芳纶水刺非织造布的结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科技的发展,工业化水平不断提高,人们的环保意识也逐渐加强,全世界对过滤材料的需求逐年上升。就空气过滤而言,非织造布过滤材料已经取代了传统纺织过滤材料,应用越来越广。国内外学者已在水刺非织造布方面进行了研究,但是有关非织造布的结构及性能,尤其是用于高温工业过滤领域,还没有进行深入的研究,因此开展这些方面的研究对于更好的发挥其重要作用具有一定的学术和应用价值。
     本文以芳纶水刺非织造布为主要研究对象,利用扫描电镜、红外光谱仪、孔径分析测试仪、断裂强力测试仪器等设备进行了详细的试验测试与分析,重点研究了芳纶水刺非织造布在高温条件下和酸、碱腐蚀条件下的的纤网表观结构、尺寸稳定、孔隙特征、力学性能以及其它性能,最后对芳纶水刺非织造布的结构参数与性能的关系进行分析。通过本文的研究,得到了以下几个主要结论:
     (1)经过高温处理后芳纶水刺非织造布表面略显疏松,但是尚不能发现纤维结构的变化;厚度和平方米克重随温度升高,先减小后增加;试样的纵横向收缩率均小于5%;处理前后试样孔径分布在60-90μm,平均孔径先增加后减小;透气率随处理温度的增加先增加后减小;纵向拉伸断裂强力先减小后增大,横向拉伸断裂强力不断增大,总体呈上升趋势;处理前后试样的起始分解温度都在350℃左右,起分解顺序为260℃试样→230℃试样→200℃试样→常温试样。
     (2)酸碱溶液浓度较低时,表观结构变化不大,随着溶液浓度的增加,试样纤维开始出现裂痕,纤维分布不再均匀;处理前后试样的厚度在1mm上下波动,厚度CV值、平方米克重的CV值随着酸碱液浓度的增加呈二次曲线变化;碱溶液处理后的尺寸变化率要稍大于酸溶液,但是都不超过1.6%;相同浓度下,碱溶液处理后的试样透气率高于酸溶液,透气率变化率均呈现先减小后增加的趋势,当碱溶液浓度在10%、酸溶液浓度在30%时,透气率变化率处于最小值;处理后试样的断裂强力和断裂伸长率总体呈下降趋势但下降幅度不大;红外光谱图中出现的主要振动频率分别为为1650cm~(-1),1606cm~(-1),1533cm~(-1),1485cm~(-1),685cm~(-1),峰值并没有呈现较大波动。
     (3)经过高温和碱溶液处理后的试样,M值先减小后增加;经过酸溶液处理后的试样,M值先增加后减小;在30%的碱溶液和30%的酸溶液中,试样表现为纵向排列最明显,各项异性最明显;高温处理后,试样的厚度越大其透气率越小,平方米克重越大其加权平均孔径越小;碱溶液处理后,平方米克重越大,透气率越大;酸溶液处理后,随厚度增加,透气率先减小后增加;孔隙率变化均呈现“倒N”型,纤维的轴间距变化呈现“N”型;孔隙率越大,流体动力系数越小,高温处理和酸碱溶液处理后,流体动力系数变化均呈现“N”型。
With the development of modern technology science and industrialization level, people's awareness of environmental protection is gradually strengthened. As a result, the world demand of filter materials is rising year by year. Nonwoven materials have replaced the traditional textile filter materials which is used more and more widely as air filtration. Spunlaced nonwovens have been researched by domestic and foreign scholars, however, the structure and performance of nonwovens, especially in filtration field of high temperature industrial were lack of study. Therefore, research on these areas has certain academic and application value.
     The aramid spunlaced nonwovens as the main research object were tested and analyzed by the equipments of scanning electron microscopy, infrared spectrometer, Topas analysis tester, strength tester and so on. Apparent structure, size stability, pore structure, mechanical properties and other properties were studied in the conditions of high temperature and corrosion. The relationship was analyzed between structure parameters and properties. The results showed that:
     (1)The aramid spunlaced nonwovens had slightly loose surface after high temperature processing, but changes of fiber structure still can not be found. With the temperature increasing, the thickness and the gram per square meter first decreased and then increased. Vertical and horizontal shrinkage of the sample were less than 5%. Before and after processing, pore size distribution of the samples were in the range of 60-90μm, the average aperture first increases, then decreases. With processing temperature increasing, the permeability first increased, then decreased. Longitudinal and transversel breaking strength increased overall. The longitudinal breaking strength first decreased and then increased while the transverse breaking strength increased constantly. Decomposition temperatures of samples were around 350℃. The beginning decomposition order was as follows: sample in 260℃→sample in 230℃→sample in 200℃→sample in normal temperature.
     (2)Apparent structural changes unobviously when the concentrations of acid and alkali solution were low, as the concentration of solution increasing, fibers began to appear fissure and the distribution was heterogeneous. Before and after processing the thickness of the sample was fluctuated around 1mm. The CV values of the thickness and the gram per square meter were changed accords with the quadratic curve. With alkali solution process, the dimensional changes after laundering were slightly greater than that with acid solution process, but were not more than 1.6%. Under the same concentration, the permeability with alkali solution process is larger than that with acid solution process. The rate of change in permeability was first decreased, then increased and the minimum was at alkali solution of 10% and acid solution of 30%. The breaking strength and elongation of samples were downtrend. The main vibration frequencys in infrared spectrogram were as follows: 1650cm~(-1), 1606cm~(-1), 1533cm~(-1), 1485cm~(-1), 685cm~(-1) and there was no big fluctuations on the peak value.
     (3)After high temperature and alkali solution process, M value of the samples first decreasesd and then increased while it first increased and then decreased after acid solution process. In 30% of alkali solution and 30% of the acid solution, samples were obviously in longitudinal arrangement and anisotropic property. After high temperature process, the greater the thickness is, the smaller the permeability is. After alkali solution process, the greater the grams per square meter is, the larger the permeability is. With the thickness increases, the permeability first decreases and then increases. Porosity variation presents inverted " N " pattern type while the center distance of fibers presents " N " pattern. The greater the porosity is, the smaller the fluid dynamic coefficient is. After high temperature, alkali and acid solution process, fluid dynamic coefficient presents " N " pattern.
引文
[1]向晓东.烟尘纤维过滤理论技术及应用[M].北京:冶金工业出版社.2007:1-51.
    [2]熊杰.产业用纺织品[M].杭州:浙江科学技术出版社.2007:80.
    [3] Fuping Qian,Haigang Wang.Study of the filtration performance of a plain wave fabric filter using response surface methodology[J].Journal of Hazardous Materials.2010,176:559-568.
    [4]荣伟东.颗粒层非稳态过滤效率公式的比较[J].工业安全与防尘.1992(12):10-11.
    [5]付海明,沈恒根.纤维过滤介质捕集效率数学模型的研究[J].东华大学学报(自然科学版). 2004,30(3):5-9.
    [6]刘道清.空气过滤技术研究综述[J].环境科学与管理.2007:109-113.
    [7]周斌,沈晋明,饶松涛.纤维过滤器非稳态过滤的效率特性研究[J].建筑热能通风空调.2007,26(6):14-17.
    [8] Friedlander,S.K.Theory of aerosol filtration[J].Ind.Eng.chem.1958:1161-1164.
    [9]蔡杰.空气过滤ABC[M].北京:中国建筑工业出版社.2002:144-234.
    [10] Langmuir,I.Report on smokes and filters[R].Office of Science Research Development.1942.
    [11]刘君侠,彭伟功,向晓东.纤维面层表面非稳态过滤效率的研究[J].建筑热能通风空调.2002(3):16-22.
    [12]曹国庆,涂光备,张蕊等.新型高效超高效空气过滤器性能检测系统的探讨[J].洁净与空调技术.2005(3):25-29.
    [13] Clarenburg,L.A.,Scheirech,F.I.Aerosol filters-Ⅱ.Theory of pressure drop across multi component glass fibre filters[J].Chem.Eng.Sci.1968.
    [14]刘俊杰,王志强.高效率空气滤清器过滤性能测试分析研究[J].流体机械.2007,35(7):10-14.
    [15] Banks,D.O.,Kurowski,G.J.,Whitaker,S.Diffusion deposition on a fibre in nontransverse flow[J].Aerosol Sci.Tech.1991.
    [16]付海明,沈恒根.空气过滤理论研究与进展[J].过滤与分离.2003:20-24.
    [17]刘来红,朱玲英.高效空气过滤材料的发展与特点[J].产业用纺织品.2005,(4):6-8.
    [18] Kawamura A,et al..Basic clinical study of an easy and effective leukocytapheresis by the use of nonwoven polyester filter[J].Ther Apheresis.1998:292.
    [19] Deliani Lovera,et al..Charge Storage of Electrospun Fiber Mats of Poly(phenyleneether)/Polystyrene Blends[J].POLYMER ENGINEERING AND SCIENCE.2009,49: 2430-2439.
    [20]黄翔,顾群,狄育慧.功能性空气过滤材料及其应用[J].洁净与空调技术.2003,(3):38-42.
    [21]朱平.多层玻璃纤维复合针刺毡的研究[J].玻璃纤维.2006,(3):1-7.
    [22] Murilo D.M.Innocentini,et al..Permeability optimization and performance evaluation of hot aerosol filters made using foam incorporated alumina suspension[J].Journal of Hazardous Materials.2009,162:212-221.
    [23]袁晓林,蒋建忠,袁惠新.新型过滤介质与材料的发展[J].过滤与分离.2005,15(4):40-42.
    [24] Yi-Shun Chen,et al..Filtration of dust particulates with a moving granular bed filter[J]. Journal of Hazardous Materials.2009,171:987-994.
    [25]王维一,丁启圣等.过滤介质及其选用[M].北京:中国纺织出版社.2008:35-53.
    [26]吴湘济.过滤材料的应用及其测试指标[J].合成纤维.2006,(4):26-29.
    [27]渠叶红.Elmarco:用于非织造材料的Nanospider技术[R].国际纺织导报.2005,(11):42.
    [28] Winyu Tanthapanichakoon,et al..Degradation of semi-crystalline PPS bag-filter materials by NO and O2 at high temperature[J].Polymer Degradation and Stability.2006,91:1637-1644.
    [29]王林.R000021两款空滤产品[R].大视界.2009.
    [30] Javier R.Sanchez,et al..Comparative study of different fabrics in the filtration of an aerosol using more complete filtration indexes[J].Filtration and Separation.1997,34:593-598.
    [31] Ingemar Wistranda,et al..Preparation of electrically conducting cellulose fibres utilizing polyelectrolyte multilayers of poly(3,4-ethylenedioxythiophene):poly(styrene sulphonate) and poly(allyl amine)[J].European Polymer Journal.2007,43:4075-4091.
    [32] Akio Kawamura,et al..New Technique of Leukocytapheresis by the Use of Nonwoven Polyester Fiber Filter for Inflammatory Bowel Disease[J].Ther Apher. 1999,3(4):334-337.
    [33]李熙,靳双林.PPS纤维及其在袋式除尘领域的应用[J].产业用纺织品.2007,(4):1-4.
    [34] BERNARD MARTEL,et al..Grafting of Cyclodextrins onto Polypropylene Nonwoven Fabrics for the Manufacture of Reactive Filters[J].Journal of Applied Polymer Science. 2002,85:1771-1778.
    [35]范晓玲,郭秉臣,刘书平.新型耐高温滤料的研制[J].产业用纺织品.2005,19(10):24-27.
    [36] Eun Jin Kim,et al..Preparation of Surface-Modified Poly(butylene terephthalate) Nonwovens and Their Application as Leukocyte Removal Filters[J].Journal of Biomedical Materials Research Part B: Applied Biomaterials.2009:849-856.
    [37] PHILIPPE LE THUAUT,et al..Grafting of Cyclodextrins onto Polypropylene Nonwoven Fabrics for the Manufacture of Reactive Filters[J].Journal of Applied PolymerScience.2000,77:2118-2125.
    [38]王延熹等.非织造布生产技术[M].上海:中国纺织大学出版社.1998:294-317.
    [39] M.Grove,F.Daveloose.Structure and performance of filter media[J].Filtration and Separation.1982,19:424–432.
    [40] Winyu Tanthapanichakoon,et al..Degradation of bag-filter non-woven fabrics by nitric oxide at high temperatures[J].Advanced Powder Technology.2007,18(3):349-354.
    [41] Show preview: FILTECH 2009[R].Filtration and Separation.2009.
    [42] Asis Patanaik,Rajesh D.Anandjiwala,Lydia Boguslavsky.Development of High Efficiency Particulate Absorbing Filter Materials[J].Journal of Applied Polymer Science.2009,114: 275-280.
    [43]柯勤飞,靳向煜等.非织造学[M].上海:东华大学出版社.2004:18-300.
    [44]尉霞.产业用纺织品设计与生产[M].上海:东华大学出版社.2009:33.
    [45] Javier R.Sa'nchez,et al..The Capture of Fly Ash Particles Using Circular and Noncircular Cross-Section Fabric Filters[J].2007 American Institute of Chemical Engineers Environ Prog,2007,26:50-58.
    [46]班燕,张玉华,任加荣.芳砜纶在耐高温滤料中的应用[J].产业用纺织品.2006,12:33-36.
    [47]中国纺织工程协会.2008-2009纺织科学技术学科发展报告[M].北京中国科学技术出版社.2009:13.
    [48] X.Y.Wang,R.H.Gong.Thermally Bonded Nonwoven Filters Composed of Bicomponent Polypropylene/Polyester Fiber[J].Journal of Applied Polymer Science.2006,101:2689-2699.
    [49]王延熹.中国非织造过滤材料生产和应用的现状与发展[J].产业用纺织品.2000,(11):1-3.
    [50]晏荣华,章勤华.新型复合过滤材料-P84/Glass[J].产业用纺织品.2006,(3):32-33.
    [51]吴丽丽,柯勤飞.水刺复合PPS纤维耐高温过滤材料的研究与开发[J].产业用纺织品.2009,17(4):24-26.
    [52]于玮.间位芳纶在国内外过滤领域的研究与应用开发[J].2009中国过滤用纺织品创新发展论坛.2009:77-79.
    [53]曾幸荣.高分子近代测试分析技术[M].广州:华南理工大学出版社.2007:5-237.
    [54] Michael C.Flickinger,Ashim Mullick,David F.Ollis.Method for Construction of a Simple Laboratory-Scale Nonwoven Filament Biocatalytic Filter[J].Biotechnol.Prog.1998,(14): 664-666.
    [55]郭秉臣等.非织造布学[M].北京:中国纺织出版社.2002:113.
    [56]马建伟,郭秉臣,陈韶娟.非织造布技术概论[M].北京:中国纺织出版社.2008:106- 152.
    [57]黄锐镇,楼利琴,曹永强.芳纶水刺非织造布的生产工艺技术探讨[J].产业用纺织品.2009,(5):5-7.
    [58]焦晓宁,郭光海.水针压力对水刺非织造布质量的影响[J].天津工业大学学报.2003,22(4):30-36.
    [59]沈志明,胡杰.新型非织造布技术[M].中国纺织出版社.1998:4.
    [60]于伟东,储才元.纺织物理[M].上海:东华大学出版社.2009:346-372.
    [61] Tao Xu,Richard J.Farris.Comparative Studies of Ultra High Molecular Weight Polyethylene Fiber Reinforced Composites[J].POLYMER ENGINEERING AND SCIENCE.2007,47: 1544-1553.
    [62] Amit Rawala,Rajesh Anandjiwala.Comparative study between needlepunched nonwoven geotextile structures made from flax and polyester fibres[J].Geotextiles and Geomembranes.2007,25:61-65.
    [63]吴灵芝,柯勤飞.薄型非织造材料孔径合渗透率关系的探讨[J].产业用纺织品.2003,(5):21.
    [64] Burleigh E.G.,et al..Pore size distribution in textiles[J].Textile Res.J..1949,19(9): 547-555.
    [65] Wakeham.H.,Spieer N.Pore size distribution in textiles-A study of windproof and water-resistant cotton fabrics[J].Textile Res. J..1949,19(11):703-710.
    [66] Chatterjee KN.Polyester needle punched nonwoven dust filter for controlling air pollution[J].Man-Made Text India.1991:35.
    [67] Miller B.,Tyomkin I..An extended range liquid extrusion method for datermining pore size distributions[J].Textile Res. J..1986,56(l):35-40.
    [68] Gong.R.H..Image-analysis tech. Part I:The measurment of pore-size distribution[J]. J.Text.Inst..1992,83(2):253-268.
    [69] F.T.Peirce,W.H.Rees,L.W.Ogden.Measurement of the water vapor permeability of textile fabrics[J].Journal of Textile Institute.1945,36:169-176.
    [70]沈志明,胡杰.新型非织造布技术[M].中国纺织出版社.1998:4.
    [71] C.A.Lawrence,Pinghui Liu.Relation of Structure,Properties and Performance of FibrousMedia for Gas Filtration[J].Chem.Eng.Technol..2006,29(8):957-967.
    [72]杜扬.流体力学[M].中国石化出版社.2008:55-72.
    [73]林建忠.超常颗粒多相流体动力学-圆柱状颗粒两相流[M].北京:科学出版社.2008:150-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700