纳米材料对混凝土耐久性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土是当今土木工程中用途最广泛建筑材料之一。在恶劣的环境下,混凝土长期遭受腐蚀介质的作用,导致混凝土结构性能的裂化、耐久性降低而提前发生破坏。对于土木工程来讲,改善混凝土的耐久性已经成为研究的热点。
     由于纳米材料具有的特殊性能而被誉为21世纪的新材料。但是其成本较高,用于改善混凝土性能的研究还较少。随着纳米材料制造成本的降低,其应用领域也将越来越广泛,也为纳米材料在高耐久性混凝土和高性能混凝土中的应用带来了希望。
     本文采用X衍射分析(XRD)、扫描电镜(SEM)、透射电镜(TEM)和扫描电子显微镜X射线能谱分析(EDXA)研究了纳米SiO_2和纳米CaCO_3在水泥中的水化过程。分析了掺入纳米SiO_2和纳米CaCO_3的混凝土微观结构特点,研究了掺纳米CaCO_3水泥浆的化学组成,提出纳米CaCO_3延缓钙矾石AFt向AFm转化的理论。
     采用抗压强度、氯离子渗透、硫酸盐腐蚀、腐蚀干湿循环等试验研究了掺纳米材料与硅灰、粉煤灰等复合的混凝土性能。分析探讨了纳米材料对混凝土性能的影响规律和影响机理。试验内容丰富而且试验周期长,耐硫酸盐腐蚀试验6个月,干湿腐蚀循环次数达到110次(110d),氯离子渗透试验龄期达到180d,为纳米材料在混凝土中应用,提供试验资料和理论依据。
     提出用纳米材料配制耐腐蚀铺料来提高混凝土耐久性的方法。结合各种混凝土掺和料、纳米材料在混凝土耐久性能中的表现,并参考国内外有关的试验研究资料,确定耐腐蚀混凝土的辅料主要成分和配比。通过混凝土离子渗透性试验、硫酸盐腐蚀试验、干湿腐蚀循环试验等对耐腐蚀辅料的性能进行了测试。
Concrete is one of the building materials widely used in civil engineering. When concrete strutures are exposed in severe environment, its performance becomes inferior, which decreases its durability and leads it to damage in advance. It has become a hot topic to study for the civil engineering to improve durability of concrete.
    Having special performances, nano-material was called new material in 21 st Century. Study on which nano-material was used to improve concrete performance was very little. Nano-materials will apply to more wide field with study of nano-materials and decrease of their cost and it bring hope for nano-materials to be used in high durability concrete and high performance concrete.
    Hydration of nano-SiO_2 and nano-CaCO_3 in cement paste were studied by XRD, SEM, TEM and EDXA. Microstruction of the concrete with nano-SiO_2 or nano-CaCO_3 were analyzed. Compositions of the cement paste with nano- CaCO_3 was investigated and it was presented that nano-CaCO_3 can baffle ettringite (AFt) transforming to Afm.
    The performances of concrete with nano-materials, Silica Fume and fly ash were investigated in the experiments such as compress strength, concrete chloride diffusivity, sulfate resistance and drying/wetting cycle in corrosive environments etc. Action rules and mechanisms of nano-materials on the concrete were analyzed and discussed. Content of the experiments was great and their terms were long enough such as 6 months sulfate resistance, 110 times (110d) drying/wetting cycle in corrosive environments and 180d chloride diffusivity. Experiment datum and hypotheses were supplied for using of nano-materials in concrete.
    A means which an anticorrosive mixture with nano-materials is used to improve durability of the concrete was given. Main Compositions and mix proportions were chosen based on behaviors of nano-materials and mineral admixtures (blending materials) in durability of the concrete as well as other domestic and international relational datum. The performances of concrete with the anticorrosive mixture were investigated in the experiments such as concrete chloride diffusivity, sulfate resistance and drying/wetting cycle in corrosive environments etc. It is very effective for concrete to improve concrete durability
引文
[1] 陈肇元主编.土建结构工程安全性与耐久性(论文集)[C].北京:中国建筑工业出版社,2003.
    [2] Report FHWA-RD-01-156. http://www.Corrosioncost.Com/home.Html/
    [3] 洪定海.混凝土中钢筋的腐蚀与防护[M].北京:中国铁道出版社,1998.
    [4] Cost of corrosion studies underway. Material Performance, 1999, 38 (5): 26-28.
    [5] Cost of corrosion. British Corrosion J., 2000, 35(4):257.
    [6] Update on U.S. corrosion cost study. Materials Performance, 2000, 39 (3): 200-201.
    [7] Update on cost of corrosion study in the electric power industry. Materials Performance, 2000, 39 (5): 98-99.
    [8] Cost of corrosion study update: Trends in the automotive industry. Materials Performance, 2000, 39(8): 104-105.
    [9] 美国ACI222委员会报告,混凝土中金属的腐蚀,海工钢筋混凝土耐久性译文集,上海:交通部第三航务工程研究所,1988.
    [10] Report of the National Materials Advisory Board. Concrete durability-A multibillion opportunity. Publication No. NMAB-437, National Academy of Science. Washington. D.C.,1987, 94.
    [11] M.Yunovich, etc.,Highway Bridges, Appendix D, Corrosion Costs and preventive strategies in the united states, roport fhwa-rd-01-156, stept. 2001. http://www.corrosioncost.com/infrastructure/highway.
    [12] J.L. Smith Y.P. Vermani, Materials and Methods for corrosion control of reinforced and prestressed concrete in new construction, FHWA-RD-00-081, FHA, Aug. 2000.
    [13] Rasheeduzzafar, Dakil FH, and Gahtani AS. Corrosion of reinforcement in concrete structures in the middle east[J]. Concrete International, 1985(9): 48-55.
    [14] Yasuo Kosaka, Takashi Miura, Yukihiro Tsukada. Salt-damage and retrofitting of prestressed concrete bridges at the Japanese see cost in North-Japan[A]. Proceedings of 8th International Conference Structural Faults+Repair[C],1999.
    [15] 中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[S]北京:中国建筑工业出版社,2004.
    [16] 方德友.我国铁路桥梁病害浅析与对策[A].中国铁道学会桥梁病害诊断及剩余寿命评估学术讨论会[C].大连.1995.
    [17] 刘西拉.我国工程结构耐久性问题面临的处境和难点[A].沿海地区混凝土结构耐久性及其设计方法科技论坛与全国第六届混凝土耐久性学术会议交流会论文集[C].2004.50-55.
    [18] 冯乃谦.日本混凝土耐久性问题历史发展及对策[J].混凝土,2003,7:14-17.
    [19] 牛全林,冯乃谦.利用超细粉煤灰提高混凝土的耐久性研究[J]粉煤灰,2003,5:24-26.
    [20] Li Gengying. Properties of high-volume fly ash concrete incorporating nano-SiO_2[J]. Cement and Concrete Research, 2004, v 34(6): 1043-1049.
    [21] Rostam S High-performance concrete cover. Why it is needed and how to achieve it in practice[J]. Construction and Building Materials, 10(5).1996.
    [22] 吴中伟.混凝土的耐久性问题[J].混凝土及建筑构件,1982,(2):3-6.
    [23] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [24] 刘斯凤,孙伟,林玮等.掺天然超细混合材高性能混凝土的制备及其耐久性研究[J].硅酸盐学报2003,Vol.31:1080-1085.
    [25] 熊国宣,邓敏,宋碧涛等.纳米材料在混凝土中应用的思考[J].混凝土与水泥制品,2002,5:18-21.
    [26] 张梅.纳米材料的研究现状与发展[J].导弹与航天技术,2000,3:11-16.
    [27] 王勇,梁清泉,魏兆春.纳米技术在阻燃材料领域中的应用前景[J].消防科学与技术,2003,6:518-520.
    [28] 中平.纳米彩色免烧瓦[J].新型建筑材料,2002,3:13.
    [29] 闰振甲,何艳君.粉煤灰纳米低成本系列防水涂料生产技术[J].粉煤灰,2002.3:35-36.
    [30] 胡发社,曾繁杰.纳米防护剂在石材领域中的应用[J].石材,2002,6:13-14
    [31] 杜奎义,曹天志,李文化等.纳米材料在聚氨酯防水涂料中的应用研究[J].中国建筑防水,2003,5:8-9.
    [32] 何登良,董发勤,邓跃全.纳米技术在建筑材料领域的应用[J].混凝土,2005.8:6-10.
    [33] 黄翔.纳米技术在功能性空气过滤材料中的应用[J].建筑热能通风空调,2005,vol.24:22-24.
    [34] 魏智强,王政军,乔宏霞等纳米技术在建筑材料中的发展与应用[J].中国粉体技术,2005,1:45-48.
    [35] 张立德,牟季美.纳米材料和纳米结构(M).北京:科学出版社,2001.1-22.
    [36] 卢柯.纳米晶体Cu的室温超塑延展性[J].中国科学院院刊,2001.1:29-31.
    [37] 唐明,巴恒静,李颖.纳米级SiO_x与硅灰对水泥基材料的复合改性效应研究[J].硅酸盐学报 2003.Vol.31(5):523-527.
    [38] 叶青.纳米SiO2与硅粉的火山灰活性的比较[J].混凝土,2001.3:19-22
    [39] 陈荣升,叶青.掺纳米SiO2与掺硅粉的水泥硬化浆体的性能比较[J].混凝土,2002.1:7-10.
    [40] 季韬,黄与舟,郑作樵.纳米混凝土物理力学性能研究初探[J].混凝土,2003.3:13-14.
    [41] 杜应吉,韩苏建,姚汝方等.应用纳米微粉提高混凝土抗渗抗冻性能的试验研究[J].西北农林科技大学学报(自然科学版),2004,Vol.32(7):107-110.
    [42] 巴恒静,冯奇,杨英姿.复合微粒高性能混凝土的二级界面显微结构及耐久性研究[J].硅酸盐学报硅酸盐学报,2003,Vol.31(11):1143—1147.
    [43] 龚洛书,柳春圃.混凝土的耐久性及其防护修补[M].北京:中国建筑工业出版社,1990.
    [44] 李F.M.水泥和混凝土化学[M].唐明述,杨南如,胡道和等译.北京:中国建筑工业出版社,1984.
    [45] 沈威,黄文熙,闽盘荣著水泥工艺学[M].武汉:武汉工业大学出版社, 1998.
    [46] Sidney Mindess,J.Francis Young.混凝土[M].David Darwin,吴克如,张雄等译.北京:化学工业出版社,2005.
    [47] 亢景富.混凝土硫酸盐侵蚀研究中的几个问题[J].混凝土,1995.3:10-18.
    [48] 王智.当前国内外混凝土耐久性问题及其预防措施[J].混凝土,1999.1:52-57.
    [49] B.B金德.水工建筑物中水泥和混凝土的腐蚀[M].郭成举译,水利电力出版社,1959.
    [50] Mehta, P.k., "Sulfate Attack on Concrete—A Critical Review," Materials Science of Concrete Ⅲ, ed. J. Skalny, American Ceramic Society, Westerville, OH, pp. 105-130(1992).
    [51] J. Skalny, J., J. Marchand and I. Odler, Sulfate Attack on Concrete, Spon Press, London(2002).
    [52] C. D. Lawrence "sulphat attack on concrerte "Magazine of concrete research, 1990.42, No, 153, Dec, 249-264.
    [53] E.M. Winkler, Stone: Properties, Durability in Man' s Environment, Springer-Verlag, New York, 1975.120.
    [54] 曹楚南主编.中国材料的自然环境腐蚀[M].北京:化学工业出版社 2005.
    [55] 仇新刚,马孝轩,孙秀武.钢筋混凝土在滨海盐土地区腐蚀规律试验研究[J].建筑科学,2001,vol.17:41-43.
    [56] 丁威,马孝轩,冷发光等.格尔木盐湖地区地下基础混凝土分析评价和应用措施[J].混凝土,2005.7:78-83.
    [57] 马孝轩.我国主要类型土壤对混凝土材料腐蚀性规律的研究[J].建筑科学,2003,Vol.19:1956-57.
    [58] 巴恒静,张武满,邓宏卫.评价高性能混凝土耐久性综合指标——抗氯离子渗透性及其研究现状[J].混凝土,2006,3:3-4.
    [59] 杨医博,梁松,莫海鸿.海洋环境下大掺量矿渣微粉混凝土的实验研究[J].武汉理大学学报,2005,Vol.27:34-36.
    [60] 欧阳幼玲,陈迅捷,张燕驰.腐蚀环境中海下混凝上抗执离子侵蚀性[J].水利水运下程学报,2003,(1):39-43.
    [61] ASTM C1202-94 Standard Test Method for Electrical Indication of Concrete Ability to Resist Chloride Ion Penetration, 1994.
    [62] "Standard Method of Test for Resistance of concrete to Chloride Ion Penetration" , (T259-80), American Association of State Highway and Transporation Officials, Washington, D. C., U.S.A., 1964.
    [63] " Standard Method for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials" , (T 260- 94), American Association of State Highway and Transportation Officials, Washington, D. C., U.S. A, 1994.
    [64] Nordtest Method:Accelerated Chloride Penetration into Hardened Concrete, NordteSt, Espoo, Finland, Proj. 11,54-94, 1995.
    [65] 李翠玲,路新赢,张海霞.确定氯离了在水泥基材料中扩散系数的快速试验方法[J].工业建筑,1998,(6):41-43.
    [66] 中华人民共和国电力行业标准.水工混凝土试验规程DL/T5150-2001[S].北京:中国电力出版社,2002.
    [67] 刘斯风.氯离了扩散测试方法演变和理论研究背景[J].混凝土2002,(10):21-24.
    [68] 蒋林华,Zhang M H,Malhotra V M.水泥基材料氯离子渗透扩散性测试技术[J].建筑材料学报.2002,(2):147-154.
    [69] 徐定华,徐敏.混凝土材料学[M].北京:中国标准出版社,2002.
    [70] 刘崇熙,文梓云.混凝土碱——骨料反应[M].广州:华南理工大学出版社,1995.
    [71] 唐明述.碱硅酸反应与碱碳酸盐反应[J].中国工程科学,2000,2(1):3420.
    [72] 牛全林,冯乃谦,谢威.几种超细矿粉抑制混凝土碱骨料反应的试验研究[J].水泥工程,2004,(5):12-15.
    [73] 王福川,刘云霄关于混凝土碱含量限值的思考[J].混凝土,2002,11:12-15.
    [74] 封孝信,冯乃谦.矿物质粉体对碱硅酸反应抑制机理的研究[J].工业建筑,2005.Vol.35:70-73.
    [75] 朱伯龙,肖建庄.碳化混凝土结构性能[J].工业建筑,1998,2:8-9.
    [76] 许丽萍,黄士元预测混凝土中碳化的数学模型[J]:上海建材学院学报,1991.4:12-16.
    [77] 郭成举.混凝土的物理和化学[M].北京:中国铁道出版社,2004.
    [78] A.M.内维尔.混凝土的性能[M].李国泮,马贞勇译.北京:中国建筑工业出版社,1983.
    [79] [美]P.梅泰.混凝土的结构性能与材料[M].祝永年,沈威,陈志源译.上海:同济大学出版社,1991.
    [80] Sidney Mindess,J.Francis Young.混凝土[M].David Darwin,吴克如,张雄等译.北京:化学工业出版社,2005.
    [81] 廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [82] 杨彦克,李固华,潘绍伟.建筑材料.成都:西南交通大学出版社,2006.
    [83] 钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002.
    [84] 陈栓发.高性能混凝土应力腐蚀与腐蚀疲劳特性研究博士生论文 2004.
    [85] 吴承桢,陈步荣,叶勇抱.石灰石硅酸盐水泥的研究[J].南京化工大学学报,1999,Vol.21(4):18-21.
    [86] 冯乃谦,邢峰.高性能混凝土的配制技术[M.].北京:原子能出版社,2000.
    [87] 马保国,何永佳,吕林女.高性能混凝土配合比设计[J].武汉理工大学学报,2002,Vol.24(7):14-17.
    [88] 吴中伟.绿色高性能混凝上与科技创新[J].建筑材料学报,1998,1(1):3-8.
    [89] 李颖,唐明,聂元.纳米级SiO_x与硅灰对水泥浆体需水量的影响[J].沈阳建筑下程学院学报,2002,Vol.18(4):278-281.
    [90] 王冲,蒲心诚,刘芳.纳米颗粒材料在水泥基材料中应用的可行性研究[J].新型建筑材料,2003,2.22-23
    [91] 冯乃谦.高性能混凝土结构[M].北京:机械工业出版社,2004
    [92] F. Maso, Proceedings of the Seventh International Congress on the Chemistry of Cement, vol. 1, Editions Septima. Paris, 1980.
    [93] 叶青,张泽南,孔德玉等.掺纳米SiO_2和掺硅粉高强混凝土性能的比较[J].建筑材料学报,2003,Vol.6(4):381-385.
    [94] 蒋亚清 混凝土外加剂应用基础[M].北京:化学工业出版社 2004.
    [95] 李固华,高波.纳米微粉SiO_2和CaCO_3对混凝土性能影响[J].铁道学报,Vol.28(1):131-136.
    [96] 马孝轩.我国主要类型土壤对混凝土材料腐蚀性规律的研究[J].建筑 科学,2003,Vol.19:1956-57.
    [97] 亢景富.混凝土硫酸盐侵蚀研究中的几个问题[J].混凝土,1995.3:10-18.
    [98] T RASAR E F, DI MAIO A, BATIC O R. Sulfate attack on concrete with mineral admixture[J] Cement Concrete Researtch, 1996, 26(1): 113-123.
    [99] Tor II K, TANIGUCHIK, KAWAMURA M. Sulfate resistance of high fly ash content concrete[J]. Cement Concrete Researtch, 1995, 25 (4): 759-768.
    [100] ROY D M, ARJUNAN P, SILSBEE M R. Effect of silica fume, metakaolin and low-calcium fly ash on chemical resistance of concrete[J]. Cement Concrete Researtch, 2001, 31:1809-1813.
    [101] 秦鸿根 潘钢华 孙伟等 掺粉煤灰高性能混凝土耐久性研究[J].混凝土与水泥制品,2005.5:11-13。
    [102] 周俊杰 杨德武 粉煤灰水泥砂浆抗硫酸盐侵蚀的研究[J].粉煤灰综合利用,2002.3:18-20
    [103] 马强,朋改非,谢永江.双掺硅灰、粉煤灰对青藏铁路用高性能混凝土性能的影响[J].混凝土,2004,3:45-48.
    [104] 吴中伟.高性能混凝土及其矿物细掺料[J].建筑技术,1999,(3):160-163.
    [105] 冯乃谦.高性能混凝土[M].北京:中国建筑出版社,1996.
    [106] 鲍明轩,贺鸿,薛明等双掺粉煤灰和硅灰的大流动度自密实混凝土的抗硫酸盐性能[J].粉煤灰,2006.1:6-8.
    [107] 洪乃丰.基础设施腐蚀防护和耐久性[M].化学工业出版社,2006.
    [108] E.M. Winkler, Stone: Properties, Durability in Man's Environment, Springer-Verlag, New York, 1975.120.
    [109] 苏胜,何向玲,王向东多种离子作用下影响混凝土抗蚀性的研究[J].河北建筑科技学院学报,2000,Vol.17(4):32-34.
    [110] 万惠文,林宗寿,水中和.适宜盐渍地区具有强抗腐蚀性混凝土的性能与特点[J].国外建材科技,2002,Vol.23(4):23~26.
    [111] 张玉敏,王铁成.人工海水对混凝土侵蚀性的研究[J].混凝土2001,11:48-50.
    [112] 陈百玲,王东军.提高混凝土耐久性的技术措施[J].辽宁大学学报, 2002,Vol.29(4):355-359.
    [113] 迟培云,梁永峰.提高混凝土耐久性的技术途径[J].混凝上,2001,(8):12-15.
    [114] 金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [115] Thaumasite Expert Group. The Thaumasite Form of Sulfate Attack: Risks, Diagnosis, Remedial Works and Guidance on New Construction[R]. London:Department of the Environment, Transport and the Regions, 1999.
    [116] Norah c. The occurrence of thaumasite in modern construction— a review[J]. Cem. Coner. Composites, 2002,24(4):393-402.
    [117] 高小建,马保国,赵志曼.西部地区水工混凝土长期腐蚀产物与腐蚀机理[J].中国腐蚀与防护学报,2005,Vol.25(5):299-302.
    [118] 陈肇元主编.土建结构工程安全性与耐久性(论文集)[C].北京:中国建筑工业出版社,2003.
    [119] 冯乃谦,邢峰等.高性能混凝土的氯离子渗透性和导电量[J].混凝土,2001,11:3-7.
    [120] Rostam S High-performance concrete cover. Why it is needed and how to achieve it in practice. Construction and Building Materials, 10 (5). 1996.
    [121] ASTM C1202-1997 Standard test method for electrical indication of concrete ability to resist chloride ion penetration[S].
    [122] 中华人民共和国水电力行业标准.DL/T5150-2001.水工混凝土试验规程[S].中国电力出版社,2002.
    [123] 蒋亚清.混凝土外加剂应用基础[M].化学工业出版社2004.
    [124] 国延辉,覃维祖.郭京育主编混凝土外加剂及其应用技术[M].2004.
    [125] 高亚.高性能混凝土复合剂[J].建材工业信息,2003.3:18.
    [126] 徐定华,徐敏.混凝土材料学概论[M].北京:中国标准出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700