纳米TiO_2改性羊毛纤维净化室内空气的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出选用羊毛纤维作为开发功能性空气过滤材料的基材,在此基础上与光催化技术相结合,研究了纳米TiO_2/羊毛功能滤料对室内空气的净化效果。
     进行了与吸附光催化相关的理论方面的研究。首先系统地阐述了国内外采用羊毛纤维净化空气的研究进展,分析了与吸附特性有关的羊毛纤维结构,总结了羊毛纤维在产业用方面的特性。从界面化学的角度,对羊毛纤维吸附甲醛的物理吸附机理和化学吸附机理以及吸附影响因素进行了分析。同时,系统地论述了羊毛纤维与纳米光催化剂结合的复合吸附光催化净化甲醛机理,讨论了光催化剂的失活条件以及羊毛纤维与光催化剂的协同作用,并指出吸附光催化过程受到光催化剂纳米TiO_2、羊毛纤维的吸附性能和环境等众多因素的影响。此外,本文对羊毛摩擦产生负离子的机理以及影响羊毛织物摩擦产生负离子的因素进行了理论分析。
     在总结功能性空气过滤材料整理方法的基础上,选用浸轧法对三种不同结构的羊毛滤料原样进行了光催化整理,并分别对羊毛滤料原样和羊毛滤料整理样进行了阻力测试,测试结果表明:对羊毛滤料进行光催化整理,羊毛滤料整理样相对羊毛滤料原样阻力增加了10%,羊毛滤料整理样的阻力增加与滤料原样的面密度成反比,三种羊毛滤料的阻力变化与过滤速度的关系呈抛物线形式变化。
     在静态实验台上测试了光化学反应对密闭小室内甲醛浓度的影响以及吸附与光催化净化甲醛效果的对比,结果表明:(1)光化学反应使小室内甲醛浓度减少12%;(2)羊毛滤料原样和羊毛滤料整理样对甲醛的净化率分别为39.22%和67.6%。
     在动态实验台上测试了不同羊毛滤料原样对甲醛的吸附效果、不同羊毛滤料整理样吸附光催化净化甲醛效果的对比以及温度、甲醛的初始浓度对吸附光催化净化甲醛的影响。结果表明:(1)羊毛滤料3原样(羊毛毡)对甲醛的吸附性能明显好于羊毛滤料1原样(羊毛机织物),净化率提高了12.28%;(2)羊毛滤料1整理样(机织物1整理样)、羊毛滤料2整理样(机织物2整理样)和羊毛滤料3整理样(羊毛毡整理样)吸附光催化净化甲醛的效率分别为68.74%、66.61%和57.71%。(3)羊毛滤料整理样对甲醛的净化率随着温度的升高而较低,而甲醛的初始浓度越大,吸附光催化效果越好。
     测试了不同组织的羊毛织物摩擦后产生的负离子数量和光催化整理对羊毛织物产生负离子的影响,结果表明,三种组织的羊毛织物经过摩擦后,负离子的发射量约为3000·cm-3;羊毛织物经过光催化整理后,其负离子的发射量有显著增加,紫外光照射对织物摩擦产生负离子具有积极的促进作用。
In this theis, wool fiber is chosen as substrate material of functionality filter material, which would be combined with photochemical catalysis technology. The purification effect of indoor air by nano-TiO_2/ wool functionality filter material was studied.
     The correlative theory on adsorption and photochemical catalysis was studied. The internal and overseas study evolve of wool fiber on purification air was reviewed. The fiber structure of wool correlated to the adsorption was analyzed, and the industrial property of wool fiber was summarized. From the point of interface chemistry, the adsorption theory of physisorption and chemisorption and the influencing factor of adsorbing formaldehyde were analyzed. Meanwhile, the multiple adsorption and photochemical catalysis mechanism combined wool fiber and nano-pholocatalyst was systemically explained. The deactivation condition of pholocatalyst and the cooperation effect of wool fiber and pholocatalyst were discussed. The process of adsorption and photochemical catalysis was affected by pholocatalyst nano-TiO_2, the adsorption property of wool fiber and environment.Besides, the mechanism of anion produced from wool and the influence on producing anion by rubbing were theoretically analyzed.
     On the basis of summarizing the modification method of functionality filter material, three wool filter materials with different organization structure were modified by the way of padding. The resistance of wool filter material original sample and modified sample were tested. The results indicated that the modified sample of wool filter material relative to the original sample increased by 10%, and the resistance increase varied inversely with the surface density of wool filter material original sample. The relationship between the resistance change of three wool filter material and filter velocity was in the form of parabola.
     The influence of photochemistry reaction on the formaldehyde concentration in obturation chamber was tested on the static state experiment table, some conclusions were drawn as followings:
     (1) Photochemical reaction made formaldehyde concentration in chamber decreased by 12%;
     (2) The purification ratios of wool filter material original sample and modified sample were 39.22% and 67.6% respectively.
     On dynamic experiment table, the adsorption effect to formaldehyde by different wool filter original sample, the ratios of adsorption and photochemical catalysis of different wool filter modified sample to formaldehyde and the influence of the initial formaldehyde concentration on adsorption and photochemical catalysis were tested. Some results were drawn as followings:
     (1) The adsorption property of formaldehyde by wool filter material 3 original sample (wool felt) were better than wool filter material 1 original sample (wool woven fabric), and the purification ratio increased by 12.28%;
     (2) The purification ratios of adsorption and photochemical catalysis to formaldehyde by wool filter material 1 modified sample (wool woven fabric 1 modified sample), wool filter material 2 modified sample (wool woven fabric 2 modified sample) and wool filter material 3 modified sample(wool felt modified sample) were 68.74%, 66.61% and 57.71% respectively.
     (3) The purification efficiency to formaldehyde by wool filter material modified sample decrease with the increase of temperature, and the thicker initial formaldehyde concentration, the better purification efficiency of adsorption and photochemical catalysis.
     The anion emission measure of wool fabric of Brighton weave, twill weave and plain weave and the influence of photochemical catalysis modification on anion emission measure of wool fabric were measured. The results indicated that the anion emission measure of three wool fabrics with different fabric texture were above 3000·cm-3, after photochemical catalysis modification, the anion emission measure of wool fabric were remarkable increased, and the ultraviolet play an auto-action on the Anion emission measure.
引文
[1] Mads M, Peter G S, Vidar H. Evaluation of simplified ventilation system with direct air supply through the fa?ade in a school in a cold climate[J]. Energy and Building, 2005,37(2):157-166
    [2] Abkon O. The impact of the building indoor environment on occupant productivity: Effects of indoor air quality[J]. ASHRAE Transaction, 1994,100(2):902-913
    [3] 王延熹.国外非织造滤料发展现状与前景[J].产业用纺织品,2000,18(2):1-5
    [4] 王延熹.中国非织造滤料生产和应用的现状与发展[C].第一届中国国际过滤材料研讨会论文集,2000:1-4
    [5] 姜坪,刘梅红.空气过滤材料的发展与应用[J].现代纺织技术,2002,10(4):52-55
    [6] 黄翔,顾群,狄育慧.功能性空气过滤材料及其应用[J].洁净与空调技术,2003,38(3):38-42
    [7] 黄翔 . 纳米技术在功能性空气过滤材料中的应用 [J]. 建筑热能通风空调,2005,24(2):24-26
    [8] 顾群,黄翔,杨建忠等. 纳米光催化材料在功能性空气过滤材料改性整理中的应用研究[J].洁净与空调技术,2004,(2):1-3
    [9] Zhang Y P, Yang R, Zhao R Y. A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds[J].Atmospheric Environment,2003,37(10):3395-3399
    [10] Cao L X, Cao Z, Steven L, et al. Freihaut photocatalytic oxidation of toluene on nanoscale TiO2 catalysts:Studies of deactivation and regeneration[J]. Journal of Catalysis, 2005, 196:253-561
    [11] K-laus W, Lothar K. Thermode sorption of aerosol matter on multiple filters of different materials for a more detailed evaluation of sampling artifacts [J].Atmospheric Environment, 2005, 38(31):5205-5215
    [12] Domeno C, Martinez-Carcia L. Sampling and analysis of volatile organic pollutants emitted by an industrial stack[J].Analytica Chimica Acta, 2004,524(2):51-62
    [13] Ao C H, Lee S C. Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner[J].Chemical Engineering Science,2005,60(1):103-109
    [14] Byunghoon K, Dohwan K, Donglyun C, et al. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenicbacteria[J].Chemosphere, 2003,52:277-287
    [15] 杨瑞,金招芬,张寅平.纳米光催化材料在空调领域中的应用[J].暖通空调,2001,31(1):42-44
    [16] 古政荣,陈爱平,戴智铭等.空气净化网上光催化剂和活性炭相互增强净化能力的作用机理[J].林产化学与工业,2000,20(1):6-10
    [17] 张博.光催化降解小分子有机污染物甲醛的研究[D].天津:天津大学,2003
    [18] 黄翔,梁才航,顾群. 纳米光催化功能性滤料的试验研究[J].棉纺织技术,2006,34(6):321-325
    [19] 顾群.纳米光催化材料在功能性空气过滤材料改性整理中的应用研究[D].西安:西安工程科技学院,2005
    [20] 梁才航.纳米微胶囊相变功能性空气过滤材料的性能研究[D].西安:西安工程科技学院,2005
    [21] 赵丽宁.弱光源纳米光催化活性炭纤维滤料净化室内空气的研究[D].西安:西安工程科技学院,2006
    [22] 申祚飞.液相沉积法制备 TiO2/ACF 净化室内甲醛及吸附光催化机理研究[D].西安:西安工程科技学院,2007
    [23] 于伟东.纺织物理[M].北京:中国纺织出版社,2006
    [24] 刘梅,于伟东.羊毛角蛋白作为生物医用材料的研究进展[J].材料导报,2005,19(9):111-113
    [25] Fraenkel-Conrat H, Mecham D K. Reaction of formaldehyde with protein VII. Demonstration of intermolecular cross-linking by means of osmotic pressure measurements [J].Biol.Chem.,1948,174:827-843
    [26] Mason P, Griffith J G. Nature,1964:203-484
    [27] Mayfield R, Evans D J. Beitrage Zur Tabakforschung,1976,8(5):321
    [28] Causer S M, McMillan R C. Australian Textiles,1994,14:48
    [29] IWS. Wool Upholstery Handbook[M].International Wool Secretariat, London. 1986
    [30] Causer S M, McMilIan R C, et al. The Role of Wool Carpets in Controlling Indoor Air Pollution[C]. Proc. Int. Wool Text. Res.,1995: 155-161
    [31] Johnson N A G, Wood E J, Ingham P E, et al. Wool as a Technical Fibre[J]. J. Text. Inst, 2003,94(3):34
    [32] Wortmann G, Zwiener G, Sweredjuk R, et al. Uptake and bonding of indoor pollutants by wool exemplified with formaldehyde. DWI Reports, Germany,1999:590-595
    [33] Wortmann G, Thome S, Sweredjuk R, et al. Chemisorption of protein reactive indoor air pollutants by wool[C].IWTO Conference of CTF 03 , Hobart, 2005:1-7
    [34] 王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2002
    [35] 邓大跃,王环,孟鑫等.清除室内空气污染的简易方法[J].2004,18(4):84-86
    [36] 殷实.用于空气净化的羊毛纤维及其制品和洗毛方法[P].中华人民共和国国家知识产权局,2005
    [37] 金宗哲.东亚功能性离子协会与离子行业的发展前景[C].第六届功能性纺织品及纳米技术应用研讨会论文集,2006:226-227
    [38] 张尚勇.羊毛表面性状的微观研究[J].武汉科技学院学报,2001,14(3):11-13
    [39] 孔繁超,吕淑霖,袁柏耕等.毛纺织染整理论与实践[M].北京:纺织工业出版社,1990
    [40] Kutics K,Suzuki M H J. Ind.Chem.[M].1993
    [41] Ulrich G. Calcination of Metatianjum Acid to Titanium Dioxiede White Pigments[J]. Chem. Eng. Technol, 2001,24(7):685-694
    [42] 方传艳.纳米 TiO2 薄膜光催化降解甲醛气体实验与理论研究[D].大连:大连理工大学,2005
    [43] Sclafan A, Palmisano L, Schiacello M. Influence of the preparatlon methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion[J]. Phys.Chem.1990,94:829-832
    [44] Satoshi S. A Microwave-powered plasma Light Source and Photoreactor to Degrade pollutants in Aqueous Dispersions of TiO2 Illuninated by Emitted UV/Visible Radiation[J].Environ Sci technol,2002,36 (23):5229-5237
    [45] Chiovetta M G, Romero R L. Modeling of a Fluidized-Bed photocatalytic Reactor for Water pollution Abatement[J].Chemical Engineering Science,2001,56(4): 1 631-1 638
    [46] Hsien Y H, Chang C F, Chen Y H, et al. Photodegradation of Aromatic Pollutants in Water over TiO2 Supported on Molecular Sieves[J].Applied Catalysis B:Environmental,2001,31(4):241-249
    [47] 郑怀礼,张峻化,熊文强.纳米 TiO2 光催化降解有机污染物研究与应用新进展[J].光谱学与光谱分析,2004,24(8):1003-1008
    [48] Yang H L, Gao S T , Fan J F, et al. Trace Analysis of Nicotine in Indoor Air By a SPME Method[J].Bulletin of Environmental Contamination and Toxicology, 2002,68(4):485-489
    [49] 于慧俐.超细新材料净化空气污染物的特性及其在 IAQ 技术中的应用研究[D].上海:同济大学,2004
    [50] 孙瑶毅.纳米 TiO2 薄膜的制备及光催化降解甲醛气体的实验研究[D].大连:大连理工大学,2004
    [51] Kemmitt T, Al-Salim N I, Waterland M, et al. Photocatalytic Titania Coating[J].Current Applied Physics, 2004,4:189-192
    [52] 田守卫,王作辉,刘阳思等.负载纳米 TiO2 薄膜的光催化自清洁陶瓷的制备[J].钢铁钒钛,2006,27(3):26-31
    [53] 朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社,1996
    [54] 曹雅秀,刘振宇,郑经堂等.活性炭纤维及其吸附特性[J].炭素,1999,(2):20-23
    [55] 魏同成.活性炭及其工业应用[M].北京:中国环境科学出版社,1990
    [56] 赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005
    [57] 何余生,李忠,奚红霞等.气固吸附等温线的研究进展[J].离子交换与吸附,2004, 20(4): 376 -384
    [58] Rouquerol J, Avnir D, Fairbridge C W, et al. Pure & Appl. Chem.[J], 1994, 66(8): 17-39
    [59] Brunauer S, Deming L, Deming W, et al. J. Am. Chem. Soc.[J], 1940, 62(7): 17-23
    [60] Balbuena P B, Lastoskie C, Keith E F, et al. Fundamentals of Adsorption(ed. Kodansha SM). Tokyo,1993:27-34
    [61] Sing K S W, Everett D H, Haul R A W, et al. Pure & Appl. Chem. [J], 1985, 57(4): 603
    [62] Kpn-Yebcknn G Y,高敬琮译.染色和印花过程中的吸附与扩散[M].北京: 纺织工业出版社,1985
    [63] 郭雅妮, 耿信鹏,程刚.羊毛吸附溶液中的溴代烷基三甲铵[J].纺织高校基础科学学报,2004,15(4):326-330
    [64] Morton W E, Hearle J W S. Physical Properties of Textile Fibres.3rd ed.. Manchester:The Textile Ins.,1992
    [65] 丁延伟,范崇政,吴缨等.纳米 TiO2 光催化降解 CH3OH、HCHO 及 HCOOH 反应的研究[J].分子催化,2002, 16(3):175-180
    [66] 杨建军,李向东,李庆霖等.甲醛光催化氧化的反应机理[J].物理化学学报,2001,17(3):278-281
    [67] 刘娜.纳米二氧化钛分散以及活性炭纤维复合对室内甲醛降解的研究[D].西安:西安工程科技学院,2007
    [68] 徐瑞芬,胡学香,胡伟康等.纳米尺度分散的 TiO2 光催化降解甲醛的机理[J].化学研究与应用,2003,15(5):715-718
    [69] 胡将军,李英柳,彭卫华.吸附—光催化氧化净化甲醛废气的试验研究[J].化学与生物工程,2004,(1):39-41
    [70] 余家国,赵修建.多孔 TiO2 薄膜的表面微结构对甲基橙光催化脱色的影响[J].催化学报,2000,21(3):213-216
    [71] Ulrich G. Calcination of Metatianjum Acid to Titanium Dioxiede White Pigments[J]. Chem. Eng. Technol, 2001,24(7):685-694
    [72] 王向阳,梁文,程继键.提高氧化钛光催化性能的途径[J].硅酸盐通报,2000,(1):53-57
    [73] 何建波,张鑫,魏凤玉等. TiO2 薄膜晶相组成对苯胺光催化降解的影响[J].应用化学,1999,16(5):57-60
    [74] 陈龙武,盛闻超,甘礼华.TiO2 功能薄膜的制备及影响光催化活性的因素[J].功能材料,2002,33(3):246-249
    [75] Sheng J, Shivalinnappa L, Karasawa J, et al. Preparation and Photocatalysis Evaluation of Anatase Film on Pt-buffered Polyimide[J]. Vacuum, 1998, 51( 4):623-627
    [76] 戴智铭,陈爱平,古宏晨等.气固相光催化氧化反应动力学分析[J].化工学报,2002,53(6):578-582
    [77] 杨娟玉,陈晓青,张俊山等.纳米二氧化钛作为光催化剂在环保领域的应用研究新进展[J].精细化工中间体,2002,32(6):5-9
    [78] 曾志雄,徐玉党.纳米材料 TiO2 光催化技术在空气净化中的应用[J].制冷与空调,2003,3(4):36-39
    [79] 赵毅,李守信.有害气体控制工程[M].北京:化学工业出版社,2001
    [80] 陈莉,孙卫国,刘玉森.功能性纺织品的开发现状及发展前景[J].陕西纺织.2003,57(1):50-51
    [81] 谢光银,张辉,沈兰萍等.纺织品的功能整理及功能整理剂[J].四川纺织科技,2003,(2):54-57
    [82] Brown R C. Air filtration :an integrated apporoach to the theory and lication of fibrous filters[M]. Publisher Pergamon Press,1993
    [83] Christopher D. Filters and filtration handbook[M].Publisher Elsevier Advanced Technology,1992
    [84] 许钟麟.空气洁净技术原理[M].上海:同济大学出版社,1998
    [85] 蔡杰.空气过滤ABC[M].北京:中国建工出版社,2002
    [86] ASTM F778-82. Standard Methods for Gas Flow Resistance Testing of Filtration Media[S].American Society Testing Material,1993
    [87] 赵书经.纺织材料实验教程[M].北京:中国纺织出版社,1989
    [88] Seinfield, J H.空气污染-物理和化学基础[M].北京:科学出版社,1986
    [89] 王洪俊.城市绿地空气负离子分布规律的研究[D].哈尔滨:东北林业大学,2003
    [90] 刘勇.空气负离子的生物学效应[M].国外医学:医学地理分册,1991(2):55-57
    [91] 苍风波.负离子功能纺织品[J].毛纺织科技,2005,(7):43-45
    [92] 朱天乐.室内空气污染控制[M].北京:化学工业出版社,2003
    [93] 黄春松.空调环境影响空气负离子材料激发空气负离子的实验研究[D].西安:西安工程大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700