纳米ZnO/SnO_2等复合光催化剂的制备及其降解有机污染物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在环境污染日益严重的今天,净化和修复环境已经成为当务之急。在各种环境净化方法中,半导体异相光催化降解技术作为一种新型的环境净化技术已经越来越为人们所重视。但要使半导体异相光催化降解技术在环境治理中得以推广使用,在提高光催化效率、制备新型高效的光催化剂、催化剂的回收和再生以及开发合理实用的光催化反应器等方面还有待于进一步研究探索。通过查阅大量文献资料,在前人工作的基础上,本论文就以上几个方面的问题进行了初步研究。同时,在光催化剂制备的基础上,对两类常见的气体污染物(卤代烃和羰基化合物)进行了异相光催化降解研究,并取得了一些有益的成果,为异相光催化技术进一步实用化提供了理论依据。
     首先,通过负载技术,将共沉淀法制得的ZnO-SnO_2纳米复合光催化剂负载在泡沫镍上制成了ZnO-SnO_2/泡沫镍负载型纳米光催化剂,以三氯乙烯为模型反应物,研究了反应气流速、湿度等因素对反应的影响,同时考察了催化剂的失活特征,并用扫描电子显微镜技术对负载型纳米光催化剂反应前后的表面状态进行了分析。结果表明,ZnO-SnO_2/泡沫镍负载型纳米光催化剂在各种湿度范围内都具有较高的催化活性,能有效地将三氯乙烯光催化降解消除。同时,该负载型纳米光催化剂具有较强的抗失活能力。
     其次,以ZnSO_4·7H_2O和SnCl_4·5H_2O为原料,利用NH_2·H_2O做沉淀剂,采用共沉淀法,制备了ZnO-SnO_2复合氧化物光催化剂。用现代技术手段如TEM、XRD、UV-Vis等对ZnO-SnO_2光催化剂的微观结构和性质进行了表征。以甲基橙降解为模型反应,考察了催化剂的光催化活性,并对结构和性能之间的关系进行了讨论。结果表明,复合氧化物光催化剂主要由纳米级ZnO和SnO_2组成,并且对甲基橙的降解反应呈现出较高的光催化活性,并且350℃煅烧样品的光催化活性与P25 TiO_2相当。但是随着煅烧温度的升高,复合氧化物光催化剂的光催化活性大大降低,当煅烧温度大于700℃时,还有少量较弱光催化活性的纳米Zn_2SnO_4生成。
     最后,以钛酸丁酯为原料以及醋酸为酸催化剂,通过溶胶-凝胶的技术和浸渍方法,在醋酸水溶液中制备出了复合负载型光催化剂TiO_2/SiO_2。用TEM、XRD、BET等技术手段对TiO_2/SiO_2进行了表征。在循环式流动床光催化反应系统中对典型室内污染水平的四种羰基化合物混合物进行了光催化降解实验,研究了气体流速、湿度、氧气浓度、光照时间等因素对光催化反应的影响。结果表明,复合负载型光催化剂TiO_2/SiO_2具有较好的吸附性能和较高的光催化活性。在流动床反应器中,四种羰基化合物都能被有效地光
    
    中国科学院广州地球化学研究所博士学位论文
    催化降解消除。并且四种化合物降解活性为:丙醛>丙酮>乙醛>甲醛。复合负载型光催
    化剂TIOZ/5102有望发展成为一种良好的空气净化材料。
     研究工作的特色和创新之处:(1)利用氨水做沉淀剂制备纳米复合氧化物ZnO一Sn仇
    光催化剂过程中,沉淀不需要洗涤处理,这样不但省时、简化操作,而且合成温度较低,
    减少能耗。同时,实验还发现,氨或钱离子在前驱物中存在对光催化剂的合成是有利的,
    在相同实验条件下,利用氨水做沉淀剂制备出的Zno一Sno:复合氧化物的粒径比前人实验
    中利用NaOH做沉淀剂制备出的复合氧化物要小,并且光催化活性更高。(2)纳米
    ZnO一Sn仇/泡沫镍负载型光催化剂有强的抗失活能力,在无水状态下,光照ZO5h后,催
    化剂光催化活性稳定,没有出现失活现象。(3)以醋酸作为酸催化剂,利用简单的溶胶
    一凝胶技术,在醋酸水溶液中制备出了复合负载型光催化剂TIOZ/5102。制得的光催化剂
    比表面积很大,并且负载的TIOZ粒径很小,平均粒径只有IOnm左右。与常用的HCI和
    HNO。等无机酸作催化剂相比,在本研究中,水解反应时钦酸丁酷水解缓慢,容易控制,
    同时负载操作简单方便,也不需要洗涤过程,制得的Ti02粒径更小,比表面积更大。(4)
    在循环式流动床光催化反应系统中同时对四种碳基化合物进行了光催化降解实验,并且
    发现四种化合物降解活性为:丙醛>丙酮>乙醛>甲醛,这与四种化合物在催化剂表面吸
    附能力的大小相一致,从而再一次证明了异相光催化反应是一个表面反应。
Currently, the issue of environmental pollution is more and more serious, so environmental cleaning and environmental remediation is an urgent task. Among various techniques for purifying environment, the photocatalytic degradation technology is paid greater attention as a new environment-purifying technique. However, we will continue research and development on improving the photocatalytic efficiency, recovering and reusing the photocatalyst, designing and fabricating reasonable and applied photocatalytic reactor and otherwise, in order that the heterogeneous photocatalysis is widely used for the practical water and air purification. In this dissertation, above-mentioned issues were studied on the base of previous researches. At the same time, the photocatalytic degradation of two kind common air pollutants (chlorinated hydrocarbon and carbonyl compound) was investigated. Some valuable results were obtained, and they will be significative for the practical application of the gas-solid heterogeneous photocat
    alysis.
    Firstly, a coupled oxide ZnO-SnO2, which was prepared using the co-precipitation method, was immobilized to porous nickel mesh by coating, and a coupled oxide ZnO-SnO2 supported photocatalyst was prepared. The photocatalytic degradation performance of the supported photocatalyst on gaseous model chemical trichloroethylene (TCE) was investigated in a flow through photocatalytic reactor. Some factor such as the gas flow rate, the relative humidity etc., which influence the photocatalytic conversion efficiencies of TCE, were studied, and the lifetime of the supported photocatalyst also was tested. At the same time, the surface character of the supported photocatalyst during the test was observed by the scanning electron microscope (SEM). It is found that the gaseous photocatalysis over the supported photocatalyst is an efficient method for chlorinated hydrocarbon abatement, and ca.100% conversion was found for TCE with a concentration examined up to 400 ppmv in flow-through dry synthetic gas stream. Moreover, t
    he experiments of repeated run indicated the supported photocatalyst displayed long lifetime, and the deactivation of the supported photocatalyst had not been observed within the 205 h tested period in the present experiment, although the surface of photocatalyst changed greatly during the use of the photocatalyst.
    Secondly, a coupled oxide ZnO-SnO2 was prepared using the co-precipitation method, ZnSO4-7H2O and SnCl4-5H2O were used as the starting materials and NH3 ?H2O as the precipitant. The coupled oxide was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and UV diffuse reflectance spectrum (DRS). The photocatalytic activity of the coupled oxide was studied using methyl orange as a mode organic pollutant. The relationship between the photocatalytic activity and the microstructure of nanometer coupled oxides was also discussed in the dissertation. Experimental results showed that the coupled oxide mainly consist of nanometer ZnO and SnO2, and they have the same excellent photocatalytic activity as Degussa P25 Ti02 for the degradation of methyl orange (MO). But the photocatalytic activity of the coupled oxides decreases rapidly with the increase of the calcination temperature, and a small amounts of nanometer Zn2SnO4 was formed in the mixture of coupled oxides when the calcination tem
    perature is higher than 700 ℃.
    Finally, a nano-sized titania (anatase) was immobilized to silica gel in the acetic acid solution by the sol-gel technique and the repeated dip coating method using the tetra-n-butyl
    
    
    
    Doctoral Dissertation, Gangzhou Institute of Geochemistry, Chinese Academy of Sciences
    titanate as main raw material and acetic acid as the acid catalyst to prepare a coupled photocatalyst TiC>2/SiO2. Meanwhile the structure and properties of the coupled photocatalyst were studied by means of many modern analysis techniques such as TEM, XRD, BET. The photocatalytic degradation of four carbonyl compounds mixture was carried out by using a coaxial triple-cylinder-type
引文
1. S.E. Braslavsky and K.N. Houk, Glossary of Terms Used in Photochemistry, Pure Appl. Chem., 1988,60, 1055-1106.
    2. J.W. Verhoeven; Glossary of Terms Used in Photochemistry, Pure Appl. Chem., 1996, 68(12), 2223-2286.
    3. A.Fujishima and K.Honda, Electroelectrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 1972, 238(5358), 37-38.
    4. J.H.Carey, J.Lawrence and H. M.Tosine, Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension, Bull. Environ. Contam. Toxicol., 1976,16,697-701.
    5. S.N. Frank and A.J. Bard, Electrochemical Society, National Meeting, Washington, D.C., May 2-7, 1976, Abstract 294.
    6. S.N. Frank and A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder, J. Am. Chem. Soc. 1977, 99(1), 303-304.
    7. S.N. Frank and A. J. Bard, Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders, J. Phys. Chem., 1977, 81(15), 1484-1488.
    8. D. Y. Goswami, A Review of Engineering Developments of Aqueous Phase Solar Photocatalytic Detoxification and Disinfection Processes, Journal of Solar Energy Engineering, 1997,119(2), 101-107.
    9.石庆平,王闻声,曾晓丽,光催化研究与发展的文献计量分析,催化学报,1999,20(3),293-296.
    10. D.M. Blake, Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air, National Renewal Energy Laboratory, 1994.
    11. D.F. Ollis, H. Al-Ekabi, Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam, 1993.
    12. M. Gratzel, Heterogeneous Photochemical Electron Transfer, CRC Press, Boca Raton, FL, 1989.
    13. N. Serpon, E. Pelizzetti, Photocatalysis: Fundamentals and Applications, John & Sons, New York, 1989.
    14. M. Fox, Photoinduced Electron Transfer, Elsevier, Amsterdam, 1988.
    15. M. Schiavello, Photocatalysis and Environment: Trends and Applications, Kluwer Academic Publishers, Dordrecht, 1988.
    16. E. Pellizzelt, N. Serpone, Homogeneous and Heterogeneous Photocatalysis, Riedel Publishing Company, Dordrecht, 1986.
    17. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bohnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., 1995, 95(1), 69-96.
    18. A.L. Linsebigler, G.Q. Lu, and J. T. Yates, Jr., Photocatalysis on TiO_2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev., 1995,95,735-758.
    19. A. Hagfeldt and M. Gratzel, Light-induced Redox Reactions in Nanocrystalline Systems, Chem. Rev., 1995,95(1), 49-68.
    20. P. V. Kamat and N. M. Dimitrijevi, Colloidal semiconductors as photocatalysts for solar energy conversion, Solar Energy 1990, 44(2),83-98.
    21.侯秉政,中国青年学者论环境,北京:中国环境科学出版社,1996,142-146
    22.张喜梅,陈玲,李琳等,纳米材料制备研究现状及其发展方向现代化工,2000,20(7),13-16
    23.李泉,曾广斌,席时权,纳米粒子,化学通报,995,6,30-34.
    24.周震,阎杰,王先友等,纳米材料的特征及其再电催化中的应用,1998,4,23-26.
    25.万海保,曹立新,丁晗明等,TiO_2纳米溶胶的界面粒子膜的研究,膜科学与技术,1999,19(1),45-47.
    26. R. Kobo, Electronic Properties of Metallic Fine Particles, Journal of the Physical Society of Japan, 1962,17(6), 975-986.
    
    
    27. R. Kobo, A. Kawabata, S. Kobayashi, Electronic Properties of Small Particles, Annu. Rev. Mater. Sci., 1984,14,49-66.
    28.曹亚安,丁兰,马颖等,TiO_2纳米粒子膜的表面态性质对光催化活性的影响,高等学校化学学报, 2000,20(11),1787-1789.
    29.郭清萍,钟顺和,溶胶-凝胶法制备负载型TiO_2膜的研究,化学研究与应用,1997,9(3),235-239.
    30. A.B. Hardy, W.E. Rhine, H.K. Bowen, Preparation of Spherical, Submicrometer Oxide Particles by Hydrolysis of Emulsified Alkoxide Droplets, J. Am. Ceram. Soc., 1993,76(1),97-104.
    31.罗菊,丁星照,程黎放等,用溶胶-凝胶法制备的纳米TiO_2粉体的结构,材料科学进展,1993,7(1),52-56.
    32.沈耀春,陆祖宏,韦钰,具有大比表面积的TiO_2微粒半导体电极研究,科学通报,1994,39(24),2238-2240.
    33.高镰,陈锦元,黄军华等,醇盐水解法制备二氧化钛纳米粉末,无机材料学报,1995,10(4),423-427.
    34.王丽颖,张岩,曾广斌等,水解钛醇盐制备膜及其与光敏染料的相互作用,物理化学学报 1997,13(8),752-755.
    35.沈伟韧,贺飞,赵文宽等,超临界干燥法制备TiO_2气溶胶,催化学报,1999,20(3),365-367.
    36. A. Sclafani, L. Palmisano, M. Schiavello, Influence of the Preparation Methods of TiO_2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion, J. Phys.Chem., 1990,94(2),829-832.
    37. E. Pelizzetti, C. Minero, Photocatalytic Acitivity and Selectivity of Titania Colloids and Particles Prepared by the Sol-Gel Technique: Photooxidation of Phenol and Atrazine, Langmuir, 1993,9(11), 2995-3001.
    38. I. Sopyan, S. Murasawa, Highly Efficient TiO_2 Film Photocatalyst Degradation of Gaseous Acetaldehyde, Chem. Lett., 1994,4,723-726.
    39.包定华,王世敏,顾豪爽等,ZnO薄膜的Sol-Gel制备与结构分析,科学通报,1995,40(6),572-574.
    40.刘超峰,祖庸,陈晓东等,纳米氧化锌的制备与研究,化工新型材料,1995,11,13-15.
    41.罗益民,黄可龙,潘春跃,纳米级α-FeO(OH)细粉的制备与表征无机材料学报,1994,9(2),239-243.
    42.李泉,曾广斌,席时权,二氧化锡纳米粉末的热处理与微结构,应用化学,1995,12(2),67-71.
    43.陈士夫,梁新,赵梦月,不同制备条件对TiO2/bead光催化活性的影响,感光科学与光化学 1999,17(1),25-31.
    44. R.M. Alberic, W.F. Jardim, Photocatalytic Destruction of VOCs in the Gas-phase Using Titanium Dioxide, Appli. Catal. B: Environ., 1997,14(1), 55-68.
    45.余锡宾,王桂华,罗衍庆等,TiO_2超微粒子的量子尺寸效应与光催化特性催化学报,1999,20(6),613-618.
    46.尹荔松,周歧发,唐新桂等,纳米粉晶的XRD研究,功能材料,1999,30(5),498-511.
    47. G. Sengupta, R.N. Chatterje, G.C. Malty, B.J. Ansari, C.V.V. Satyanarayna, Role of Oxygen Vacancies in Water Vapor Chemisorption and CO Oxidation on Titania, J. Colloid. Interf. Sci., 1995,170(1), 215-219.
    48.邹炳锁,王斌,汤国庆等,岩盐型ZnO纳米微粒的生成和光谱特性,科学通报,1994,39(6),499-501.
    49. Y. Wang, N. Herron, Nanometer-Sized Semiconductor Clusters: Materials Synthesis,Quantum Size Effects, and Photophysical Properties, J. Phys.Chem., 1991,95(2), 525-532.
    50. M. Ocana, V. Fomes, J.V.G. Ramos, C.J. Serna, Factors Affecting the Infrared and Raman Spectra of Rutile Powders, J. Solid State Chem., 1988,75(2), 364-372.
    51. W.T. Pawlewicz, G.J. Exarhos, W.E. Conaway, Structural Characterization of TiO_2 Optical Coatings by Raman Spectroscopy, Applied Optics, 1983,22(12), 1837-1840.
    52. V. Augugliaro, S. Coluccia, V. Loddo, L. Marchese, G. Martra, Photocatalytic Oxidation of Gaseous Toluene on Anatase TiO_2 Catalyst: Mechanistic Aspects and FT-IR Investigation, Appli. Catal. B:
    
    Environ., 1999,20(1), 15-17.
    53. D.V. Kozlov, E.A. Paukshtis, Ethanol Photocatalytic Oxidation by the FTIR in situ Method, Appl. Catal. B: Environ., 2000,24(1),L7-L12.
    54. L.A. Phillips, G.B. Raupp, Infrared Spectroscopic Investigation of Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichlorlethylene, J. Mol. Catal., 1992,77(3), 297-311.
    55. C. Trapalis, V. Kozhukharov, B. Samuneva, Sol-Gel Processing of Titanium-Containing Thin Coatings, Part Ⅱ XPS Studies, J. Mater. Sci., 1993, 28(5), 1276-1282.
    56.曹亚安,黄英,陈咏梅,纳米粒子膜的制备、表面态性质和光催化活性催化学报,1999,20(6),613-618.
    57.回峥,徐金杰,谢腾峰等,TiO_2单晶的表面光电压研究,高等学校化学学报,1999,20(9),1458-1459.
    58.回峥,徐金杰,谢腾峰等,偏振光作用下金红石型TiO_2单晶(001)面的表面光电压谱研究,高等学校化学学报,1999,20(10),1625-1627.
    59.曹亚安,丁兰,马颖,纳米粒子膜的表面态性质对光催化活性的影响,高等学校化学学报,1999,20(11),1787-1789.
    60.铁新明,宋庆,白玉白,CdS敏化对TiO_2纳米薄膜电极光生电荷转移特性的影响,高等学校化学学报,2000,21(2),295-297.
    61.李萍,江雷,邹炳锁等,TiO_2超微粒子界面电荷行为的研究,高等学校化学学报,1991,12(8),1105-1106.
    62.张昕彤,庄家骐,徐金杰,量子尺寸氧化锌颗粒的表面光电压谱研究,高等学校化学学报,1999,20(12),1945-1947.
    63.王宝辉,王德军,崔毅等,CdS超微粒子薄膜电极的光电化学特性,高等学校化学学报,1995,16(10),1610-1613.
    64.杨继华,张杰,宫明宣等,n-GaAs(100)、Si(111)表面修饰卟啉分子的光致界面电荷转移特性研究,高等学校化学学报,1994,15(2),711-715.
    65.王德军,崔毅,李铁津等,CeO_2纳米晶的光电量子尺寸效应,高等学校化学学报,1994,15(7),1071-7072.
    66. A. Chatterjee, D. Das, S.K. Pradhan, D. Chakravorty, Synthesis of Nanocrystalline Nickel-Zinc Ferrite by the Sol-Gel Method, J. Magn. Mater., 1993,127(1-2),214-218.
    67.彭郁卿,王涛,周诗谣,纳米材料Fe_2O_3微结构的正电子寿命谱学研究物理学报,1994,43(7),1208-1212.
    68.徐锐,姚明明等,光催化TiO2薄膜研究进展及其影响因素,云南师范大学学报(自然科学版),2002,22(6),29-34.
    69.豆俊峰,邹振扬,郑泽根,纳米TiO_2的光化学特性及其在环境科学中的应用,材料导报,2000,14(6),35-37
    70. J. Schwitzgebel, J. G. Ekerdt, H. Gerischer, A. Heller, Role of the Oxygen Molecule and of the Photogenerated Electron in TiO2-Photocatalyzed Air Oxidation Reactions, J. Phys. Chem.,1995, 99(15),5633-5638.
    71. M. Fujii, T. Kawai,; S. Kawai, Photocatalytic Activity and the Energy Levels of Electrons in a Semiconductor Particle Under Irradiation, Chem. Phys. Lett., 1984, 106(6), 517-522.
    72.叶锡生,焦正宽,张立德等,板钛基TiO2纳米晶的结构相变和热稳定性,材料研究学报,1999,13(5),487-491.
    73.沈伟韧,赵文宽,贺飞等,TiO2光催化反应及其在废水中的应用,化学进展,1998,10(4),349-361.
    74. K. J. Ktabunde, J. Stark, O. Koper, C. Mohs, D. G. Park, S. Decker, Y. Jiang, I. Lagadic, D. Zhang, Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry, J. Phys. Chem., 1996, 100(30), 12142-12153.
    75. L.E. Brus, A Simple Model for the Ionization Potentials Electron Affinity, and Aqueous Redox Potentials of Small Semiconductor Crystallines, J. Chem. Phys. 1983,79, 5566-5571.
    
    
    76. L.E. Brus, Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: the Size Dependence of the Lowest Excited Electronic State, J. Chem. Phys., 1984, 80(9),4403-4409.
    77. C. Richard, P. Boule and J.M. Aubry, Oxidizing species involved in photocatalytic transformations on zinc oxide, Photochem. Photobiol. A: Chem. 1991, 60(2), 235-243.
    78. K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, and A. Itaya, Hetergeneous Photocatalytic Decomposition of Phenol over TiO_2 Powder, Bull. Chem. Soc. Jpn 1985, 58, 2015-2022.
    79. S.T. Martern, A.T. Lee, M.R. Hoffmann, Chemical Mechanism of Inorganic Oxidants in the TiO2/UV Process: Increased Rates of Degradation of Chlorinated Hydrocarbons, Environ. Sci. Technol. 1995, 29(10), 2567-2573.
    80.王训,祖庸,李晓娥,纳米TiO_2表面改性,化工进展,2000,(1),67-69
    81. D.D. Dionysiou, WEFTIEC'99, Annu. Conf, Expo. 72nd, 1999, 9, 2715-2731
    82.宋宽秀,颜秀茹,2,2-二氯乙烯基二甲基磷酸酯在TiO2/H2O界面上光催化降解,环境污染与防治,1999,21(5),5-8
    83. R.W. Matthews, Photocatalytic Oxidation of Chlorobenzene in Aqueous Suspensions of Titanium Dioxide, J. Catal., 1986, 97(2), 565-568.
    84. R. Bickley, T. Gonzalez-Carreno, J.S. Lee, A Structural Investigation of Titanium Dioxide Photocatalysis, J. Solid State Chem., 1991, 92(1), 178-190.
    85. A.J. Maira, K.L. Yeung, C.Y. Lee, P.L. Yue, C.K. Chan, Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-sized TiO_2 Catalysts, J. Catal., 2000, 192(1), 185-196.
    86. N. Serpone, E. Borgarello, M. Barbeni, E. Pellizzetti, P. Pichat, J.M. Hermann, M.A. Fox, Photochemical Reduction of Gold(Ⅲ) on Semiconductor Dispersions of TiO_2 in the Presence of CN- Ions: Disposal of CN- by Treatment with Hydrogen Peroxide, J. Photochem. Photobiol., 1987, 36(3), 373-388
    87. M. Barbeni, M. Morello, E. Pramauro and E. PelizzettiM. VincentiE. Borgarello and N. Serpone, Sunlight photodegradation of 2,4,5-trichlorophenoxy-acetic acid and 2,4,5,trichlorophenol on TiO2. Identification of intermediates and degradation pathway, Chemosphere, 1987, 16(6), 1165-1179
    88. H. Gerischer, A. Heller, The role of oxygen in photooxidation of organic molecules on semiconductor particles, J. Phys. Chem., 1991,95(13), 5261-5267.
    89. H. Gerischer, A. Heller, Photocatalytic Oxidation of Organic Molecules at TiO_2 Particles by Sunlight in Aerated Water, J. Electrochem. Soc., 1992, 139(1), 113-118.
    90. J. M. Kesselman, G.A. Shreve, M. R. Hoffmann, N. S. Lewis, Flux-Matching Conditions at TiO_2 Photoelectrodes: Is Interracial Electron Transfer to O2 Rate-Limiting in the TiO2-Catalyzed Photochemical Degradation of Organics?, J. Phys. Chem., 1994, 98(50), 13385-13395.
    91. J.R. Nicole, P. Pichat, Effect of Deposited Pt Particles on the Surface Charge of TiO_2 Aqueous Suspensions by Potentiometry, Electrophoresis and Labeled Ion Adsorption, J. Phys Chem., 1986, 90(12), 2733-2738.
    92. M. Takahashi, K. Mita, H. Toyuki, Pt-TiO_2 Thin Films on Glass Substrates as Efficient Photocatalysts, J. Mater. Sci., 1989, 24(1), 243-246.
    93. M.A. Agudao, M.A. Anderson, Degradation of Formic Acid over Semiconducting Membranes Supported on Glass: Effects of Structure and Electron Doping, Solar Energy Materials and Solar Cells, 1993, 28(4), 345-361.
    94.朱永法,张利,姚文清等,溶胶-凝胶法制备薄膜型TiO_2光催化剂,催化学报,1999,20(3),362-364.
    95. C.M. Wang, Palladium Catalysis of O2 Reduction by Electrons Accumulated on TiO_2 Particles during Photoassisted Oxidation of Organic Compounds, J. Am. Chem. Soc., 1992, 114(13), 5230-5234.
    96. A. Sclafani, M.N. Mozzanega, P. Pichat, Effect of Silver Deposite on the Photocatalytic Activity of Titaniu Dioxide Samples for the Dehydrogenation or Oxidation of 2-Propanol, J. Photochem. Photobiol. A: Chem., 1991, 59(2), 181-189.
    97. K. Hadjiivanov, IR Spectroscopy Study of Silver Ions Absorbed on Titanium(Anatase), Mater. Chem.
    
    Phys., 1991, 28(4), 367-377.
    98. W. Lee, H.S. Shen, K. Dwight, A. Wold, Effect of Silver on the Photocatalytic Activity of TiO_2, J. Solid State Chem., 1993, 106(2), 288-294.
    99. J.M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, Characterization and Photocatalytic Activity in Aqueous Medium of TiO_2 and Ag-TiO_2 Coatings on Quartz, Appl. Catal. B: Environ., 1997, 13(3-4), 219-228.
    100.王传义,刘春艳,沈涛,Au/TiO_2复合纳米粒子得研究-Ⅰ制备与表征,科学进展,1998,43(3),268-272.
    101. Y.M. Gao, Improvement of Photocatalytic Activity of Titanium(Ⅳ) Oxide by Dispersion of Au on TiO_2, Mater. Res. Bull., 1991, 26(12), 1247-1254.
    102. Y.M. Gao, Preparation and Photocatalytic Properties of Titanium(Ⅳ) Oxide Films, Mater. Res. Bull., 1991, 27(9), 1023-1030.
    103. G.E. Poirier, B.K. Hance, J.M. White, Tunneling Probe Manipulation of Individual Rhodium Nanoparticles Supported on TiO_2, J. Phys. Chem., 1993, 97(24), 6500-6503.
    104.果玉沈编,半导体物理,国防工业出版社,北京:1988,p.19.
    105. O. A. Ileperuma, K. Tennakone, W. D. D. P. Dissanayake, Photocatalytic behaviour of metal doped titanium dioxide : Studies on the Photochemical Synthesis of Ammonia on Mg/TiO_2 Catalyst Systems, Appl. Catal., 1990, 62(1), L1-L5
    106.刘平,林华香,付贤智等,掺杂TiO_2光催化剂膜材料得制备及其灭菌机理,催化学报,1999,20(3),325-328.
    107.赵文宽,覃榆森,方佑龄等,水面石油污染物得光催化降解,催化学报,1999,20(3),368-372.
    108. M. Gratzel, F.H. Russall, Electron Paramagnetic Resonance(EPR) Studies of Doped TiO_2 Colloids, J. Phys. Chem., 1990, 94(6), 2566-2572.
    109. J. Moser, M Gratzel, R. Gallay, Inhibition of Electron-Hole Recombination in Substitutionally Doped Colloid Semiconductor Crystallites, Helvetica Chimica Acta., 1987, 70(6), 1596-1604.
    110.张峰,李庆霖,杨建军等,TiO_2光催化剂的可见光敏化研究,催化学报,1999,20(3),329-332.
    111. J. Soria, J.C. Conesa, V. Augugliaro, L. Palmisano, M. Schiavello, Dinitrogen Photoreduction to Ammonia over Titanium Dioxide Powders Doped with Ferric Ions, J. Phys. Chem., 1991, 95(1), 274-282.
    112. R.U.E. Lam, L.G.J. Haart, A.W. Wiersma, G. Blasse, A. H. A. Tinnemans and A. Mackor, the Sensitization of SrTiO_3 Photoanodes by Doping with Various Transition Metal Ions, Mater. Res. Bull., 1981, 16(12), 1593-1600.
    113. W.K. Wong, M.A. Malati, Doped TiO_2 for Solar Energy Applications, Solar Energy, 1986, 36(2), 163-168.
    114. T.R.N. Kutty, M. Avudaithai, Photocatalytic Activity of Tin-Substituted TiO_2 in Visible Light, Chem. Phys. Lett., 1989,163(1-3), 93-97.
    115. A. Milis, J. Peral, X. Domènech, J. A. Navio, Heterogeneous photocatalytic oxidation of nitrite over iron-doped TiO_2 samples, J. Mol. Catal., 1994, 87, 67-74
    116. J. A. Navío, F. J. Marchena, M. Roncel, M. A. De la Rosa, A laser flash photolysis study of the reduction of methyl viologen by conduction band electrons of TiO_2 and Fe—Ti oxide photocatalysts, J. Photochem. Photobiol. A: Chem., 1991, 55, 319-322.
    117. W. Chio, A. Termin, M.R. Hoffmann, the Role of Metal Ion Dopants in Quantum-Sized TiO_2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, J. Phys. Chem., 1994, 98(51), 13669-13679.
    118. A. Mabakazu, T. Kawamura, S. Kodama, K. Maruya, T. Onishi, Photocatalysis on Ti-Al Binary Metal Oxides: Enhancement of the Photocatalytic Activity of TiO_2 Species, J. Phys. Chem., 1988, 92(2), 438-440.
    119. X. Fu, L.A. Clark, Q. Yang, M.A. Anderson, Enhanced Photocatalytic Performance of Titania-Based
    
    Binary Metal Oxides: TiO_2/SiO_2 and TiO_2/ZrO_2, Environ. Sci. Technol., 1996, 30(2),647-653.
    120. K. Vinodgopal and P. V. Kamat, Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO_2/TiO_2 Coupled Semiconductor Thin Films, Environ. Sci. Technol., 1995, 29(3), 841-845.
    121. R. Vogel, P. Hoyer, H. Weller, Quantum-Sized PbS, CdS, Ag_2S, Sb_2S_3, and Bi_2S_3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors, J. Phys. Chem., 1994, 98(12), 3183-3188.
    122. L. Spanhel, H. Weller, A. Henglein, Photochemistry of Semiconductor Colloids. 22. Electron Injection from Illuminated CaS into Attached TiO_2 and ZnO Particles, J. Am. Chem. Soc., 1987, 109(22), 6632-6635.
    123. K.R. Gopidas, M. Bohorquez, P.V. Kamat, Photophysical and Photochemical Aspects of Coupled Semiconductors. Charge-Transfer Process in Colloidal CdS-TiO_2 and CdS-AgI Systems, J. Phys. Chem., 1990, 94(16), 6435-6440.
    124. S. Kohtani, A. Kudo, T. Sakata, Spectral Sensitization of a TiO_2 Semiconductor Electrode by CdS Microcrystals and its Photoelectrochemical Properties, Chem. Phys. Lett., 1993,206(1-4), 166-170.
    125. N. Serpone, E. Borgarello, E. Pelizzetti, Utilization of the Semiconductor Particle as a Microphotoelectrochemical Cell, J. Electrochemical Soc., 1988, 135(11), 2760-2766.
    126.郝恩才,孙轶鹏,杨柏等,CdS/TiO_2复合纳米微粒的原位合成及性质研究,高等学校化学学报,1998,19(8),1190-1194.
    127. D. Liu, P.V, Kamat, Electrochemical Rectification in CdSe+TiO_2 Coupled Semiconductor Films, J. Electroanal Chem., 1993, 347(1-2), 451-456.
    128.王恒志,杨娟等,TiO_2/SnO_2的制备及其光催化降解甲基橙,上海化工,2001,26(13),15-16.
    129. I. Bedja, P.V. Kamat, Capped Semiconductor Colloids Synthesis and Photoelectrochemical Behavior of TiO2-Capped SnO2 Nanocrystallites, J. Phys. Chem., 1995,99(22), 9182-9188.
    130. Y.R. Do, W. Lee, K. Dwight, A. Wold, the Effect of WO_3 on the Photocatalytic Activity of TiO_2, J. Solid State Chem., 1994, 108(1), 198-201.
    131.李芳柏,古国榜,黎永津,WO_3/TiO_2复合半导体的光催化性能研究,环境科学,1999,20(4),75-78.
    132. Y.T. Kwon, K.Y. Song, W.I. Lee, G.J. Choi, Y.R. Do, Photocatalytic Behavior of WO_3-Loaded TiO_2 in an Oxidation Reaction, J. Catal., 2000, 191(1), 192-199.
    133. A. Hasselbarth, A. Eychmiiller, R. Eichberger, M. Giersig, A. News, Chemistry and Photophysics of Mixed CdS/HgS Collids, J. Phys. Chem., 1993, 97(20), 5333-5340.
    134. J. Rabani, Sandwich Colloids of ZnO and ZnS in Aqueous Solutions, J. Phys. Chem., 1989, 93(22), 7707-7713.
    135.杨晓娟,陈耐生,沈水发等,Cr_2O_3-FeO_3复合氧化物纳米晶的制备、表征及气敏性研究,中国科学(B),1998,28(4),371-377.
    136. C. Wang, J. C. Zhao, X. M. Wang ,B.X. Mai,G.Y. Sheng,P.A. Peng,J.M. Fu, Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO_2 coupled photocatalysts, Appl. Catal. B: Environ., 2002, 39(3), 269-279.
    137.陈慧,魏东斌,安太成,房彦军 水溶性金属卟啉的合成及其光敏性质,西北师范大学学报(自然科学版),1998,34(3),91-92
    138.陈志龙,万维勤,陈静蓉,许德余,2,7,12,18-四甲基-13,1-二(3-羟基丙基)卟啉的合成及其光敏化活性,中国医药工业杂志,1998,29(11),501-502.
    139. B. Patrick, P. V. Kamat, Photoelectrochemistry in semiconductor particulate systems. 17. Photosensitization of large-bandgap semiconductors: charge injection from triplet excited thionine into zinc oxide colloids, J. Phys. Chem., 1992, 96(3), 1423-1428.
    140.袁锋,黎甜,楷沈涛等,荧光素衍生物LB膜对TiO2电极的光敏化作用,物理化学学报,1995,11(6),526-531.
    141.李卫华,郝彦忠,乔学斌等,硫化物/Ru(Ⅱ)络合物复合敏化TiO2纳米多孔膜,物理化学学报,
    
    1998,14(9),841-845.
    142. W. E. Ford, M. A. J. Rodgers, Kinetics of Nitroxyl Radical Oxidation by Ru(bpy)_3~(3+) following Photosensitization of Antimony-Doped Tin Dioxide Colloidal Particles, J. Phys. Chem. B., 1997, 101(6), 930-936.
    143. A. P. Hong, D. W. Bahnemann, and M. R. Hoffmann, Co(Ⅱ) tetrasulfophthalocyanine on Titanium Dioxide Ⅱ. Photocatalytic Oxidation of Aqueous Sulfur Dioxide, J. Phys. Chem. 1987, 91, 6245-6251
    144. E. Vrachnou, A.J. Gratzel, A.J. Meeoy, J. Electroanal. Chem., 1989, 258,193.
    145. P.V. Kamat, M.A. Fox, Photosensitization of TiO_2 Colloids by Erythrosin B in Acetonitrile, Chem.Phys. Lett., 1983, 102(4), 379-384.
    146. M. W. Rophael, L. B. Khalil and M.M. Moawad, The reduction of aqueous carbonate to methanol, photocatalysed by TiO_2 phthalocyanine, Vacuum, 1990, 41(1-3), 143.
    147. D. Whrle, G. Schneider, J. Stark and G. Schulz-Ekloff, Photooxidation of 2-mercaptoethanol in the presence of water soluble phthalocyanine and perylene-3,4,9,10-tetracarboxylic acid derivatives, J. Mol. Catal., 1992, 75(2), L39-L44.
    148.王海,陈德文,徐广智等,金属酞箐在二氧化态胶体表面光诱导电子转移,科学通报,1994,39(5),424-427.
    149. A. Giraudeau, F. F. Fan, A. J. Bard, Semiconductor electrodes. 30. Spectral sensitization of the semiconductors n-TiO_2 and n-WO_3 with metal phthalocyanines, J. Am. Chem. Soc., 1980, 102(16), 5137-5142.
    150. H. Ross, J. Bendig, S. Hecht, Sensitized Photocatalytical Oxidation of Terbutyazine, Solar Energy Materials and Solar Cells, 1994, 33(4), 475-481.
    151. B. Patrick, P.V. Kamat, Photoelectrochemistry in semiconductor particulate systems. 17. Photosensitization of large-bandgap semiconductors: charge injection from triplet excited thionine into zinc oxide colloids, J. Phys. Chem., 1992, 96(3), 1423-1428.
    152. S.A. Majumder, et al., ASME JSES KSME Int. Sol. Energy Conf. Publ. By ASME, New York, NY, USA, p.9.
    153.张莉,任炎杰等,染料敏化La~(3+)掺杂的TiO2纳米多孔膜光电化学,电化学,2002,8(1),27-31.
    154. E. M. K. Mansour, P. Maillard, P. Krausz, S. Gaspard and C. Giannotti, Photochemically induced olefin oxidation by titanyl and vanadyl porphyrins, J. Mol. Catal.,1987, 41(3), 361-366
    155. P.V. Kamat, Photoelectrochemistry in particulate systems. 9. Photosensitized reduction in a colloidal titania system using anthracene-9-carboxylate as the sensitizer, J. Phys. Chem., 1989, 93(2), 859-864.
    156.沈伟韧,赵文宽,贺飞等,TiO2光催化反应及其在废水处理中的应用,化学进展,1998,10(4),349-361.
    157. D. Chatterjee and A. Mahata, Photoassisted detoxification of organic pollutants on the surface modified TiO_2 semiconductor particulate system, Catal. Commun., 2001, 2(1), 1-3.
    158. T. Uchihara, M. Matsumura, J. Ono, H. Tsubomura, Effect of EDTA on the photocatalytic activities and flatband potentials of cadmium sulfide and cadmium selenide, J. Phys. Chem., 1990, 94(1), 415-418.
    159. W. G. Becker, M. M. Truong, C. C. Ai, N. N. Hamel, Interfacial factors that affect the photoefficiency of semiconductor-sensitized oxidations in nonaqueous media, J. Phys. Chem., 1989, 93(12), 4882-4886.
    160.刘鸿,氢处理提高TiO2光催化活性研究,[博士后工作报告],大连:中国科学院大连化学物理研究所,2001.
    161. R.M. Barrer, D.M. Macleod, Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites. Trans. Faraday. Soc. 1955, 51, 1290.
    162. K.R. Srinivasan, H.S. Fogler, Use of inorganic-organic-clays in the removal of priority pollutants from industrial wastewater: Structure Aspects. Clay and Clay mineral, 1990, 38(3), 277-286.
    163. T. J. Pinnavaia, Intercalated clay catalyst. Science. 1983, 220(4595), 365-371.
    
    
    164.李松军,罗来涛,郭建军,交联粘土催化剂的研究进展,工业催化,2000,8(6),3-7.
    165. B.M. Choudary, V.K. Valli, D. Prasad, An improved asymmetric epoxidation of allyl alcohols using titanium-pillared montmorillonite as heterogeneous catalyst. J. Chem. Soc., Chem. Commun. 1990, (17), 1186-1187.
    166. J. Sterte, Synthesis And Properties of Titanium Oxide Cross-Linked Montmorillonite. Clays and Clays Minerals, 1986, 34(6), 658-664.
    167. Z. Liu and G. Sun, In: Factors affecting acidity and basal spacing of cross-linked smectites. In: Drzaj B, pejovnik S, eds: Zeolites, 1985, 24, 493-500, Elserier, Amsterdam.
    168.陈晓银,陶龙骧,郑禄彬,钛层柱粘土的合成Ⅰ:四氯化钛作钛源,催化学报,1994.159(5),355-360;
    陈晓银,陶龙骧,郑禄彬,钛层柱粘土的合成Ⅱ:硫酸钛作钛源,催化学报,1994.159(5),361-367.
    169. S. Yamanaka, T. Nishihara, M. Hattori, High crystalline montmorillonite obtained by treatment with TiCl4 aqueous solution. In: Schultz L C, Van Olphen H, Mumpton F A, Eds Proceedings of the international Clay Conference, Denver. Bloomington, Indiana, USA: The clay mineral society, 1985,71-72.
    170. H. Yoneyama, S. Haga, S. Yamanaka, Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay. J. Phys. Chem. 1989, 93(12), 4833-4837.
    171. S. Yamanaka, T. Nishihara, M. Hattori, Preparation and properties of titania pillared clay. Mater. Chem. Phys. 1987, Mater. Chem. Phys. 1987, 17(1-2), 87-101.
    172. C. Ooka, S. Akita, Y. Ohashi, T. Horiuchi, K. Suzuki, S. Komai, H. Yoshida, T. Hattori, Crystallization of hydrothermally treated TiO_2 pillars in the pillared montmorillonite for improvement of the photocatalytic activity. J Mater. Chem. 1999, 9, 2943-1952.
    173. Z. Ding, H.Y. Zhu, G.Q. Lu, P.F. Greenfield, Photocatalytic properties of tatania pillared clay by different drying methods, J. Colloid interf. Sci. 1999, 209,193-199。
    174.李静谊,陈春城,赵进才,朱怀勇,丁哲.紫外光照射下染料污染物在柱状膨润土上的光降解,中国科学B,2002,32(3),268-270.
    175. J.Y. Li, C.C. Chen, J.C. Zhao, H.Y. Zhu, J. Orthman, Photodegradation of dye pollutants on UV-Vis irradiation, Appl. Catal. B: Environ. 2002, 37,331-338.
    176. Z.S. Sun, Y.X. Chen, Q. Ke, Y. Kang, J. Yuan, Photocatalytic degradation of cationic azo dye by TiO2/bentonite nanocomposite, J. Photochem., Photobio., A:Chem., 2002, 149, 169-174.
    177. S.K. Dolberg, Heterogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air, Journal of the Air and Waste Management Association, 1996, 46, 891-898.
    178. W. F. Jardim and R. M. Alberici, Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide, Appl.Catal.,B: Environ., 1997, 14, 55-68.
    179. A. V. Vorontsov, E. N. Savinov, G. B. Barannik, V. N. Troitsky and V. N. Parmon, Quantitative studies on the heterogeneous gas-phase photooxidation of CO and simple VOCs by air over TiO2, Catalysis Today, 1997, 39, 207-218.
    180.张彭义,陈清,余刚等,相对干燥条件下甲苯,苯和氯仿的光催化降解,中国环境科学,2003,23(2),139-143.
    181. D.F. Ollis, Contamination Degradation in Water, Environ. Sci. Technol., 1985, 19, 480-484.
    182.李田,严煦世,光催化氧化法去除水中有机氯化物的研究,上海环境科学,1992,11(2),11-15.
    183. K. Hustert, R.G. Zepp, Photocatalytic Degradation of Selected Azo Dyes, Chemosphere, 1992, 24(3), 335-342.
    184.祝万鹏,王利杨,志华光,催化氧化法处理染料中间体H酸水溶液,环境科学,1996,17(4),7-10.
    185.陈士夫,赵梦月,陶跃武,玻璃纤维附载TiO_2光催化降解有机磷农药,环境科学,1996,17(4),33-35.
    186. E. Pellizzetti, C. Minero, V. Maurino, A. Sclafanl, H. Hidaka, N. Serpone, Photocatalytic Degradation of Nonylphenol Ethoxylated Surfactants, Environ. Sci. Technol., 1989, 23(11), 1380-1385.
    187. H. Hidaka, J. Zhao, E. Pellizzetti, N. Serpone, Photodegradation of Surfactants. 8. Comparison of
    
    Photocatalytic Processes between Anionic Sodium Dodecylbenzenesulfonate and Cationic Benzyldodecyldimethylammonium Chloride on the TiO_2 Surface, J. Phys. Chem., 1992, 96(5), 2226-2230.
    188. H. Hidaka, Y. Asai, J. Zhao, K. Nohara, E. Pellizzetti, N. Serpone, Photoelectrochemical Decomposition of Surfactants on a TiO2/TCO Particulate Film Electrode Assembly, J. Phys. Chem., 1995, 99(20),8244-8248.
    189. C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Photolysis of Chloroform and other Organic Molecules in Aqueous TiO_2 Suspensions, Environ. Sci. Technol., 1991, 25(3), 494-500.
    190. Q. Yan, L.D. Sivils, S.D. Palepu, S. Kapila, Effects of Co-Contaminants on Photodegradation of Octachlorodibenzo-p-dioxin(OCDD), Chemosphere, 1994, 29(9-11), 2183-2192.
    191. Y. Takita, H. Yamada, M. Hashida, T. Ishihara, Conversion of 1,1,2-trichloro-trifluoroethane(CFC113) over TiO_2-Supported Metal and Metal Oxide Catalysts, Chem. Lett., 1990, 221 (5), 715-718.
    192. C. Minero, C. Aliberti, E. Pelizzetti, R.Terzian, N. Serpone, Kinetic Studies in Heterogeneous Photocatalysis. 6. AMI Simulated Sunlight Photodegradation over Titania in Aqueous Media: A First Case of Fluorinated Aromatics and Identification of Intermediates, Langmuir, 1991, 7(5), 928-936.
    193.方佑龄,赵文宽,张国华等,用浸涂法制备漂浮负载型TiO_2薄膜光催化降解辛烷,环境化学,1997,16(5),413-417。
    194.戴遐明,陈永华,李庆丰等,半导体氧化物超细粉末对Cr(Ⅵ)的光催化还原作用研究,环境科学,1996,7(6),34-36.
    195. V. Augugliaro, V. Loddo, G. Marci, L. Palmisano, Photocatalytic Oxidation of Cyanides in Aqueous Titanium Dioxide Suspensions, J. Catal., 1997, 166(2), 272-283.
    196.张立德编著,严东生,冯端主编,材料新星—纳米材料科学,长沙:湖南科学出版社,1997.
    197.沈君权,TiO_2光催化剂及其应用,现代技术陶瓷,1998,(1),32-38.
    198.邓慧华,陆祖宏,半导体光催化杀菌的机理和应用,东南大学学报,1996,26(6),1-6.
    199.于向阳,梁文,杜永梅等,二氧化钛光催化材料的应用进展,材料导报,2000,14(2),38-40.
    200. K. Sunada, Y. Kikuchi, K. Hashimoto, A. Fujishima, Bactericidal and Detoxification Effects of TiO_2 Thin Film Photocatalysts Environ. Sci. Technol., 1998, 32(5), 726-728.
    201.陶跃武,赵梦月,空气中有害物质的光催化去除,催化学报,1997,18(4),345-347.
    202.彭才秋,光催化氧化技术催生新环保产品,现代家电,2003,(7),61.
    203. T. H. Lim and S. D. Kim, Trichloroethylene degradation by photocatalysis in annular flow and annulus fluidized bed photoreactors, Chemosphere, 2004, 54(3), 305-312.
    204. L.A. Dibble, G.B. Raupp, Kinetics of the gas-solid heterogeneous photocatalytic oxidation of trichloroethylene by near UV illuminated titanium dioxide, catal. Lett., 1990, 4, 345-354.
    205. L.A. Phillips, G.B. Raupp, Infrared spectroscopic investigation of gas-solid heterogeneous photocatalytic oxidation of trichloroethylene, J. Mol. Catal., 1992, 77, 298-311.
    206. W. A. Jocoby, M.R. Nimlos, D.M. Black, et al., Products , Intermediates , Mass balances, and reaction pathways for the oxidation of trichloroethylenes in air via heterogeneous photocatalysis, Environ. Sci. Technol., 1994, 28, 1661-1668.
    207. S. Yamazaki-Nishida, S. Cervera-March, K. J. Nagano, et al., Experimental and theoretical study of the reaction mechanism of the photoassisted catalytic degradation of trichloroethylene in the gas phase J. phys. Chem., 1995,99, 15814-15821.
    208. M.L. Sauer, M.A. Hale, D.F. Ollis, Heterogeneous photocatalytic oxidation of dilute toluene - chlorocarbon mixture in air, J. Photochem. Photobiol. A: chem., 1995, 88, 169-178.
    209. H.J. Forstner, R.C. Flagan, J.H. Seinfeld, Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: molecular composition, Environ. Sci. Technol. 1997, 31, 1345-1358.
    210. M.D. Dressen, T.M. Miller, V.H. Grassian, Photocatalytic oxidation of trichloroethylene on Zinc oxide : characterization of surface-bound and gas-phase products and intermediates with FT-IR
    
    spectroscopy, J. Mol. Catal. A:chem., 1998, 131,149-156.
    211.刘鸿,成少安,王琪全等 无水条件下气相三氯乙烯的光催化降解机理,环境科学,1998,19(2),62-70.
    212. H. Liu, S.A. Cheng, Q. Jian, et al., the Gas-Photocatalytic Degradation of Trichloroethylene without Water, Chemosphere, 1997, 35(12), 2881-2889.
    213. L. A. Dibble, G. B. Raupp, Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated airstreams, Environ. Sci. Technol., 1992, 26, 492-495.
    214.李功虎,马胡兰,安纬珠纳,米二氧化钛气相光催化降解三氯乙烯,催化学报,2000,21(4),361-364.
    215. P.B. Amama, K. Itoh, M. Murabayashi, Photcatalytic oxidation of trichloroethylene in humidified atmosphere, J. Mol. Catal. A: chem., 2001, 176, 165-172.
    216. K.J. Buechler, R.P. Noble, C.A. Koval, et al., Investigation of the effects of controlled periodic illumination on the oxidation of gaseous trichloroethylene using a thin film of TiO_2, Ind. Eng. Chem. Res., 1999, 38(3), 892-896.
    217. K. H. Wang, Y.H .Hsieh, Heterogeneous photocatalytic degradation of trichloroethylene in vapor phase by titanium dioxide, Environment international, 1998, 24(3), 267-274.
    218. J.S. Kim, K. Itoh, M. Murabayashi, et al., Pretreatment of the photocatalyst and the photocatalytic degradation of trichloroethylene in the gas-phase, Chemosphere, 1999, 38(13), 2969-2978.
    219. S. Hager, R. Bauer , G. Kudielka, Photocatalytic oxidation of gaseous chlorinated organics over titanium dioxide, Chemosphere, 2000, 41, 1219-1225.
    220. R. Annapragada, R. Leet, R. Changrani, et al., Vacuum photocatalytic oxidation of trichloroethylene, Environ. Sci. Technol., 1997,31(7), 1898-1901.
    221. K.H. Wang, H. H. Tsai, Y. H. Hsieh, a Study of Photocatalytic Degradation of Trichloroethylene in Vapor Phase on TiO_2 Photocatalyst, Chemosphere, 1998,36(13), 2763-2773.
    222. J.S. Kim, K. Itoh, M. Murabayashi, Photocatalytic degradation of trichloroethylene in gas phase over TiO_2 sol-gel films: analysis of products, Chemosphere, 1998,36(3),483-495.
    223. C.H. Hung, B.J. Marinas, Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO_2 films, Environ. Sci. Technol., 1997,31(2),562-568.
    224. C.H. Hung, B.J. Marinas, Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO_2 films, Environ. Sci. Technol., 1997,31(5), 1440-1445.
    225. B. Sanchez, A.I. Cardona, M. Romero, et al., Influence of temperature on gas-phase photo-assisted mineralization of TCE using tubular and monolithic catalysts, Catalysis Today, 1999,54,369-377.
    226. Y. Luo, D.F. Ollis, Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air : kinetic promotion and inhibition,time-dependent catalyst activity, J. catal., 1996,163,1-11.
    227. R.M. Alberici, W.F. Jardim, Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide, Appl. Catal. B: Environ., 1997,14, 55-68.
    228. K.H. Wang, H.H. Tsai, Y. H. Hsieh, The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO_2 supported on glass bead, Appl. Catal. B: Environ., 1998,17(4), 313-320.
    229.戴智铭,陈爱平,古政荣等,三氯乙烯在TiO_2上光降解反应动力学,中国环境科学,2000,20(4),301-304.
    230. X. Fu, L.A. Clark, W.A. Zeltner, et al., Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene, J. Photochem.Photobiol. A : chem., 1996,97,181-186.
    231. T.N. Obee, S.O. Hay, Effects of moisture and temperature on the photooxidation of ethylene on titania, Environ. Sci. Technol., 1997,31,2034-2038.
    232. T.W. Tibbitts, K.E. Cushman, X. Fu, et al., J Adv. Space Res., 1999,22, 1443-1451.
    233. A. Sirisuk, C.G.Jr. Hill, M.A. Anderson, Photocatalytic degradation of ethylene over thin films of titania supported on glass rings, Catalysis Today, 1999,54,159-164.
    
    
    234. M.E. Zorn, D.T. Tompkins, W.A. Zeltner, et al., Catalytic and photocatalytic oxidation of ethylene on titania-based thin-films, Environ. Sci. Technol., 2000,34,5206-5210.
    235. S. Yamazaki, S. Tanaka, H. Tsukamoto, Kinetic studies of oxidation of ethylene over a TiO_2 photocatalyst, J. Photochem. Photobiol. A:chem., 1999,121, 55-61.
    236. K.H. Wang, Y.H. Hsich, C.H. Lin, et al., The study of the photocatalytic degradation kinetics for dichloroethylene in vapor phase, Chemosphere, 1999,39(9), 1371-1384.
    237. N.A. Hamill, C. Hardacre, Gas-phase photocatalytic oxidation of dichlorobutenes, Environ. Sci. Technol., 2001,35,2823-2827.
    238. S.Yamazaki, H.Tsukamoto, K. Araki, et al., Photocatalytic degradation of gaseous tetrachloroethylene on porous TiO_2 pellets, Appl. Catal. B : Environ., 2001,33, 109-117.
    239. N. Fuvami, M. Yosida, B.D. Lee, et al., Photocatalytic degradation of gaseous perchloroethylene products and pathway, Chemosphere, 2001,42, 345-350.
    240.苏文悦,付贤智,魏可镤,溴代甲烷在TiO_2上的光催化降解研究,高等学校化学学报,2001,22(2),272-275.
    241.郑宜,李旦振,付贤智,C_2H_4的微波场助气相光催化氧化,高等学校化学学报,2001,22(3),443-445.
    242. W.A. Jacoby, D.M. Blake, J.A. Fennell, et al., Heterogeneous photocatalysis for control of volatile organic compounds in indoor air, J. Air Waste Manage. Assoc., 1996,46, 891-898.
    243. X. Fu, W.A. Zeltner, M.A. Anderson, et al., The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts, Appl.catal.B: Environ. 1995,6, 209-224.
    244. O, d'Hennezel, D.F. Ollis, Trichloroethylene-Promoted Photocatalytic Oxidation of Air Contaminants, J. catal.,1997,167(1), 118-126.
    245. J. L. Falconer, K. A. Magrini-Bair, Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO_2, J. catal., 1998,179(1), 171-178.
    246. N.N. Lichtin, M. Sadeghi, Oxidative photocatalytic dgradation of benzene vapor over TiO_2, J.Photochem. Photobiol. A: chem., 1998,113, 81-88.
    247. S. Sitkiewitz, A. Heller, Photocatalytic oxidation of benzeneand stearic acid on sol-gel derived TiO_2 thin films attached to glass, New J.Chem., 1996, 20, 233-242.
    248. O. d'Hennezel, P. Pichat, D.F. Ollis, Benzene and toluene gas-phase photocatalytie degradation over H_2O and HCl pretreated TiO_2: by-products and mechanisms, J.Photochem. Photobiol. A: chem., 1998,118, 197-204.
    249. N.N. Lichtin, M. Avudaithai, E. Berman, J. Dong, Photocatalytic Oxidative Degradation of Vapors of Some Organic Compounds over Titanium Dioxide, J. Res. Chem. Intermed., 1994, 20, 755-781.
    250. H. Einaga, S. Futamura, T. Ibusuki, Photocatalytie decomposition of benzene over TiO_2 in a humidified airstream, Phys.Chem.Chem.Phys., 1999, 1, 4903-4908.
    251. H. Einaga, S, Futamura, T. Ibusuki, Complete oxidation of benzene in gas phase by platinized titania photocatalysts, Environ. Sci. Technol., 2001,35, 1880-1884.
    252. S.A. Larson, J.L. Falconer, Initial reaction steps in photocatalytic oxidation of aromatics, Catal. lett., 1997, 44(1-2), 57-65.
    253. T. Ibusuki, K. Takeuchi, Toluene oxidation on u.v.-irradiated titanium dioxide with and without O_2, NO_2 OR H_2O at ambient temperature, Atmos. Environ. 1986, 20(9), 1711-1715.
    254. V. Augugliaro, S. Coluccia, V. Loddo, L. Marchese, G. Martra, L. Patmisano and M. Schiavello, Photocatalytic oxidation of gaseous toluene on anatase TiO_2 catalyst: mechanistic aspects and FT-IR investigation, Appl. Catal. B: Environ., 1999, 20(1), 15-27
    255. Y. Luo and D.F. Ollis, Heterogeneous Photocatalytic Oxidation of Trichloroethylene and Toluene Mixtures in Air: Kinetic Promotion and Inhibition, Time-Dependent Catalyst Activity, J. catal., 1996,163(1), 1-11.
    256. R. Méndez-Román and N. Cardona-Martínez, Relationship between the formation of surface species and catalyst deactivation during the gas-phase photocatalytie oxidation of toluene, Catal. Today, 1998,
    
    40(4), 353-365
    257. J. Blanco, P. Avila, A. Bahamonde, E. Alvarez, B. Sánchez and M. Romero, Photocatalytic destruction of toluene and xylene at gas phase on a titania based monolithic catalyst, Catal. Today, 1996, 29(1-4), 437-442.
    258. P. Pichat, J. Disdier, C. Hoang-Van, D. Mas, G. Goutailler and C. Gaysse, Purification/deodorization of indoor air and gaseous effluents by TiO_2 photocatalysis, Catal. Today, 2000, 63(2-4), 363-369.
    259. A. J. Maira, K. L. Yeung, J. Soria, J. M. Coronado, C. Belver, C. Y. Lee and V. Augugliaro, Gas-phase photo-oxidation of toluene using nanometer-size TiO_2 catalysts, Appl. Catal.B: Environ., 2001, 29(4), 327-336
    260. T.N. Obee, R.T. Brown, TiO_2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde toluene and 1,3-butadiene, Environ. Sci. Technol., 1995, 29, 1223-1231.
    261. J. Peral, D.F. Ollis, Heterogeneous photocatalytic oxidation of gas-phase organics for air furification: acetone, 1-butanol,butyraldehyde,formaldehyde,and m-xylene oxidation, J. Catal., 1992, 136, 554-565.
    262. T. Noguchi, A. Fujishima, Photocatalytic degradation of gaseous formaldehyde using TiO_2 Film, Environ. Sci. Technol., 1998, 32(23), 3831-3833.
    263. J. Yang, D. Li, Z. Zhang, et al., A study of the photocatalytic oxidation of formaldehyde on Pt/Fe_2O_3/TiO_2, J. Photochem. Photobiol.A : chem., 2000,137, 197-202.
    264. H. Matsubara, M. Takads, S. Koyama, et al., Photoactive TiO_2 containing paper: preparation and its photocatalytic activity under weak UV light illumination, Chem. Lett., 1995,767-768.
    265. N. Negishi, T. Iyoda, K. Hashimoto, A. Fujishima,, Preparation of transparent TiO_2 thin film photocatalyst and its photocatalytic activity, Chem. Lett., 1995, 841-842.
    266. M.L. Sauer, D.F. Ollis, Photocatalyzed oxidation of ethanol and aceraldehyde in humidified air, J.Catal., 1996,158, 570-582.
    267. E. Obuchi, T. Sakamoto, K. Nakano, Photocatalytic decomposition of actaldehyde over TiO_2/SiO_2 catalyst, Chem. Eng. Sci., 1999, 54, 1525-1530.
    268. M.C. Blount, D.H. Kim, J.L. Falconer, Transparent thin-film TiO_2 photo catalytsts with high activity, Environ. Sci. Technol., 2001, 35, 2988-2994.
    269. I. Sopyan, S. Murasawa, Highly Efficient TiO_2 Film Photocatalyst Degradation of Gaseous Acetaldehyde, Chem. Lett., 1994, 4, 723-726.
    270. J. Peral, D. F. Ollis, Heterogeneous photocatalytic oxidation of gas-phase organics for air furification: acetone, 1-butanol,butyraldehyde,formaldehyde,and m-xylene oxidation, J. Catal., 1992,136, 554-565.
    271. G.B. Raupp and C.T. Junio, Photocatalytic oxidation of oxygenated air toxics, Appl. Surf. Sci., 1993, 72(4), 321-327.
    272. M.L. Sauer and D.F. Ollis, Acetone Oxidation in a Photocatalytic Monolith Reactor, J. Catal., 1994,149(1), 81-91.
    273. N. N. Lichtin, M. Avudaithai, E. Berman and A. Grayfer, TiO_2-photocatalyzed oxidative degradation of binary mixtures of vaporized organic compounds, Soler Energy, 1996, 56(5), 377-385.
    274. W. F. Jardim and R. M. Alberici, Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide, Appl. Catal. B : Environ., 1997,14(1-2), 55-68.
    275. A.V. Vorontsov, G.B. Barannik, O.I. Snegurenko, E.N. Savinov and V.N. Parmon, Complete heterogeneous photocatalytic oxidation of acetone, ethanol, and diethyl ether vapors with air over honeycomb-supported TiO_2., Kinet. Catal., 1997, 38(1), 84-87.
    276. A.V. Vorontsov, E. N. Savinov, G. B. Barannik, V. N. Troitsky and V. N. Parmon, Quantitative studies on the heterogeneous gas-phase photooxidation of CO and simple VOCs by air over TiO_2, Catal. Today, 1997,39(3), 207-218.
    277. J. C. Yu, J. Lin, R. W. M. Kwok, Ti_(1-x)Zr_xO_2 Solid Solutions for the Photocatalytic Degradation of
    
    Acetone in Air, J. Phys. Chem. B, 1998, 102(26), 5094-5098.
    278. J. Lin and J.C. Yu, An investigation on photocatalytic activities of mixed TiO_2-rare earth oxides for the oxidation of acetone in air, J. Photochem. Photobiol.A: chem., 1998,116(1), 63-67
    279. M.E. Zorn, D.T. Tompkins, W.A. Zeltner and M.A. Anderson, Photocatalytic oxidation of acetone vapor on TiO_2/ZrO_2 thin films, Appl. Catal. B: Environ., 1998, 23(1), 1-8.
    280. A.V. Vorontsov, E.N. Savinov and P.G. Smirniotis, Vibrofluidized- and fixed-bed photocatalytic reactors: case of gaseous acetone photooxidation, Chem. Eng. Sci., 2000, 55(21), 5089-5098.
    281. S. Hager and R. Bauer, Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide, Chemosphere, 1999, 38(7), 1549-1559.
    282. G.B. Raupp, C.T. Junio, Photocatalytic Oxidation of Oxygenated Air Toxics, Appl. Surf. Sci., 1993, 72(4), 321-327.
    283. M.L. Sauer, D.F. Ollis, Acetone Oxidation in a Photocatalytic Monolith Reactor, J. Catal., 1994, 149(1), 81-91.
    284. S.F. Chen, X.L. Cheng, Y.W. Tao, et al., Photocatalytic Degradation of Trace Gaseous Acetone and Acetaldehyde Using TiO_2 Supported on Fiberglass Cloth, J. Chem, Technol. Biotechnol., 1998, 73(3), 264-268.
    285. N. Djeghri, M. Formenti, F. Juillet, S,J. Techner, Photointeraction on the Surface of Titanium Dioxide between Oxygen and Alkanes, Faraday. Discuss. Chem. Soc., 1974, 58, 185-193.
    286. J. Shang, Y. Du, Z. Xu, Photocatalytic Oxidation of Heptane in the Gas-Phase over TiO_2, Chemosphere, 2002, 46, 93-99.
    287.尚静,朱永法,徐自力等,用TiO2,ZnO及Fe2O3纳米粒子光催化氧化庚烷的反应,催化学报,2003,24(5),369-373.
    288. M.L. Sauer and D.F. Ollis, Photocatalyzed Oxidation of Ethanol and Acetaldehyde in Humidified Air, J. Catal., 1996,158(2), 570-582.
    289. M.R. Nimlos, E.J. Wolfrum, M.L. Brewer, J.A. Fennell, G. Bintner, Gas-Phase Heterogeneous Photocatalytic Oxidation of Ethanol: Pathways and Kinetic Modeling, Environ. Sci. Technol., 1996, 30(10), 3102-3110
    290. N.N. Lichtin, M. Avudaithai, TiO_2-Photocatalyzed Oxidative Degradation of CH_3CN, CH_3OH, C_2HCl_3, and CH_2Cl_2 Supplied as Vapors and in Aqueous Solution under Similar Conditions, Environ. Sci. Technol., 1996,30:2014-2020
    291.范崇政,吴缨等,纳米TiO_2光催化氧化乙醇反应机理的研究,燃料化学学报,2002,30(5),442-447.
    292. R.I. Bickley, G. Munuera, F.S. Stone, Photoadsorption and Photocatalysis at Rutile Surfaces, J. Catal., 1973,31,389-397.
    293. J. Cunningham, B.K. Hodnett, Kinetic studies of secondary alcohol photo-oxidation on ZnO and TiO_2 at 348K studied by gas-chromatographic analysis, J Chem. Soc., Faraday Trans. 1, 1981,77: 2777-2801.
    294.范崇政,吴缨等,纳米TiO2光催化氧化正丙醇和异丙醇反应的研究,中国科学技术大学学报,2003,33(1),99-106.
    295. N. R. Blake, G. L. Griffin, Selectivity control during the photoassisted oxidation of 1-butanol on titanium dioxide, J. Phys. Chem., 1988, 92 (20) , 5697-5701.
    296. F. Benoit-Marquié, U. Wilkenhner, V. Simon, A.M. Braun, E. Oliveros and M.-T. Maurette, VOC photodegradation at the gas-solid interface of a TiO_2 photocatalyst: Part Ⅰ: 1-butanol and 1-butylamine, J. Photochem. Photobiol.A: chem., 2000,132(3), 225-232.
    297.丁延伟,吴缨等,甲醇在纳米TiO2作用下进行光催化氧化反应的机理研究,化学物理学报,2002,15(6),465-470.
    298. S.B. Kim and S.C. Hong, Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO_2 photocatalyst, Appl. Catal. B: Environ., 2002, 35(4), 305-315.
    299. N.Z. Muradov, A. T-Raissi, D. Muzzey, C.R. Painter and M.R. Kemme, Selective photocatalytic
    
    destruction of airborne VOCs, Soler Energy, 1996, 56(5), 445-453.
    300. A. Walker, M. Formenti, P. Meriaudeau, S.J. Teichner, Heterogeneous Photoctalysis: Photo-Oxidation of Methylbutanols, J. Catal., 1977, 50(2), 237-243.
    301. N.R. Blake, G.L. Griffin, Selectivity Control during the Photoassisted Oxidation of 1-Butanol on Titanium Dioxide, J. Phys. Chem., 1988, 92(20), 5697-5701.
    302. J. Peral, D.F. Ollis, Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation, J. Catal., 1992, 136(2), 554-565.
    303. J. Cunningham, B.K. Hodnett, Kinetic Studies of Secondary Alcohol Photo-Oxidation on ZnO and TiO_2 at 348K Studied by Gas-Chromatographic Analysis, J. Chem. Soc. Faraday. Trans. Ⅰ , 1981, 77(11), 2777-2801.
    304. EPA, Total exposure assessment methodology (TEAM) study, Report 600/6-87/002a. Environmental Protection Agency, Washington DC, 1987.
    305. C.F. Wilkinson, Being more realistic about chemical carcinogenesis, Environ Sci Technol 1987,21(9), 843-848.
    306. J.H. Wang, M.B. Ray, Application of ultraviolet photooxidation to remove organic pollutants in the gas phase, Separation and Purification Technology, 2000,19, 11-20.
    307. C.H. Ao, S. C. Lee, C. L. Mak, L. Y. Chan, Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO_2: promotion versus inhibition effect of NO, Appl.Catal,,B: Environ., 2003, 42, 119-129.
    308. C.H. Ao, S. C. Lee and J.C. Yu, Photocatalyst TiO_2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO_2, Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156, 171-177.
    309. S.B. Kim, H.T, Hwang, S. C,Hong, Photocatalytic degradation of volatile organic compounds at the gas - solid interface ofa TiO_2 photocatalyst, Chemosphere, 2002, 48, 437 - 444.
    310.刘平,周廷云,林华香等,TiO_2/SnO_2复合光催化剂的耦合效应,物理化学学报,2001,17(3),265-269.
    311.李晓红,颜秀茹,张月萍等,TiO_2/SnO_2复合光催化剂的制备及光催化降解敌敌畏,应用化学,2001,18(1),32-35
    312.施利毅,古宏晨,李春忠等,TiO_2/SnO_2复合光催化剂的制备和性能,催化学报,1999,20(3),338-342.
    313. X. Z. Li, F. B. Li, C. L. Yang, W. K. Ge, Photocatalytic activity of WO_x-TiO_2 under visible light irradiation, J. Photochem. Photobiol. A: Chem., 2001, 141(2-3), 209-217.
    314. J. Lin, J.C. Yu, D. Lo, S.K. Lam, Photocatalytic Activity of Rutile Ti_(1-x)Sn_xO_2 Solid Solutions, J. Catal., 1999, 183(2), 368-372.
    315.成英之,张渊明,唐渝,WO_3-TiO_2薄膜型复合光催化剂的制备和性能,催化学报,2001,22(2),203-205.
    316. L.Y. Shi, C.Z. Li, H.C. Gu, D.Y. Fang, Morphology and properties of ultrafine SnO_2-TiO_2 coupled semiconductor particles, Mater. Chem. Phys.,2000, 62(1), 62-67.
    317. K.Y. Song, M.K. Park, Y.T. Kwon, H.W. Lee, W.J. Chung, W.I. Lee, Preparation of Transparent Particulate MoO_3/TiO_2 and WO_3/TiO_2 Films and Their Photocatalytic Properties, Chem. Mater., 2001, 13(7), 2349-2355.
    318. T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura, Photocatalytic oxidation of water on TiO_2-coated WO_3 particles by visible light using Iron(Ⅲ) ions as electron acceptor, J. Photochem. Photobiol. A: Chem., 1998, 118(1), 41-44.
    319.蔡红,蔡生民等,TiO_2/CdS(Ru(bpy)_2(NCS)_2作为太阳电池光阳极的探讨,应用化学,2002,19(1),38-42.
    320. J.Rabani, Sandwich colloids of zinc oxide and zinc sulfide in aqueous solutions, J. Phys. Chem., 1989, 93(22), 7707-7713.
    321. J.C. Yu, J. Lin, R.W.M. Kwok, Ti_1-xZrxO_2 Solid Solutions for the Photocatalytic Degradation of
    
    Acetone in Air, J. Phys. Chem. B, 1998, 102(26), 5094-5098.
    322. B. Pal, M. Sharon, G. Nogarni, Preparation and characterization of TiO_2/Fe_2O_3 binary mixed oxides and its photocatalytic properties, Mater. Chem. Phys. 1999, 59(3), 254-261.
    323. B. Pal, T. Hata, K. Goto, G. Nogami, Photocatalytic degradation of o-cresol sensitized by iron-titania binary photocatalysts, J. Mol. Catal. A: Chem. 2001, 169(1-2), 147-155.
    324. K. Tennakone, J. Bandara, Photocatalytic activity of dye-sensitized tin(Ⅳ) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites, Appl. Catal. A: Gen. 2001, 208(1-2), 335-341.
    325. Y.Q. Wang, H.M. Cheng, L. Zhang, Y.Z. Hao, J.M. Ma, B. Xu, W.H. Li, the Preparation, Characterization, Photoelectrochemical and Photocatalytic Properties of Lanthanide Metal-ion-doped TiO_2 Nanoparticles, J. Mol. Catal. A: Chem., 2000, 151(1-2), 205-216.
    326.高远,徐安武,刘汉钦.掺铁TiO_2用于NO_2~-光催化降解研究,中山大学学报(自然科学版),2000,39(5),44-47.
    327. J.C. Yu, J. Lin, R.W.M. Kwok, Enhanced photocatalytic activity of Til-xVx O2 solid solution on the degradation of acetone, Journal of Photochemistry and Photobiology A: Chcmistry, 1997, 111, 199-203.
    328. K. Vinodgopal, I. Bedja, P.V. Kamat, Nanostructured Semiconductor Films for Photocatalysis. Photoelectrochemical Behavior of SnO_2/TiO_2 Composite Systems and Its Role in Photocatalytic Degradation of a Textile Azo Dye, Chem. Mater., 1996, 8(8), 2180-2187.
    329. Y. R. Do, W. Lee, K. Dwight, A. Wold, The Effect of WO_3 on the Photocatalytic Activity of TiO_2, J. Solid State Chem. 1994, 108 (1), 198-201.
    330.杨爱丽,钱晓良,刘石明,负载型光催化剂降解有机废水的研究进展,工业水处理,2003,23(3),1-5.
    331.席北斗,刘鸿亮,等,高效负载型光催化剂制备及其加铂修饰技术,环境科学,2002,23(1),66-69.
    332.陶咏,陈爱平等,新颖负载型光催化剂的开发,华东理工大学学报(自然科学版),2001,27(6),618-622.
    333.贾建丽,李凯等,新型负载型光催化剂及其4BS降解研究,中国环境科学,2001,21(4),293-296.
    334.崔鹏,魏凤玉等,TiO2负载型光催化剂的制备与降解性能研究,合肥工业大学学报(自然科学版),2001,24(5),994-997.
    335.徐用军,罗中贵,二氧化钛负载型光催化剂的制备及光还原二氧化碳的研究,哈尔滨工程大学学报,1998,19(4),89-93.
    336.陈爱华,陈爱平,刘威等,负载型光催化剂还原Cr~(6+)的研究,华东理工大学学报(自然科学版),2003,29(3),277-280
    337.陈士夫,程雪丽,空心玻璃微球附载TiO2清除水面漂浮的油层,中国环境科学,1999,19(1),47-50.
    338.陈士夫,梁新,空心玻璃微球附载TiO2光催化降解有机磷农药,感光科学与光化学,1999,17(1),85-91.
    339.陈士夫,赵梦月,玻璃载体TiO2薄层光催化降解久效磷农药,环境科学研究,1996,9(1),49-53.
    340.胡岗,姜义华,载膜多孔催化剂光催化氧化三氯甲烷的研究,太阳能学报,2000,21(1),114-116.
    341.胡岗,姜义华,TiO2膜固载型多孔催化剂的光催化分解试验,上海环境科学,1999,18(3),144-146.
    342.张新荣,杨平,赵梦月,负载型光复合催化剂TiO_2·Al_2O_3/beads降解有机磷农药,环境科学研究,2001,14(2),36-40.
    343. M.C. Lu, Photocatalytic oxidation of propoxur insecticide with titanium dioxide supported on activated carbon. Journal of Environmental Science & Health B, 1999, 34, 207-223.
    344. O. Levenspiel, Chemical reaction engineering (2nd Eds), Chap. 14, John Wiley & Sons, 1972.
    345. C.H. Huang, B.J.Marias, Role of chlorine and oxygen in the photocatalytic degradation of trichoroethylene vapor on TiO_2 films, Environ. Sci. Technol., 1997, 31,562-568.
    
    
    346. C.H. Huang, B.J. Marifias, Role of water in the photocatalytic degradation of trichoroethylene vapor on TiO_2 films, Environ. Sci. Technol., 1997, 31, 1440-1445.
    347. B. Sánchez, A.I. Cardona, M. Romero, P. Avila, A. Bahamonde, Influence of temperature on gas-phase photo-assisted mineralization of TCE using tubular and monolithic catalysts,. Catalysis Today, 1999, 54, 369-377.
    348.李晓平,徐宝琨,刘国范等,纳米TiO2光催化降解水中有机污染物的研究与发展,功能材料,1999,(3),242-246.
    349.洪蔚,居室空气净化用光催化剂,化工环保,2002,22(4),248-248.
    350.黄翔,殷清海等,纳米光催化材料在功能性空气过滤材料中的应用研究,洁净与空调技术,2001,(3),9-12.
    351.陈烈贤,吴亚西,光催化空气净化技术的开发应用,中国环境卫生,2000,3(3),43-45.
    352.祖庸,肖闫盈,李晓娥等,纳米TiO_2—一种新型的无机抗菌剂,现代化工,1999,(8),46-48.
    353. C. Chen, X. Qi and B. Zhou, Photosensitization of colloidal TiO_2 with a cyanine dye, J. Photochem. Photobiol. A: chem., 1997. 109(2), 155-158.
    354.肖奇,邱冠间等,纳米TiO2表面修饰理论与实践,功能材料,2000,33(1),9-11.
    355.王传义,刘春艳,沈涛,半导体光催化的表面修饰,高等化学学报.1999,19(2),2013-2019.
    356.陈东丹,胡晓洪等,稀土La_2O_3掺杂对TiO_2光催化性能的影响,中国陶瓷,2003,39(1),1-3.
    357.H.P. Klug, L. E. Alexander,X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley,New York, 1974,p. 618.
    358. J.H. Yu, G.M. Choi, Electrical and CO gas-sensing properties of ZnO/SnO_2 hetero-contact, Sensors and Actuators B 1999,61,59-67.
    359. N. Daneu, A. Recnik, S. Bernik, D. Kolar, Microstructural development in SnO_2-doped ZnO-Bi_2O_3ceramics, J. Am. Ceram. Soc. 83 (2000) 3165-3171.
    360. J.H. Yu, G.M. Choi, Electrical and CO gas sensing properties of ZnO-SnO_2. composites, Sensors and Actuators B, 1998, 52, 251-256.
    361. B. M. Weckhuysen, R.A. Sehoonheydt, Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts, Catalysis Today, 1999, 49(4), 441-451.
    362. H.Yamashita, S.Kawasaki, Y.Ichihashi, M.Harada, M.Takeuchi, M.Anpo, G.tewart, M.A.Fox, C.Louis, M.Che, Characterization of Titanium-Silicon Binary Oxide Catalysts Prepared by the Sol-Gel Method and Their Photocatalytic Reactivity for the Liquid-Phase Oxidation of 1-Octanol, J. Phys. Chem. B, 1998, 102(30), 5870-5875.
    363. Q.H. Zhang, L. Gao and J.K. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO_2 powders prepared by TiCl_4 hydrolysis, Appl. Catal. B: Environ., 2000, 26(3), 207-215.
    364. D. Dvoranová, V. Brezowi, M. Mazúr and M. A. Malati, Investigations of metal-doped titanium dioxide photocatalysts, Appl. Catal. B: Environ., 2002, 37(2), 91-105.
    365. P.L. Provenzano, G.R. Jindal, J.R. Sweet and W.B. White, Flame-excited luminescence in the oxides Ta_2O_5, Nb_2O_5, TiO_2, ZnO, and SnO_2, J. Luminescence, 2001, 92(4), 297-305.
    366. J.H. Park and P.M. Woodward, Synthesis, structure and optical properties of two new Perovskites: Ba_2Bi_(2/3)TeO_6 and Ba_3Bi_2TeO_9, Int. J. Inorg. Mater., 2000, 2(1), 153-166.
    367. K.H. Chung and D.C. Park, Photocatalytic decomposition of water over cesium-loaded potassium niobate photocatalysts, J. Mol. Catal. A: Chem.,1998, 129(1), 53-59.
    368. J. Klaas, G. Schulz-Ekloff, N.I. Jaeger, UV-Visible Diffuse Reflectance Spectroscopy of Zeolite-Hosted Mononuclear Titanium Oxide Species, J. Phys. Chem. B., 1997,101 (8), 1305-1311.
    369. S. Lacombe, H. Cardy, N. Soggiu, S. Blanc, J. L. Habib-Jiwan and J. Ph. Soumillion, Diffuse reflectance UV-Visible spectroscopy for the qualitative and quantitative study of chromophores adsorbed or grafted on silica, Microporous and Mesoporous Materials, 2001, 46(2-3), 311-325.
    370. G. Ghiotti, F. Prinetto, S. De Rossi and C. Di Modica, CrO_x/SiO_2 catalysts prepared using chromium
    
    recovered from tanning sewage, Appl. Catal. B: Environ., 1997, 14(3-4), 225-239.
    371. A. Ghauch, C. Turnar, C. Fachinger, J. Rima, A. Charef, J. Suptil and M. Martin-Bouyer, Use of diffuse reflectance spectrometry in spot test reactions for quantitative determination of cations in water, Chemosphere, 2000, 40(12), 1327-1333.
    372. D. Letan, H. Podgornik, and A. Perdih, Analysis of Fungal Pellets by UV-Visible Spectrum Diffuse Reflectance Spectroscopy, Appl. Environ. Microbiol. 1993, 59 (12), 4253-4260.
    373. C. Wang, X.M. Wang, J.C. Zhao, B.X. Mai, G.Y. Sheng, P.A. Peng, J.M. Fu, Synthesis, characterization and photocatalytic property of nano-sized Zn_2SnO_4, J. Mater. Sci. 2002, 37(14): 2989-2996.
    374. A. Towata, Y. Uwamino, M. Sando, K. Iseda and H. Taoda, Synthesis of titania photocatalysts dispersed with nickel nanosized particles, Nanostruct. Mater., 1998, 10(6), 1033-1042.
    375. L. Gomathi Devi and G. M. Krishnaiah, Photocatalytic degradation of p-amino-azo-benzene and p-hydroxy-azo-benzene using various heat treated TiO_2 as the photocatalyst, J. Photochem. Photobiol. A: Chem., 1999, 121(2), 141-145.
    376. K.H. Wang, Y.H. Hsieh, M.Y. Chou and C.Y. Chang, Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution, Appl. Catal. B: Environ., 1999, 21(1), 1-8.
    377. W.H. Leng, H. Liu, S.A. Cheng, J.Q. Zhang and C.N. Cao, Kinetics of photocatalytic degradation of aniline in water over TiO_2 supported on porous nickel, J. Photochem. Photobiol. A: Chem., 2000, 131(1-3),125-132.
    378. I Arslan, I.A. Balcioglu, D.W. Bahnemann, Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO_2-photocatalysts, Appl. Catal. B: Environ., 2000, 26(3), 193-206.
    379. A Piscopo, D. Robert, J.V. Weber, Influence of pH and chloride anion on the photocatalytic degradation of organic compounds: Part Ⅰ. Effect on the benzamide and para-hydroxybenzoic acid in TiO_2 aqueous solution, Appl. Catal. B: Environ., 2001, 35(2),117-124.
    380. M. Abdullah, G.K.C. Low, R.W. Mattews, Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide, J. Phys. Chem., 1990, 94(17), 6820-6825.
    381. D.M. Chen, A.K. Ray, Photodegradation Kinetics of 4-Nitrophenol in TiO_2 Suspension, Wat. Res., 1998, 32(11), 3223-3234.
    382. V. Nadtochenko, J. Kiwi, Primary Photochemical Reactions in the Photo-Fenton System with Ferric Chloride. 1. A Case Study of Xylidine Oxidation as a Model Compound, Environ. Sci. Technol., 1998, 32(21), 3273-3281.
    383. V. Nadtochenko, J. Kiwi, Photoinduced Mineralization of Xylidine by the Fenton Reagent. 2. Implications of the Precursors Formed in the Dark, Environ. Sci. Technol., 1998, 32 (21), 3282-3285.
    384. F. Belliard, P.A. Connor, J.T.S. Irvine, Novel Tin Oxide-Based Anodes for Li-Ion Batteries, Solid State Ionics, 2000, 135(1-4), 136.
    385. K. Tennakone and J. Bandara, Photocatalytic activity of dye-sensitized tin(Ⅳ) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites, Appl. Catal. B: Gen., 2001, 208(1-2), 335-341.
    386. J.J. Shah, H.B. Singh, Distribution of volatile organic chemicals in outdoor and indoor air: a national VOCs data base, Environ. Sci. Technol., 1988,22, 1381-1388.
    387. A.D. Cortese, Clearing the air, Environ. Sci. Technol. 1990, 24, 442-448.
    388. S.M. Japar, T.J. Wallington, S.J. Rudy, T.Y. Chang, Ozone-forming potential of a series of oxygenated organic compounds, Environ. Sci. Technol., 1991, 25, 415-420.
    389. J. Fishman, The global consequences of increasing tropospheric ozone concentrations, Chemosphere, 1991, 22, 685-695.
    390. K. Granby, C. S. Christensen, C. Lohse, Urban and semi-rural observations of carboxylic acids and carbonyls, Atmos. Environ., 1997, 31, 1403-1415.
    
    
    391. J. Zhang, K.R. Smith, Emissions of carbonyl compounds from various cookstoves in China, Envir. Sci. Technol., 1999, 33, 2311-2320.
    392. D. Grosjean, A.H. Miguel, T.M. Tavares, Urban air pollution in Brazil: acetaldehyde and other carbonyls, Atmospheric Environment, 1990, 24B, 101 - 106.
    393. M. Possanzini, V. Di Palo, A. Cecinato, Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air, Atmospheric Environment, 2002, 36, 3195 - 3201.
    394. E. B. Bakeas, D. I. Argyris, P. A. Siskos, Carbonyl compounds in the urban environment of Athens, Greece, Chemosphere, 2003, 52, 805 - 813.
    395. A. Baez, H. Padilla, R. Garcia, M. C. Torres, I. Rosas, R. Belmont, Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico, The Science of the Total Environment, 2003, 302, 211 - 226.
    396. A.P. Altshuller, Estimating product yields of carboncontaining products from the atmospheric photooxidation of ambient air alkenes, Journal of Atmospheric Chemistry, 1991,13, 131 - 154.
    397. P. Carlier, H. Hannachi, G. Mouvier, The chemistry of carbonyl compounds in the atmosphere — a review, Atmospheric Environment, 1986, 20, 2079-2099.
    398. H.B. Singh, D. O'Hara, D. Herlth, W. Sachse, D. R. Blake, J.D. Bradshaw, M. Kanakidou, P.J. Crutzen, Acetone in the atmosphere: distribution, sources and sinks, Journal of Geophysical Research, 1994,99, 1805-1819.
    399. H.B. Singh, M. Kanakidou, P.J. Crutzen, D.J. Jacob, High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere, Nature, 1995, 378, 50-54.
    400. NCR(National Research Council), Committee on Toxicology and Environmental Health Hazard. Formaldehyde and other aldehydes National Academic Press, Washington, DC, USA, 1981.
    401. C.F. Wilkinson, Being more realistic about chemical carcinogenesis, Environ. Sci. Technol., 1987,21(9), 843-848.
    402. CEPA(California Environmental Protection Agency). Acetaldehyde as a toxic air contaminant. Part A: Exposure; Part B: Health assessment Air Resources Board, Stationary Source Division, Sacramento, CA, USA, 1993.
    403. J.A. Swenberg, W.D. Kerns, R.J. Michell, E.J. Gralla, K.L. Pavkov, Induction of squamous cell carcinomas of the rat nasal cavity by inhalation exposure to formaldehyde vapor, Cancer Res., 1980, 40, 3398.
    404. WHO(World Health Organisation), Environmental Health Criteria 89. Formaldehyde WHO, Geneva, 1989.
    405. F. Grimaldi, R. Taibi, P. Bongrand, P. Timon-David, A. Viala, Risk assessment of exposure to aldehidic compounds in a hospital environment, Toxicol. Lett., 1998, 95 (Supp. 1), 222.
    406. US EPA(Unite States Environmental Protection Agency), Integrated Risk Information System (IRIS) on formaldehyde On-line IRIS 1991, CASRN 50-00-0.
    407. US EPA(Unite States Environmental Protection Agency), Integrated Risk Information System (IRIS) on acetaldehyde On-line IRIS 1991, CASRN 75-07-0.
    408. WHO(World Health Organisation). Air quality guidelines for Europe WHO European Series No. 23,Copenhagen, Denmark, 1987.
    409. W.F. Jardim, R. M. Alberici, Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide, Appl.Catal.,B: Environ., 1997,14, 55-68.
    410. J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catalysis Today 1999, 53,115-129.
    411. D.F. Ollis, E. Pelizzetti, N. Serpone, Photocatalyzed destruction of water contaminants, Environ. Sci. Technol., 1991, 25(9), 1523-1529.
    412. M.C. Lu, G.D. Roam, J.N. Chen and C. P. Huang, Factors affecting the photocatalytic degradation of dichlorvos over titanium dioxide supported on glass, Journal of Photochemistry and Photobiology A:
    
    Chemistry, 1993, 76 (1-2) ,103-110.
    413. Y.H. Zhang, G.X. Xiong, N. Yao, W.S. Yang and X.Z. Fu, Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TICl_4 by the sol-gel method, Catalysis Today, 2001, 68, 89-95.
    414. M.B. Chang, C. C. Lee, Destruction of Formaldehyde with Dielectric Barrier Discharge Plasmas, Environ. Sci. Technol., 1995, 29, 181-186.
    415. T.N. Obee, Photooxidation of Sub-Parts-per-Million Toluene and Formaldehyde Levels on Titania Using a Glass-Plate Reactor, Environ. Sci. Technol. 1996, 30, 3578-3584.
    416. J.L. Falconer and K.A. Magrini-Bair, Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO2, Journal of Catalysis, 1998, 179, 171-178.
    417. Y. Ohko, D. A. Tryk, K. Hashimoto, A. Fujishima, Autoxidation of Acetaldehyde Initiated by TiO_2 Photocatalysis under Weak UV Illumination, J. Phys. Chem. B. 1998, 102, 2699-2704.
    418. J.H. Xu, F. Shiraishi, Photocatalytic decomposition of acetaldehyde in air over titanium dioxide, Journal of Chemical Technology & Biotechnology, 1999,74, 1096-1100.
    419. I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto, A. Fujishima, An efficient TiO_2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation, Journal of Photochemistry and Photobiology A: Chemistry, 1996, 98, 79-86.
    420. A.V. Vorontsov, I.V. Stoyanova, D.V. Kozlov, V.I. Simagina, and E.N. Savinov, Kinetics of the Photocatalytic Oxidation of Gaseous Acetone over Platinized Titanium Dioxide, Journal of Catalysis, 2000,189, 360-369.
    421. A.V. Vorontsov, E.N. Kurkin and E.N. Savinov, Study of TiO_2 Deactivation during Gaseous Acetone Photocatalytic Oxidation, Journal of catalysis, 1999, 186, 318-324.
    422. M. El-Maazawil, A. N. Finken, A. B. Nair and V. H. Grassian, Adsorption and Photocatalytic Oxidation of Acetone on TiO2: An in Situ Transmission FT-IR Study, Journal of catalysis, 191(2000) 138-146.
    423. W.Y. Choi, J.Y. Ko, H. Park and J.S. Chung, Investigation on TiO_2-coated optical fibers for gas-phase photocatalytic oxidation of acetone, Appl. Catal.B: Environ., 2001, 31,209-220.
    424. J.M. Coronado, M.E. Zorn, I. Tejedor-Tejedor and M.A. Anderson, Photocatalytic oxidation of ketones in the gas phase over TiO_2 thin films: a kinetic study on the influence of water vapor, Appl. Catal.B: Environ., 2003, 43,329-344.
    425. N. Takeda, T. Torimoto, S. Sampath, S. Kuwabata, H. Yoneyama, Effect of Inert Supports for Titanium Dioxide Loading on Enhancement of Photodecomposition Rate of Gaseous Propionaldehyde, J. Phys. Chem., 1995,99,9986-9991.
    426. Y.L. Feng, S. Wen, X.M. Wang, G.Y. Sheng, Q.S. He, J.H. Tang, J.M. Fu, Indoor and outdoor carbonyl compounds in the hotel ballrooms in Guangzhou, China, Atmospheric Environment, 2004,38, 103 - 112.
    427. P.L. Yue, F. Khan, L. Rizzuti, Photocatalytic ammonia synthesis in a fluidised bed reactor, Chemical Engineering Science, 1983, 38, 1893-1900.
    428. N.B. Jackson, C.M. Wamg, Attachment of TiO_2 powder tohollow micbeads: activity of the TiO_2-loated beads in the photoassisted oxidation of ethanol to acetaldehyde , J. Electrochem. Soc., 1991, 138(12), 3660-33664.
    429.程沧沧,肖忠海,胡德文等,玻璃负载TiO_2薄膜光降解制药废水的研究,环境科学与技术,2000,(4),5-9
    430. C.F. Kao and W.D. Yang, Preparation and Electrical Characterisation of Strontium Titanate Ceramic from Titanyl Acylate Precursor in Strong Alkaline Solution, Ceramics International, 1996, 22(1), 57-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700