,变化在0.23-0.69。香樟、木荷、楠木等阔叶树种主要分布在下木层,并开始进入被压木优势度等级,它们与马尾松的种间竞争将日趋激烈。马尾松林的冠层郁闭度较高(0.87),但因大量针叶凋落造成冠层稀疏,不能构成对林下灌木、草本分布的影响。林下灌木层的盖度为63.95%、草本层的盖度为48.62%;草本分布受到灌木层盖度的显著影响。与健康马尾松林相比,受害马尾松林的根系生物量减小和分布变浅(主要在0-40cm),尤其是细根生物量减少和集中分布在表层(0-10cm),并随土深而快速减小。
     2.受害马尾松林针叶变小变少和枯落物分解变慢
     与健康马尾松相比,受害马尾松的枯死叶和青黄叶的单叶长(15.10和12.83cm)和单叶重(0.024和0.019g)都较小;枯死针叶的比叶面积要大(35.12cm2/g),说明受害马尾松的针叶变小变薄了。受害马尾松林的叶面积指数年均值为1.25(0.92-1.83),远低于其它地点健康马尾松林的3.76-3.94。它的年内动态变化为从年初开始到4、5月份逐渐减小,然后到9、10月份之前缓慢增大,之后又逐渐减小,这是马尾松针叶生长和凋落节律共同影响的结果。与其它地点马尾松林相比,受害马尾松林的未分解层枯落物的分解速率较慢,年失质率为35.62%;分解半衰期和全衰期(分解至95%时)分别为1.3和2.5年。
     3.受害马尾松林的土壤水文物理性质变差
     受害马尾松林的土壤水文物理性质以表层(0-10cm)最好,10-20cm土层居中,20cm以下土层相对较差,其中,非毛管孔隙度和渗透性随土深明显地减小,但健康马尾松林的土壤非毛管孔隙度随土深的变化比较缓和。受害马尾松林土壤的水源涵养功能和同一地点的针阔混交林相差不大,但明显差于阔叶林和好于毛竹林。与其它地点土壤酸化较轻的马尾松林相比,酸害马尾松林的土壤水文物理性质明显变差,表现为各土层的密度较大、渗透性和贮水能力下降、土壤孔隙度(包括毛管孔隙度、非毛管孔隙度和总孔隙度)较小。
     4.受害马尾松林的年凋落量增大但针叶减少和枝条增多且更集中在伏旱期
     与健康或酸害较轻的马尾松林相比,受害马尾松林的年凋落物量(5.96t/hm2)增大但组成有差别,表现为针叶减少但枝条增多,各组分比例顺序为针叶>树枝>有机碎屑>树皮(球果)>阔叶。受害马尾松林的凋落物量变化对干旱胁迫更敏感,除阔叶凋落物外,其它凋落物组分的数量变化均不同程度受到土壤水分含量影响,尤其是30-40和40-50cm土层的水分含量。受干旱影响,马尾松林的年凋落格局发生重大变化,主要集中在夏季伏旱时期,但阔叶树种还能维持正常凋落节律(主要发生在4-5月份和11-12月份),说明阔叶树种在该酸雨区的适应性好于马尾松林。
     5.土壤缺水胁迫导致的受害马尾松林健康退化是因其根系吸水能力下降
     受害马尾松林的土壤含水量具有明显的时空变化,与同一研究地点的其它森林类型(针阔混交林、阔叶林和毛竹林)相比,其土壤含水量因冠层蒸散耗水较少而较高,且与毛竹林比较接近。田间持水量(或毛管孔隙度)和田间持水量的82%(毛管孔隙度的80%)是影响受害马尾松健康变化的两个重要阈值,低于此阈值时就会发生大量落叶,这主要是受害马尾松林的细根减小和分布变浅导致的吸水能力下降,造成相对土壤干旱,这在濒死马尾松衰亡过程的液流密度与土壤水分的关系中得到佐证。因此,受害马尾松林极易遭受缺水胁迫,特别是伏旱时期,无论少水年、平水年还是丰水年都存在,说明缺水胁迫已成为除酸害外影响森林健康的又一重要因素。
     6.受害马尾松林因针叶和细根减少而导致蒸腾耗水降低
     受害马尾松的树干液流密度的个体差异更多受叶面积指数影响,而不是树木相对高度所决定的优势度。正如3号优势木在其叶面积指数较小(0.68)时的月液流密度低于叶面积指数较大(1.46)的4号亚优势木,但其叶面积指数增大后的月液流密度又能超过4号木。受害马尾松林一般表现为大量针叶脱落,林冠叶面积指数降低,这使得其树木蒸腾耗水降低,因此,在同一地点的4种森林类型中,受害马尾松林的土壤含水量最高。受害马尾松林的月蒸腾耗水量变化在10.19-48.89mm之间,平均为27.24mm,其年内动态为先增加后减小,在夏季(7-8月份)达到高峰,月蒸腾量基本维持在40mm左右。树木蒸腾量与土壤水分条件也密切相关,受害马尾松因根系吸水能力下降引起的可利用水分减少也是导致其蒸腾量降低的重要原因。
     7.受害马尾松林的水文过程与功能特征
     受害马尾松林林冠稀疏致使其冠层截留容量较低(1.54mm),穿透雨率较高(84.66%)、树干茎流率(0.26%)和产生茎流的临界降雨量(5mm)以及林冠截留率(15.07%)较低。受害马尾松林的枯落物储量为11.06t/hm2;分别测定的未分解层、半分解层、总枯落物层的饱和持水率为195.54、214.48和197.61%,对应的最大持水深为0.71、0.82和1.46mm,均明显低于其它地点的健康马尾松林(15.7-32.20t/hm2,203-277%,3.40-5.12mm),说明受害马尾松林的枯落物水文功能下降。研究期间受害马尾松林的蒸散率减少,为67.38%;但产流率增大,为33.51%。
Until now, the effect of acid deposition on forest ecosystem has not been removed, but theglobal climate change with increasingly frequent extreme drought events brings newenvironmental challenge for the damaged forests in acid rain region. Understanding theeco-hydrological processes and functional responses in a changing environment becomes anew hot spot for managing the eco-environment and water resources in21stcentury. In order tocomprehensively and further understand the health changes of forests damaged by acid rainunder the background of climate change, to enrich the theory of forest eco-hydrology, and alsoto provide theoretical guidance and policy-making support for the evaluation and managementon eco-hydrological services of damaged forests, the stand structure of damaged Masson pine(Pinus massoniana) forests (40-60a) were investigated, and its hydrological processes werepermanently monitored in the acid rain region of Tieshanping, Chongqing. Further, the studyresults were compared with the stand structure and hydrological function of healthy (Massonpine) forests reported in literature. Then, the change of stand structure of Masson pine forestsand the eco-hydrological characteristics caused by acid rain were identified. The mainconclusions are as follows:
     1. Remarkable changes of stand structure of damaged Masson pine forests
     The tree canopy layer of studied stands was mainly composed of Masson pines, but nearlyno Masson pine was found in the underwood layer. The tree species in the stand were fewer(only4-9), and biodiversity (Simposon) index was low and varied from0.23to0.69. Thebroad-leaves tree species (Cinnamomum camphora, Schima superba, Phoebe zhennan, et al)were mainly distributed in the underwood layer, but they begin to access the retarded tree layer,and their competition with the currently dominant Masson pines became to be intensive. Thecanopy density of Masson pine stand was as high as0.87. However, the high defoliation causedby acid rain led to a sparse canopy, which can not restrict the existence of shrub layer and herb layer. The coverage of shrub layer was63.95%and the coverage of herb layer was48.63%.However, the shrub layer affected the distribution of herb layer significantly. Compared withhealthy Masson pine stand, the root biomass of damaged Masson pine stand was decreased andits depth distribution became shallower (mainly with0-40cm), especially the fine root biomasswas decreased and mainly distributed in the soil layer of0-10cm and decreased rapidly withincreasing soil depth.
     2. Smaller needle size and slower litter-fall decomposition of damaged Masson pineforests
     Compared with healthy Masson pine stands, the dead needles and green needle inlitter-fall of damaged stand were smaller, with a length of15.10cm and12.83cm, respectively;their weight of single needle was also lower, with the value of0.024g and0.019g, respectively;and the specific leaf area (SLA) of dead needles was higher (35.12cm2/g). This means that theneedles of damaged Masson pine stands became smaller and thinner. The canopy LAI ofdamaged Masson pines was as low as only1.25, much lower than that of healthy Masson pinestands (of3.76-3.94) located in other places. The LAI of the damaged Masson pine standsdecreased slowly from the beginning of a year until to April-May, and then gradually increaseduntil September-October, afterwards it decreased again gradually. This was an integrated resultof needle growth and litter-fall rhythm. The decomposition rate of un-decomposed litter waslower than that of other healthy Masson pine stands, with an annual quality loss rate of35.62%,a half-decomposition period of1.3years and a fully-decomposition (95%) period of l2.5years.
     3. Worse soil hydrological properties of damaged Masson pine forests
     The soil hydrological properties of0-10cm soil layer were the best in the damagedMasson pine stands; and they were moderate in the10-20cm soil layer and worse in deeper soillayers. The non-capillary porosity and infiltration rate decreased sharply with increasing soildepth; as a contrast, the non-capillary porosity in healthy Masson pine stands at other placesdecreased slowly with increasing soil depth. The water-retention functions of the soil ofdamaged Masson pine stands were pretty much the same with broadleaved-coniferous mixed forest, but significant worse than the broad-leaf forests and better than the bamboo forests inthe same study site. Compared with the healthy Masson pine stands of other places, the soilhydrological properties of damaged Masson pine stands were obviously worse, presenting by ahigher bulk density of each soil layer, lower infiltration rate and water-holding capacity of soil,and smaller porosity (including the capillary, non-capillary and total porosity).
     4. Increased annual litter-fall with less needles and more twigs and mainly concentrated indry-summer period
     Compared with healthy or less damaged Masson pine stands, the annual litter-fall amountof damaged Masson pine stands was increased, but with changed composition, representing bya decreased needles and increased twigs. The order of weight percentage of litter-fallcomponents was: needles> twigs> debris> bark and cones> broad leaves. The variation oflitter-fall became quite sensitive to drought stress. The amount of all components of litter-fall,but except the broad leaves, was affected by the soil moisture, especially in the soil layers of30-40cm and40-50cm. Because of the drought stress, the pattern of litter-fall of damagedMasson pine stands has significantly changed, with more distributed in the dry-summer period.However, the litter-fall rhythm of broad-leaves tree species was not changed (by maintainingthe two litter-fall peaks in April-May and November-December), this shows that broad-leavestree species have a stronger adaptability than Masson pine in the acid rain region.
     5. The health decline of damaged Masson pines related with water deficit was caused bythe reduced water-absorbing ability
     An obvious patio-temporal variation of soil moisture was observed in the damagedMasson pine stands. Compared with other forest types at the same study sites, such as thebroadleaved-coniferous mixed forest, broad-leaf forest and bamboo forest, the soil moisture ofdamaged Masson pine stands was higher as a result of less canopy evapotranspiration and itwas pretty much the same of bamboo forest. The field capacity (or the capillary porosity) and82%of field capacity (or80%of capillary porosity) are two important thresholds of soilmoisture to affect the health condition of damaged Masson pines; the soil moisture lower than these thresholds will lead to a high defoliation. This was mainly caused by a relative soildrought due to the declined capacity of absorbing water as the result of the quantity reductionof fine root and its shallower distribution. This was confirmed by the observed relationbetween sap flow density of a nearly-dead Masson pine and soil moisture. Therefore, thedamaged Masson pines become very easily to suffer from water deficit stress, especially in thedry-summer period, regardless if the annual precipitation is abundant, normal or less thanaverage. This means that the water deficit has become a new stress besides the acidificationstress affecting the forest health condition.
     6. Reduced needles and fine-roots caused lower transpiration of damaged Masson pines
     The difference of sap flow density between individual sample trees of Masson pine wasmore directly affected by their difference in leaf area index, rather than by their dominancedetermined by their relative height in canopy. For example, when the dominant tree of No.3had a low LAI of0.68, its monthly sap flow density was lower than that of the co-dominanttree of No.4which has a higher LAI of1.46; but the monthly sap flow density of tree No.3washigher after its LAI surpassed the tree No.4. Generally, damaged Masson pine suffered fromhigh needle defoliation and this resulted to a reduced LAI of canopy. This caused a reduction oftree transpiration. Therefore, the soil moisture of damaged Masson pine stands was the highestamong the four forest types invested in the same study site. The monthly transpiration variedfrom10.19to48.89mm for the damaged Masson pine stands, with an average of27.24mm. Ithad a seasonal variation of firstly increase and then decrease. It reaches a peak of about40mm/month in the period of July to August. The tree transpiration is closely related with soilmoisture, so the lower water-availability caused by the reduced fine roots is also an importantreason of the lower transpiration of damaged Masson pine stands.
     7. Characteristics of hydrological processes and functions in damaged Masson pine stands
     The damaged Masson pine stands presented a sparse canopy and lower canopyinterception capacity of1.54mm. This led to a higher through-fall ratio (84.66%), lower stemflow ratio (0.26%) and canopy interception ratio (15.07%) and the critical rainfall depth (5mm) to form stem flow. The humus quantity on the floor of damaged Masson pine stands was11.06t/hm2; the separately measured water-holding capacity of un-decomposed, half-decomposedhumus layer and the total humus layer was195.54%,214.48%and197.61%, respectively; thecorresponding water-holding capacity in depth was0.71,0.82and1.46mm, respectively. Allof them were lower than those of healthy Masson pine stands in other places (15.7-32.20t/hm2,203-277%,3.40-5.12mm). This shows that the hydrological functions of humus layer indamaged Masson pine stands was declined. The ratio of evapotranspiration in damagedMasson pine stands was reduced (to67.38%) during the study, while the runoff ratio wasincreased (to33.51%).
引文
[1] Larssen T, Lydersen E, Tang D G, et al. Acid rain in China. Environmental Science&Technology,2006,40(2):418-425
    [2] Brando P M,Nepstad D C,Davidson E A,et al. Drought effects on litterfall, wood production andbelowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment.Philosophical Transactions of the Royal Society B-Biological Sciences,2008,363:1839-1848
    [3] Alcamo J, Krol M, Posch M. An integrated analysis of sulfur emissions, acid deposition and climatechange. Water, Air, and Soil Pollution,1995,85(3):1539-1550
    [4]何泽能,谭炳全,高阳华等.重庆市酸雨分布特征.气象科技,2008,36(6):706-711
    [5]刘厚田,杜晓明,张维平.重庆南山酸雨与马尾松衰退的关系.环境科学学报,1988,8(3):331-338
    [6]刘厚田,田仁生.重庆南山马尾松衰亡与土壤铝活化的关系.环境科学学报,1992,12(3):297-305
    [7]王彦辉,肖文发,张星耀.森林健康监测与评价的国内外现状和发展趋势.林业科学,2007,43(7):78-85
    [8]李志勇.酸沉降条件下的重庆铁山坪森林健康监测及调控技术研究.中国林业科学研究院博士后出站报告,2006
    [9]夏军,谈戈.全球变化与水文科学新的进展与挑战.资源科学,2002,24(3):1-7
    [10]陈立民,吴人坚,戴星翼.环境学原理.北京:科学出版社,2003,207
    [11]刘菊秀.酸沉降对森林生态系统影响的研究现状及研究.生态学杂志,2003,22(5):28-32
    [12] Oliva J, Colinas C. Decline of silver fir stands in the Spanish Pyrenees: role of management, historicdynamics and pathogens. Forest Ecology and Management,2008,252(1/3):84-97
    [13] Ulrich B. Waldsterben: forest decline in West Germany. Environmental Science and Technology,1990,24(4):436-441
    [14] Fischer R, Mues V, Ulrich E, et al. Monitoring of atmospheric deposition in European forests and anoverview on its implication on forest condition. Applied Geochemistry,2007,22(6):1129-1139
    [15]酸雨考察组.酸雨对大农业的危害及其对策综合学术考察报告.北京:中国林业出版社,1989,1-9
    [16] Wang Y H, Sollberg S, Yu P T, et al. Assessments of tree crown condition of two Masson pine forests inthe acid rain region in south China. Forest Ecology and Management,2007,242(2/3):530-540
    [17] Magel E, Holl W, Ziegler H. Alteration of physiological parameters in needles of cloned sprucetrees[Picea abies (L.) Karst] by ozone and acid mist. Environmental Pollution,1990,64:337-345
    [18] Eldhuset T D, Teigen O, Bjor K. Germination and seedling development. Long-term experiments withacid rain in Norwegian forest ecosystems,1994,287-294
    [19]樊后保.模拟酸雨对5种阔叶树种幼苗生长的影响.福建林学院学报,1996,16(4):289-292
    [20]樊后保,苏兵强.杉木人工林生态系统的生物地球化学循环I.养分归还动态.应用与环境生物学报,2000,6(2):127-132
    [21] Oliva J, Colinas C. Decline of silver fir stands in the Spanish Pyrenees: role of management, historicdynamics and pathogens. Forest Ecology and Management,2008,252(1/3):84-97
    [22] Back J, Huttunen S. Effects of long-term exposure to simulated acid rain on conifer needle ultrastructure and hardening status. Forest Ecology and Management,1992,51:95-103
    [23] Reddy G B, Reinert R A, Eason G E. Enzymatic changes in the rhizosphere of loblolly pine exposed toozone and acid rain. Soil Biology and Biochemistry,1991,23:1115-1119
    [24]孟磊,章家恩,徐华勤等.模拟酸雨对广东赤红壤的中小型动物群落组成及多样性的影响.生态学杂志,2010,29(1):2204-2209
    [25]张治军,王彦辉,于澎涛等.不同优势度马尾松的生物量及根系分布特征.南京林业大学学报(自然科学版),2008,32(4):71-75
    [26]王凤友.森林凋落物研究综述.生态学进展,1989,6(2):82-89
    [27]肖冬梅,王淼,姬兰柱.水分胁迫对长白山阔叶红松林主要树种生长及生物量分配的影响.生态学杂志,2004,23(5):93-97
    [28]李振华,于澎涛,王彦辉等.重庆酸雨区受害马尾松林凋落物特征及其环境因子响应.林业科学,2011,47(8):19-24
    [29]廖军,王新根.森林凋落量研究概述.江西林业科技,2000,(1):31-34
    [30]温远光,韦盛章,秦武明.杉木人工林凋落物动态及其与气候因素的相关分析.生态学报,1990,10(4):367-372
    [31]官丽莉,周国逸,张德强等.鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究.植物生态学报,2004,28(4):449~456
    [32]单建平,陶大立,王淼等.长白山阔叶红松林细根周转的研究.应用生态学报,1993,4(3):241-245
    [33]刘建军.林木根系生态研究综述.西北林学院学报,1998,13(3:73-78
    [34]张小全,吴可红,Murach D.树木细根生产与周转研究方法评述.生态学报,2000,20(5):875-883
    [35]张治军,王彦辉,袁玉欣等.马尾松林天然次生林生物量的结构与分布.河北农业大学学报,2006,29(5):37-43
    [36]黄晓华,周青等.酸雨对植物根系生长的胁迫效应.农业环境保护,2000,19(4):234-235,247
    [37]廖利平,陈楚莹.模拟酸雨-土壤酸化-杉木、木荷根系生长关系的研究.生态学杂志,1992,11(1):23-28
    [38]程瑞梅,王瑞丽,肖文发等.三峡库区马尾松根系生物量的空间分布.生态学报,2012,32(3):823-832
    [39] Norby R J, Jackson R B. Root dynamics and global change: seeking an ecosystem perspective. NewPhytologist,2000,147(1):3-12
    [40] Yuan Z Y, Chen H Y H. Fine root biomass, production, turnover rates, and nutrient contents in borealforest ecosystems in relation to species, climate, fertility, and stand age: literature review andmeta-analyses. Critical Reviews in Plant Sciences,2010,29(4):204-221
    [41]张艳杰,温佐吾.不同造林密度马尾松人工林的根系生物量.林业科学,2011,47(3):75-81
    [42]王树堂,韩士杰,张军辉等.长白山阔叶林红松林表层土壤林木植物细根生物量及其空间分布.应用生态学报,2010,21(3):583-589
    [43]黄奕龙,傅伯杰,陈利顶.生态水文过程研究进展.生态学报,2003,23(3):580-587
    [44]温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析.林业科学,1995,31(4):289-298
    [45]常学向,赵爱芬,王金叶等.祁连山林区大气降水特征与森林对降水的截留作用.高原气象,2002,21(3):274-280
    [46]范世香,裴铁,蒋德明等.两种不同林分截留能力的比较研究.应用生态学报,2000,11(5):671-674
    [47]李德生.山东泰安黄前水库流域主要植被类型的水文特征研究.北京林业大学博士学位论文,2007
    [48]马雪华.森林水文学.北京:中国林业出版社,1993
    [49]陈吉虎.关于森林对降水截留过程的研究.河南水利与南水北调,2008,12:23-29
    [50]王德连,雷瑞德,韩创举.国内外森林水文研究现状和进展.西北林学院学报,2004,19(2):156-160
    [51] Teklehaimanot Z. Rainfall interception and boundary conductance in relation to tree spacing.Journal ofHydrology,1997,123:261-278
    [52] Stednick J D. Monitoring the effects of timber harvests on annual water yield. Journal of Hydrology,1996,176:79-95
    [53] Rutter A J, Kershaw K A, Robins P C, et al. A predictive model of rainfall interception in forests,1.Derivation of the model from observations in a plantation of Corsican pine. Agricultural Meteorology,1971-1972,9:367-384
    [54] Gash J H C. An analytical model of rainfall interception by forests, quarterly. Journal of RoyalMeteorological Society,1979,105(443):43-45
    [55]王彦辉.陇东黄土地区刺槐水土保持效益的定量研究.北京林业大学学报,1986,8(1):35-52
    [56]刘家冈,万国良,张学培等.林冠对降雨截留的半理论模型.林业科学,2000,36(2):2-5
    [57] Valente F. Modelling interception loss for two sparse eucalypt and pine forests in central Portugla usingreformulated Rutter and Gash analytical models. Journal of Hydrology,1997,190:141-162
    [58]王馨,张一平,刘文杰. Gash模型在热带季节雨林林冠截留研究中的应用.生态学报,2006,26(3):722-729
    [59]徐丽宏,时忠杰,王彦辉等.六盘山主要森林类型冠层截留特征.应用生态学报,2010,21(10):2487-2493
    [60]王彦辉,于澎涛,徐德应等.林冠截留降雨模型转化和参数规律的初步研究.北京林业大学学报,1998,20(6):25-30
    [61]杜阿朋.六盘山叠叠沟小流域坡面植被水文影响与模拟.中国林业科学研究院博士学位论文,2009
    [62]时忠杰,王彦辉,徐丽宏等.六盘山主要森林类型枯落物的水文功能.北京林业大学学报,2009,31(1):91-99
    [63]张光灿,刘霞,赵玖.泰山几种林分枯落物和土壤水文效应研究.林业科技通讯,1999,6:28-29
    [64]刘世荣,温远光,王兵等.中国森林生态系统水文生态功能规律.北京:中国林业出版社,1996,157-243
    [65]鲍文,包维楷,何丙辉等.岷江上游23年生油松纯林下凋落物与土壤截留降水的效应.水土保持学报,2004,18(5):115-119
    [66]王波,张洪江,徐丽君等.四面山不同人工林枯落物储量及其持水特性研究.水土保持学报,2008,22(4):90-99
    [67]饶良懿,朱金兆,毕华兴.重庆四面山森林枯落物和土壤水文效应.北京林业大学学报,2005,27(1):33-37
    [68]王鹏程,肖文发,张守攻等.三峡库区森林植被林地枯落物现存量及其持水能力.中国水土保持科学,2008,6(4):41-47
    [69]赵鸿雁,吴钦孝,刘向东.山杨枯枝落叶的水文水保作用研究.林业科学,1994,30(2):176-180
    [70]高人,周广柱.辽东山区不同森林植被类型枯落物层截留降雨行为研究.辽宁林业科技,2002,5:1-4
    [71]雷瑞德.秦岭火地塘林区华山松林水源涵养功能的研究.西北林学院学报,1984,1(1):19-33
    [72] Kelliher F M. Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia,1989,95:153-163
    [73]朱金兆,刘建军,朱清科等.森林凋落物水文生态功能研究.北京林业大学学报,2002,24(5/6):30-34
    [74]张德成,殷鸣放,陈宏伟等.主要森林植被土壤及枯落物水分蒸发量动态研究.安徽农业科学,2006,34(10):2210-2212
    [75]周晓峰.正确评价森林水文效应.自然资源学报,2001,16(5):420-426
    [76] Hewlett J D, Bosch J M. The dependence of storm on rainfall intensity and vegetal cover in SouthAfrica. Journal of hydrology,1984,75:365-381
    [77] Ziemer R R, Lisle T E. River ecology and magement: coast ecoregion lessons from the pacific. Springer,1998,56-68
    [78] Wang Yanhui, Yu Pengtao, Feger K H, et al. Annual runoff and evapotranspiration of forestlands andnon-forestlands in selected basins of the Loess Plateau of China. Ecohydrology,2011,4:277-287
    [79] Ruprecht J K, Stoneman G L. Water yield issues in the jarrsh forest of south-western Australia. Journalof Hydrology,1993,150:369-391
    [80]李文华,何永涛,杨丽韫.森林对径流影响研究的回顾与展望.自然资源学报,2001,16(5):398-405
    [81] Bronstert A, Bárdossy A. Uncertainty of runoff modelling at the hillslope scale due to temporalvariations of rainfall intensity. Physics and Chemistry of the Earth,2003,28:283-288
    [82] Bergkamp G. A hierarchical view of the interactions of runoff and infiltration with vegetation andmicrotopography in semiarid shrublands. Catena.1998,33:201-220
    [83]黄新会,王占礼,牛振华.水文过程及模型研究主要进展.水土保持研究,2004,11(4):105-108
    [84]曹丽娟,刘晶淼.陆面水文过程研究进展.气象科技,2005,32(2):97-103
    [85]何常清,于澎涛,管伟等.华北落叶松枯落物覆盖对地表径流的拦阻效应.林业科学研究,2006,19(5):595-599
    [86]王轶浩,王彦辉,谢双喜等.六盘山分水岭沟土壤水文物理性质空间变异.中国水土保持科学,2008,6(4):33-40
    [87] Robichaud P R. Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountainforests, USA. Journal of Hydrology,2000,231-232:220-229
    [88] Harden C P, Scruggs P D. Infiltration on mountain slopes: a comparison of three environments.Geomorphology,2003,55:5-24
    [89]郝占庆,王力华.辽东山区主要森林类型林地土壤涵蓄水性能的研究.应用生态学报,1998,9(3):237-241
    [90]王梦军,张光灿,刘霞等.沂蒙山林区不同森林群落土壤水分贮存与入渗特征.中国水土保持科学,2008,6(6):26-31
    [91]秦耀东.土壤物理学.北京:高等教育出版社,2003,97-110
    [92]吴刚,吴祥云.土壤入渗特性影响因素研究综述.中国农学通报,2008,24(7):494-499
    [93]杜阿朋,何常清,管伟等.六盘山叠叠沟小流域土壤稳渗速率及其影响因子.林业科学,2009,45(10):25-31
    [94]王月玲,蒋齐,蔡进军等.半干旱黄土丘陵区土壤水分入渗速率的空间变异性.水土保持通报,2008,28(4):52-55
    [95]程琴娟,蔡强国,郑明国.黄土土壤结皮对产流临界雨强的影响分析.地理科学,2007,27(5):678-682
    [96]时忠杰,王彦辉,于澎涛等.六盘山森林土壤中的砾石对渗透性和蒸发的影响.生态学报,2008,28(12):6090-6098
    [97] Wilson K B, Hanson P J, Mulholland P J, et al. A comparison of methods for determining forestevapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchmentwater balance. Agriculture and Forest Meteorology,2001,106:153-168
    [98] Granier A, Biron P, Breda N, et al. Transpiration of trees and forest stands: Short and long-termmonitoring using sapflow methods. Global Change Biology,1996,2(3):265-274
    [99]王华田,马履一.利用热扩散边材液流探针(TDP)测定树木整株蒸腾耗水量的研究.植物生态学报,2002,26(6):661-667
    [100]翟洪波,李吉跃.油松栓皮栎混交林地蒸散和水量平衡研究.北京林业大学学报,2004,26(2):48-51
    [101]熊伟,王彦辉,于澎涛等.华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推.林业科学,2008,44(1):34-40
    [102] Vertessy R A, Watson F G R,Sullivan S K O H. Factors determining relations between stand age andcatchment water balance in mountain ash forests. Forest Ecology and Management,2001,143(1-3):13-26
    [103] Flerchinger G N, Cooley K R. A ten-year water balance of a mountainous semi-arid watershed. Journalof Hydrology,2001,237:86-99
    [104]康文星,田大伦,文仕知等.杉木人工林水量平衡和蒸散的研究.植物生态学与地植物学学报,1992,16(1):187-196
    [105]刘广全,王浩,秦大庸等.黄河流域秦岭主要林分掉落物的水文生态功能.自然资源学报,2002,17(1):55-61
    [106]涂洁,刘琪璟.应用热扩散式探针法对南方红壤丘陵区湿地松人工林耗水量的研究.福建林业科技,2007,34(2):75-79
    [107]马履一,王华田,林平.北京地区几个树种耗水性比较的研究.北京林业大学学报,2003,25(2):1-7
    [108] Tatarinov F A, Kucera J, Cienciala E. The analysis of physical background of tree sap flowmeasurement based on thermal methods. Measurement Science and Technology,2005,16:1157-1169
    [109] Lagergren F, Lindroth A. Transpiration response to soil moisture in pine and spruce trees in Sweden.Agriculture and Forest Meteorology,2002,112:67-85
    [110]梅婷婷,王传宽,赵平等.木荷树干液流的密度特征.林业科学,2010,46(1):40-47
    [111] Smith D M, Allen S J. Measurement of sap flow in plant stems. Journal of Experimental Botany,1996,47(12):1833-1844
    [112] Lu Ping, Urban L, Zhao Ping. Granier’s Thermal Dissipation Probe (TDP) method for measuring sapflow in trees: theory and practice. Acta Botanica Sinica,2004,46(6):631-646
    [113]阮成江,李代琼.黄土丘陵区人工沙棘蒸腾作用研究.生态学报,2001,21(12):2142-2146
    [114]曹云,黄志刚,欧阳志云等.南方红壤区杜仲(Eucommia ulmoides)树干液流动态.生态学报,2006,26(9):2887-2895
    [115]张建国,久米朋宣,大规恭一等.黄土高原半干旱区辽东栎的树干液流动态.林业科学,2011,47(4):63-69
    [116]熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应.林业科学,2003,39(2):1-7
    [117]于占辉,陈云明,杜盛.黄土高原半干旱区侧柏(Platycladus orientalis)树干液流动态.生态学报,2009,29(7):3970-3976
    [118]孙龙,王传宽,杨国亭等.应用热扩散技术对红松人工林树干液流通量的研究.林业科学,2004,43(11):8-14
    [119] Kumagai T, Aoki S, Nagasawa H, et al. Effects of tree-to-tree and radial variations on sap flowestimates of transpiration in Japanese cedar. Agricultural and Forest Meteorology,2005,135:110-116
    [120]张小由,康尔泗,赵新平等.胡杨蒸腾耗水的单木测定与林分转换研究.林业科学,2006,42(7):28-32
    [121]赵平,饶兴权,马玲等.马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异.生态学报,2006,26(12):4050-4058
    [122]重庆市统计局、国家统计局重庆调查总队编.重庆统计年鉴(2008).北京:中国统计出版社2008
    [123]林业部科技司编.森林生态系统定位研究方法.北京:中国科学技术出版社,1994
    [124]李洪建,王孟本,柴宝峰.黄土高原土壤水分变化的时空特征分析.应用生态学报,2003,14(4):515~519
    [125]德国林业和林产品研究中心ICP项目协调中心(王彦辉译).空气污染对森林影响的统一采样、评价、监测和分析的方法与标准手册.北京:中国科学技术出版社,2002
    [126]陈亮,王绪高.生物多样性与森林生态系统健康的几个关键问题.生态学杂志,2008,27(5):816-820
    [127]陈奋飞,刘茂松,任瑞丽等.南京紫金山森林群落分层结构特征的小波分析.南京林业大学学报,2008,32(2):17-22
    [128] Dickie L A, Schnitzer S A, Reich P B, et al. Spatially disjunct effects of co-occurring competition andfacilitation. Ecology Letters,2005,8:1191-1200
    [129] Koppel J V D, Altieri A N, Silliman B R, et al. Scale-dependent interactions and community structureon cobble beaches. Ecology Letters,2006,9:45-50
    [130]黄益宗,李志先,黎向东等.酸沉降和大气污染对华南典型森林生态系统生物量的影响.生态环境,2007,16(1):60-65
    [131]张治军.重庆酸雨区马尾松生物量和根系空间分布特征研究.河北农业大学硕士学位论文,2006
    [132] Jackson R B, Mooney H A, Schulze E D. A global budget for fine root biomass, surface area, andnutrient contents. Proceeding of the National Academy of Sciences of the United States of America,1997,94(14):7362-7366
    [133]樊后保,李燕燕,苏兵强等.马尾松-阔叶树混交异龄林生物量与生产力分配格局.生态学报,2006,26(8):2463-2473
    [134] Persson H. Spatial distribution of fine-root growth, mortality and decomposition in a young Scots pinestand in Central Sweden. Oikos,1980,34(1):77-87
    [135]杨秀云,韩有志,张芸香.距树干不同距离处华北落叶松人工林细根生物量分布特征及其季节变化.植物生态学报,2008,32(6):1277-1284
    [136] Kummerow J,Castillanos J,Maas M,LarigauderieA. Production of fine roots and the seasonality oftheir groweth in a Mexican deciduous dry forest. Plant Ecology,1990,90(1):73-80
    [137]李轩然,刘琪璟,蔡哲等.千烟洲针叶林的比叶面积及叶面积指数.植物生态学报,2007,31(1):93-101
    [138] Ellsworth D S, Reich P B. Canopy structure and vertical patterns of photosynthesis and related leaftraits in a deciduous forest. Oecologia,1993,96:169-178
    [139]曾小平,赵平,饶兴权等.鹤山丘陵3种人工林叶面积指数的测定及其季节变化.北京林业大学学报,2008,30(5):33-38
    [140] Schulze E D,Kelliher F M, Korner C, et al. Relationship among maximum stomatal conductance,ecosystem surface conductance, carbon assimilation rate, and plant nitrogen mutrition: a global ecologyscaling exercise. Annual Review of Ecology and Systematics,1994,25:629-660
    [141]童鸿强,王玉杰,王彦辉等.六盘山叠叠沟华北落叶松人工林叶面积指数的时空变化特征.林业科学研究,2011,24(1):13-20
    [142] Battaglia M, Cherry M L, Beadle C L, et al. Prediction of leaf area index in eucalypt plantations:effects of water stree and temperature. Tree Physiology,1998,18:521-528
    [143] Mcshane M C, Carlile D W, Hinds W T. The effects of collector size on forest litter-fall collection andanalysis. Canadian Journal of Forest Research,1993,13:1037-1042
    [144] Jonckheere I, Fleck S, Nackaerts K, et al. Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology,2004,121:19-35
    [145]郝佳,熊伟,王彦辉等.华北落叶松人工林叶面积指数实测值与冠层分析仪读数值的比较和动态较正.林业科学研究,2012,25(2):231-235
    [146]彭少麟,余作岳,张文其等.鹤山亚热带丘陵人工林群落分析.植物生态学与地植物学学报,1992,16(1):1-10
    [147]门中华,李生秀.植物生物节律性研究进展.生物学杂志,2009,26(5):53-55
    [148]刘国华,傅伯杰.全球气候变化对森林生态系统的影响.自然资源学报,2001,16(1):71-78
    [149]陆佩玲,于强,贺庆棠.植物物候对气候变化的响应.生态学报,2006,26(3):923-929
    [150]李志安,林永标,彭少麟.华南人工林凋落物养分及其转移.应用生态学报,2000,11(3):321-326
    [151]刘广全,王浩,秦大庸等.黄河流域秦岭主要林分凋落物的水文生态功能.自然资源学报,2002,17(1):55-62
    [152]罗跃初,韩单恒,王宏昌等.辽西半干旱区几种人工林生态系统涵养水源功能研究.应用生态学报,2004,15(6):919-923
    [153]常雅军,陈琦,曹靖等.甘肃小陇山不同针叶林凋落物、养分储量及持水特性.生态学报,2011,31(9):2392-2400
    [154]俞国松,王世杰,容丽等.茂兰喀斯特森林主要演替群落的凋落物动态.植物生态学报,2011,35(10):1~10
    [155]田大伦,宁晓波.不同龄组马尾松林凋落物量及养分归还量研究.中南林学院学报,1995,15(2):163~169
    [156]陈永亮,李淑兰.胡桃楸、落叶松纯林及其混交林下叶凋落物分解与养分归还的比较研究.林业科技,2004,29(5):9-12
    [157]林波,刘庆,吴彦等.森林凋落物研究进展.生态学杂志,2004,23(1):60-64
    [158]沈海龙,丁宝永,沈国舫.樟子松林人工林下针阔叶凋落物分解动态.林业科学,1996,32(5):393-402
    [159]杨细明.马尾松人工林凋落物分解及养分释放规律.福建林学院学报,2002,22(1):86-89
    [160]吴志东,彭福泉,车玉萍等.我国南亚热带几种人工林的生物物质循环特点及其对土壤的影响.土壤学报,1990,27(3):250–260
    [161]李海涛,于贵瑞,李家永等.亚热带红壤丘陵区四种人工林凋落物分解动态及养分释放.生态学报,2007,27(3):898-908
    [162]孙景波,孙禄瑞,王春等.人工针阔混交林枯落物的分解动态.防护林科技,2009,2(89):19-26
    [163]高俊琴,欧阳华,吕宪国等.三江平原小叶章湿地枯落物分解及其影响因子研究.水土保持学报,2004,18(4):121-124
    [164]阎恩荣,王希华,周武.天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系.植物生态学报,2008,32(1):1-12
    [165]李志勇,王彦辉,于澎涛等.重庆酸雨区马尾松香樟混交林的土壤化学性质和林木生长特征.植物生态学报,2010,34(4):387-395
    [166]张庆费,宋永昌,吴化前等.浙江天童常绿阔叶林演替过程凋落物数量及分解动态.植物生态学报,1999,23(3):250-255
    [167]张庆费,由文辉,宋永昌.浙江天童植物群落演替对土壤化学性质的影响.应用生态学报,1999,10(1):19-22
    [168]黄承才,葛滢,朱锦茹等.浙江省马尾松生态公益林凋落物及与群落特征关系.生态学报,2005,25(10):2507-2513
    [169]樊后保,林德喜,苏兵强等.林下套种阔叶树的马尾松林凋落物生态学研究. Ⅰ凋落物量及其动态.福建林学院学报,2002,22(3):209-212
    [170]张德强,叶万辉,余清发等.鼎湖山演替系列中代表性森林凋落物研究.生态学报,2000,20(6):938-944
    [171]侯爱敏,彭少麟,周国逸.鼎湖山地区马尾松年轮元素含量与酸雨的关系.生态学报,2002,22(9):1552-1559
    [172]林波,刘庆,吴彦等.亚高山针叶林人工恢复过程中凋落物动态分析.应用生态学报,2004,15(9):1491-1496
    [173]邓仕坚,张家武,陈楚莹等.不同树种混交林及其纯林对土壤理化性质影响的研究.应用生态学报,1994,5(2):125-132
    [174] Sorbotten LE. Hill slope unsaturated flowpaths and soil moisture variability in a forested catchment inSouthwest China. Norwegian University of Life Sciences, Department of Plant and EnvironmentalSciences master thesis,2011,31
    [175]王轶浩,王彦辉,谢双喜等.六盘山小流域地形、植被特征与土壤水文物理性质的关系.生态学杂志,2012,31(1):145-151
    [176]林德喜,樊后保,苏兵强等.马尾松林下套种阔叶树土壤理化性质的研究.土壤学报,2004,41(4):655-659
    [177]游秀花.马尾松天然林不同演替阶段土壤理化性质的变化.福建林学院学报,2005,25(2):121-124
    [178]王旭琴,戴伟,夏良放等.亚热带不同人工林土壤理化性质的研究.北京林业大学学报,28(6):56-59
    [179]黄承标,梁宏温.广西不同地理区域森林土壤水文物理性质研究.土壤与环境,1999,8(2):96-100
    [180]王孟本,李洪建.晋西北黄土区人工林土壤水分动态的定量研究.生态学报,1995,15(2):178-184
    [181]王晓燕,陈洪松,王克林等.不同利用方式下红壤坡地土壤水分时空动态变化规律研究.水土保持学报,2006,20(2):110-113
    [182] Thomas FM, Hartmann G. Soil and tree water relations in mature oak stands of northern Germanydiffering in the degree of decline. Annals of Forest Science,1996,53:697-720
    [183] Brando PM, Nepstad DC, Davidson EA, et al. Drought effects on litterfall, wood production andbelowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment.Philosophical Transactions of the Royal Society B-Biological Sciences,2008,363:1839-1848
    [184]余新晓,张建军,朱金兆.黄土地区防护林生态系统土壤水分条件的分析与评价.林业科学,1996,32(4):289-297
    [185]李世荣,张卫强,贺康宁.黄土半干旱区不同密度刺槐林地的土壤水分动态.中国水土保持科学,2003,1(2):28-32
    [186]邱扬,傅伯杰,王军等.黄土丘陵小流域土壤水分的空间异质性及其影响因子.应用生态学报,2001,12(5):715-720
    [187] Borchert R. Water status and development of tropical trees during seasonal drought. Trees,1994,8:115-125
    [188] Hogg EH, Brandt JP, Michaelian M. Impacts of a regional drought on the productivity, dieback, andbiomass of western Canadian aspen forests. Canadian Journal of Forest Research,2008,38:1373-1384
    [189]李梗,刘晓冉,刘德等.重庆市伏旱时空变化特征.气象科技,2011,39(1):27-32
    [190]刘培娟,马文贵,杨吉华等.鲁中南山区径流小区不同坡度条件下四种植被的水土流失规律研究.水土保持研究,2007,14(6):357-359
    [191] Zierl B. A simulation study to analyse the relations between crown condition and drought inSwitzerland. Forest Ecology and Management,2004,188(1-3):25-38
    [192] Oberhuber W, Stumbock M, Kofler W. Climate-tree-growth relationships of Scots pine stands (Pinussylvestris L.) exposed to soil dryness. Trees,1998,13:19-27
    [193]赵惠霞,吴绍洪,姜鲁光.生态阈值研究进展.生态学报,2001,27(1):338~345
    [194] Nimah MN, Hanks RJ. Model for estimating soil water, plant, and atmospheric interrelations: I.Description and Sensitivity. Soil Science Society ofAmerica Journal,1973,37(4):522-527
    [195] Alder NN, Sperry JS, Pockman WT. Root and stem xylem embolism, stomatal conductance, and leafturgor in Acer grandidentatum populations along a soil moisture gradient. Oecologia,1996,105:293-301
    [196]张光灿,刘霞,贺康宁.黄土半干旱区刺槐和侧柏林地土壤水分有效性及生产力分级研究.应用生态学报,2003,14(6):858-862
    [197]夏江宝,张光灿,孙景宽等.山杏叶片光合生理参数对土壤水分和光照强度的阈值效应.植物生态学报,2011,35(3):322~329
    [198] Fansham RJ, Fairfax RJ, Kenkel N. Drought-related tree death of savanna eucalypts: speciessusceptibility, soil conditions and root architecture full access. Journal of Vegetation Science,2007,18(1):71-80
    [199] Pedersen LB, Bille-Hansen. A comparison of litterfall and element fluxes in even aged Norway spruce,sitka spruce and beech stands in Denmark. Forest Ecology and Management,1999,114:55-70
    [200]杨文治,马玉玺,韩仕峰等.黄土高原地区造林土壤水分生态分区研究.水土保持学报,1994,8(1):193~200[4]
    [201] Cohen Y, Cohen S, Cantuarias A T, et al. Variations in the radial gradient of sap velocity in trunks offorest and fruit trees. Plant and Soil,2008,305(1-2):49-59
    [202] Ford C R, Mcguire M A, Mitchell R J, et al. Assessing variation in the radial profile of sap flux densityin Pinus species and its effect on daily water use. Tree Physiology,2004,24:241-249
    [203] Edwards W R N, Becker P. A unified nomenclature for sap flow measurements. Tree Physiology,1996,17:65-67
    [204]刘鹏.酸雨及大气污染对马尾松木材材性影响的研究Ⅱ.木材构造.林业科学,1996,32(1):69-77
    [205] Kumagai T, Aoki S, Nagasawa H, et al. Effects of tree-to-tree and radial variations on sap flowestimates of transpiration in Japenese cedar. Agricultural and Forest Meteorology,2005,135:110-116
    [206]蒋有绪.中国森林生态系统结构与功能规律研究.北京:中国林业出版社,1996
    [207]高人.辽宁东部山区几种主要森林植被类型水量平衡研究.水土保持通报,2002,22(2):5-8
    [208]王彦辉,于澎涛,郭浩等.北京官厅库区森林植被生态用水及其恢复.北京:中国林业出版社,2009
    [209]夏体渊,吴家勇,段昌群等.滇中3种林冠层对降雨的再分配作用.云南大学学报:自然科学版,2009,31(1):97-103
    [210]曹云,黄志刚,欧阳志云等.湖南省张家界马尾松林冠生态水文效应及影响因素分析.林业科学,2006,42(12):3-20
    [211] Herbst M, Roberts J M, Rosier P T W, et al. Measuring and modeling the rainfall interception loss byhedgerows in southern England. Agricultural and Forest Meteorology,2006,141:244-256
    [212]段旭,王彦辉,于鹏涛等.六盘山分水岭沟典型森林植被对大气降水的再分配规律及其影响因子.水土保持学报,2010,24(5):1-6
    [213]陈书军,陈存根,邹伯才等.秦岭天然次生油松林冠层降雨再分配特征及延滞效应.生态学报,2012,32(4):1142-1150
    [214]莫江明,方运霆,冯肈年等.鼎湖山人为干扰下马尾松水文生态功能.热带亚热带植物学报,2002,10(1):99-104
    [215]刘建立,王彦辉,于澎涛等.六盘山叠叠沟小流域华北落叶松人工林的冠层降水再分配特征.水土保持学报,2009,23(4):76-81
    [216]鲍文,包维楷,何丙辉等.森林生态系统对降水的分配与拦截效应.山地学报,2004,22(4):483-491
    [217]李飞,王英芳,陈永瑞.马尾松林水文特征及其矿质元素迁移研究.土壤侵蚀与水土保持学报,1996,2(3):78-82
    [218]杨茂瑞.亚热带杉木、马尾松人工林的林内降雨、树冠截留和树干茎流.林业科学研究,1992,5(2):158-162.
    [219]郭明春,于澎涛,王彦辉等.林冠截持降雨模型的初步研究.应用生态学报,2005,16(9):1633-1637
    [220]彭云,丁贵杰.不同林龄马尾松林枯落物储量及其持水性能.南京林业大学学报(自然科学版),2008,32(4):43-46
    [221]刘建立,王彦辉,管伟等.宁南山区华北落叶松林枯落物水文特征研究,水土保持通报,2009,29(6):20-23
    [222]张彪,李文华,谢高地等.森林生态系统得水源涵养功能及其计量方法.生态学杂志,2009,28(3):529-534
    [223]张志强,王礼先,余新晓等.森林植被影响径流形成机制研究进展,自然资源学报,2001,16(1):79-84
    [224] Fisher R A, Williams M, Oladacosta A, et al. The response of an Eastern Amazonian rain forest todrought stress: results and modeling analyses from a throughfall exclusion experiment. Global ChangeBiology,2007,13:2361-2378
    [225] Saugier B, Granier A, Pontailler J Y, et al. Transpiration of a boreal pine forest measured by branchbag, sap flow and micrometeorological methods. Tree Physiology,1997,17:511-519
    [226] Kelliher F M, Kostner B M M, Hollinger D Y, et al. Evaporation, xylem sap flow, and treetranspiration in a New Zealand broad-leaved forest. Agricultural and Forest Meteorology,1992,62:53-73
    [227]岳广阳,赵哈林,张铜会等.小叶锦鸡儿灌丛群落蒸腾耗水量估算方法.植物生态学报,2009,33(3):508-515
    [228]孙鹏森,马李一,马履一.油松、刺槐潜在耗水量的预测及其与造林密度的关系.北京林业大学学报,2001,23(2):1-6
    [229] Wullschleger SD, Meinzer F C, Vertessy R A. A review of whole-plant water use studies in trees. TreePhysiology,1998,18:499-512
    [230]刘盛,郝广明,拱化国等.应用管道模型原理估测华北落叶松叶量叶面积的方法.吉林林学院学报,1993,9(2):25-32
    [231]崔鸿侠,张卓文,陈玉生等.三峡库区莲峡河小流域马尾松水文生态效应.中南林学院学报,2005,15(2):46-49
    [232]李明学,康文星.第2代杉木近熟林水文学过程研究.中南林业科技大学学报,2007,27(2):17-21
    [233]陈祥伟.嫩江上游流域生态系统水量平衡的研究.应用生态学报,2001,12(6):903-907

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700