TiO_2薄膜光催化氧化脱除气相甲醛研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醛是一种常见的室内空气污染物,光催化氧化将其转化成无害的C02和H20具有广阔的应用前景。Ti02是一种性质稳定,无毒的光催化剂,在光催化氧化脱除有机污染物方面得到广泛的研究。本文采用大气压介质阻挡放电在玻璃基底上沉积Ti02薄膜,对其均匀性及沉积量进行了表征,并在连续流动的平板式光催化反应器中开展光催化氧化脱除模拟空气中ppm级甲醛的研究。主要考察停留时间、甲醛初始浓度、光强、气体湿度及光源等因素对光催化过程的影响,并对光催化反应进行了动力学分析。结果表明:
     1.薄膜平面上五个测试点的UV-Vis吸收光谱基本重合,说明所制备的Ti02薄膜是均匀的。由薄膜定量分析结果计算得薄膜的Ti02沉积量为74μg·cm-2.
     2.对于焙烧前的Ti02薄膜,254nm光照下,线速度大于7.1cm·s-1时,光催化反应总包过程由反应控制,可看作一级反应。在反应控制下,得到如下结果:
     在考察的光强范围(0.72~1.78mW·cm-2)内,-ln(1-X)=kIτ,k=0.78cm2·mJ-1;
     在考察的甲醛初始浓度范围(23~56ppm)内,甲醛转化率基本不随初始浓度变化;
     湿度在0.04~1.06vo1%之间时,湿度对甲醛转化率的影响不大,湿度在1.06~1.85vo1%之间时,转化率随湿度增加而降低。
     3.对于450℃焙烧2小时后的薄膜,254nm光照下,线速度大于9.1cm·s-1时,光催化反应总包过程由反应控制,可看作一级反应。在反应控制下,得到如下结果:
     光强对光催化反应的影响表明,-1n(1-x)=kInτ
     当0.21mW·cm-2<Ⅰ<0.98mW·cm-2时,n=1,k=2.1cm2.mJ-1
     当0.98mW·cm-2<Ⅰ<1.78mW.cm-2时,n=0.4,k=2.1cm08·mW-04·s-1;
     湿度在0.04~0.50vol%之间时,甲醛转化率随湿度增加而增大;湿度在0.50~1.10vol%之间时,转化率对湿度的变化不敏感;湿度在1.10~1.63vol%之间时,转化率随湿度增加稍有降低。
     365nm光照下对于焙烧后的薄膜,在实验考察范围(线速度大于3.3cm·s-1)内,总包反应均为反应控制。湿度在0.04~0.80vol%之间时,甲醛转化率随湿度增加而增大;湿度在0.80~1.66vol%之间时,转化率对湿度的变化不敏感。
Formaldehyde is a common air pollutant. Photocatalytic oxidation that can translate it into harmless CO2and H2O has extensive application prospects. TiO2has been widely researched as a photocatalyst for its chemical stability and non-toxic. TiO2thin film was deposited by atmospheric pressure dielectric barrier discharge chemical vapor deposition and its uniformity and quality were characterized. The degradation of ppm levels of formaldehyde in the simulated air by the film was carried out in a continuous flow flat-plate photocatalytic reactor under UV irradiation in this paper. Residence time, light intensity/source, initial concentration of formaldehyde and humidity were investigated as process variables. The photocatalytic reaction kinetic was analyzed. The results are as follows:
     3. UV-Vis absorption spectra of5testing points on surface of the TiO2film were in good agreement, which showed the uniformity of the TiO2thin film. Quantitative analysis showed that the film has a TiO2quality deposition of74μg·cm-2
     2. Under the irradiation of254nm UV lamp for as-deposited film, overall rate was controlled by reaction when the linear velocity exceeded7.1cm-s-J. Under the control of reaction, the results are as follows:
     As0.72mW·cm-2<Ⅰ<1.78mW·cm-2,-ln(1-X)=kⅠτt, k=0.78cm2·mJ-1;
     In the range of the initial concentrations of HCHO investigated (23-56ppm), the reaction rate changed little with the initial concentration variation;
     In the range of the humidity from0.04vol%to1.06vol%, photocatalytic conversion of HCHO to CO2kept almost constant, while in the range of the humidity from1.06vol%to1.85vol%, photocatalytic conversion of HCHO to CO2decreased with increasing the humidity.
     3. Under the irradiation of254nm UV lamp for the film calcined at450℃for2hours, overall rate was controlled by reaction when the linear velocity exceeded9.1cm·s-1and under the control of reaction, the results are as follows:
     The effect of light intensity showed that-ln (1-X)=klτ:
     As0.21mW·cm-2<Ⅰ<0.98mW·cm-2, n=1, k=2.1cm2· mJ-1
     As0.98mW·cm-2<Ⅰ<1.78mW·cm-2,n=0.4, k=2.1cm0.8· mW-0.4·s-1;
     In the range of the humidity from0.04vol%to0.50vol%, photocatalytic conversion of HCHO to CO2increased with increasing the humidity, in the range of the humidity from0.50 vol%to1.10vol%, photocatalytic conversion of HCHO to CO2kept almost constant, in the range of the humidity from1.10vol%to1.63vol%, photocatalytic conversion of HCHO to CO2decreased with increasing the humidity.
     Under the irradiation of365nm UV lamp for the calcined film, overall rate was controlled by reaction within the scope of the inspection (linear velocity>3.3cm·s-1). In the range of the humidity from0.04vol%to0.80vol%, photocatalytic conversion of HCHO to CO2increased with increasing the humidity, while in the range of the humidity from0.80vol%to1.66vol%, photocatalytic conversion of HCHO to CO2kept almost constant.
引文
[1]Fujishirma A, Honda K. eletrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37-38.
    [2]黄翔,殷清海,狄育慧,et al纳米光催化材料在功能性空气过滤材料中的应用研究[J].洁净与空调技术,2001,3:9-12.
    [3]景盛翱,戴海夏,钱华.光催化技术及其在室内空气净化方面研究现状[J].上海环境科学,2010,29(1):21-25.
    [4]Nie L H, Shi C, Xu Y, et al. Atmospheric Cold Plasmas for Synthesizing Nanocrystalline Anatase TiO2 using Dielectric Barrier Discharges[J]. Plasma Processes and Polymers,2007,4(5):574-582.
    [5]李连山,马春莲.室内甲醛污染的分析调查[J].环境科学与技术,2002,25(3):44-45.
    [6]张国荣,张代奕.室内空气中甲醛污染与防治措施[J].丹东纺专学报,2003,10(3):31-32.
    [7]M. Stokke J, Mazyck D W, Wu C Y, et al. Photocatalytic oxidation of methanol using silica-titania composites in a packed-bed reactor[J]. Environmental Progress, 2006,25(4):312-318.
    [8]刘春丽,章亚东.室内甲醛污染治理的研究进展[J].江苏化工,2007,35(1):15-18.
    [9]张萌,马力.室内甲醛污染治理方法对比分析[J].制冷与空调,2009,23(2):109-113.
    [10]Carp 0. Photoinduced reactivity of titanium dioxide[J]. Progress in Solid State Chemistry,2004,32(1-2):33-177.
    [11]李新勇,李树本.纳米半导体研究进展[J].化学进展,1996,8(3):231-239.
    [12]Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems[J]. Chemical Reviews,1995,95(1):49-68.
    [13]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [14]Uddin M J, Cesano F, Bonino F, et al. Photoactive Ti02 films on cellulose fibres: synthesis and characterization[J]. Journal of Photochemistry and Photobiology A: Chemistry,2007,189(2-3):286-294.
    [15]DAOUD A W, Xin J H. Low Temperature Sol-Gel Processed Photocatalytic Titania Coating[J]. Journal of Sol-Gel Science and Technology,2004,29:25-29.
    [16]Daoud W A, Xin J H, Zhang Y H, et al. Surface characterization of thin titania films prepared at low temperatures[J]. Journal of Non-Crystalline Solids, 2005,351(16-17):1486-1490.
    [17]Kavan L,O'Regan B, Kay A, et al. Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3[J]. Journal of Electroanalytical Chemistry, 1993,346(1-2):291-307.
    [18]Koumoto K, Seo S, Sugiyama T, et al. Micropatterning of Titanium Dioxide on Self-Assembled Monolayers Using a Liquid-Phase Deposition Process[J]. Chem. Mater, 1999,11(9):2305-2309.
    [19]Liu B, Wen L, Zhao X. The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering[J]. Solar Energy Materials and Solar Cells,2008,92(1):1-10.
    [20]Chen L, Graham M E, Li G, et al. Fabricating highly active mixed phase TiO2 photocatalysts by reactive DC magnetron sputter deposition[J]. Thin Solid Films, 2006,515(3):1176-1181.
    [21]Gago R, Vinnichenko M, Redondo-Cubero A, et al. Surface Morphology of Heterogeneous Nanocrystalline Rutile/Amorphous Anatase TiO2 Films Grown by Reactive Pulsed Magnetron Sputtering[J]. Plasma Processes and Polymers, 2010,7(9-10):813-823.
    [22]Lee C S, Kim J, Son J Y, et al. Photocatalytic functional coatings of TiO2 thin films on polymer substrate by plasma enhanced atomic layer deposition[J]. Applied Catalysis B:Environmental,2009,91(3-4):628-633.
    [23]Dunnill C W H, Aiken Z A, Pratten J, et al. Enhanced photocatalytic activity under visible light in N-doped TiO2 thin films produced by APCVD preparations using t-butylamine as a nitrogen source and their potential for antibacterial films[J]. Journal of Photochemistry and Photobiology A:Chemistry,2009,207(2-3):244-253.
    [24]Jang D S, Kwon S H, Lee H Y, et al. The Effect of the H2 Flow Rate on the Deposition of TiO2Fi lm Produced by Inductively Coupled Plasma-Assisted CVD[J]. Chemical Vapor Deposition,2009,15(7-9):217-220.
    [25]Zhu A M, Nie L H, Wu Q H, et al. Crystalline, Uniform-Sized TiO2 Nanosphere Films by a Novel Plasma CVD Process at Atmospheric Pressure and Room Temperature [J]. Chemical Vapor Deposition,2007,13(4):141-144.
    [26]Chen C, Bai H, Chang C. Effect of Plasma Processing Gas Composition on the Nitrogen-Doping Status and Visible Light Photocatalysis of TiO2[J]. J Phys Chem C,2007,111(42):15228-15235.
    [27]Zhang X W, Han G R. Microporous textured titanium dioxide films deposited at atmospheric pressure using dielectric barrier discharge assisted chemical vapor deposition[J]. Thin Solid Films,2008,516(18):6140-6144.
    [28]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996.
    [29]Fan H Y, Shi C, Li X S, et al. Low-temperature NOx Selective Reduction by Hydrocarbons on H-Mordenite Catalysts in Dielectric Barrier Discharge Plasma[J]. Plasma Chemistry and Plasma Processing,2008,29(1):43-53.
    [30]Fan H Y, Shi C, Li X S. et al. High-efficiency plasma catalytic removal of dilute benzene from air[J]. Journal of Physics D:Applied Physics,2009,42(22):225105.
    [31]Yu Q, Wang H, Liu T, et al. High-Efficiency Removal of NOx Using a Combined Adsorption-Discharge Plasma Catalytic Process[J]. Environmental Science & Technology,2012,46(4):2337-2344.
    [32]Xiwen Z, Yu G, Gaorong H. Fabrication of Titanium Dioxide Thin Films by DBD-CVD Under Atmosphere[J]. Plasma Science and Technology,2007,9(6):674-677.
    [33]Hodgkinson J L, YatesHM, Sheel D W. Low Temperature Growth of Photoactive Titania by Atmospheric Pressure Plasma[J]. Plasma Processes and Polymers,2009,6(9): 575-582.
    [34]Zhang X L, Nie L H, Xu Y, et al. Plasma oxidation for achieving supported TiO2 photocatalysts derived from adsorbed TiCl3 using dielectric barrier discharge[J]. Journal of Physics D:Applied Physics,2007,40(6):1763-1768.
    [35]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the Presence of Titanium Dioxide in Aqueous Suspensions[J]. Bulletin of Environmental Contamination & Toxicology,1976,16(6):697-701.
    [36]Frank S N, Bard A J. Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders [J]. The Journal of Physical Chemistry, 1977,81(15):1484-1488.
    [37]Ollis D F. Photocatalytic purification and remediation of contaminated air and water[J]. Surface chemistry and catalytics::Chimie des surfaces et catalyse, 2000,3:405-411.
    [38]Choung J H, Lee Y W, Choi D K. Adsorption Equilibria of Toluene on Polymeric Adsorbents[J]. Journal of Chemical and Engineering Data,2001,46(4):954-958.
    [39]Kontos A G, Katsanaki A, Maggos T, et al. Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes[J]. Chemical Physics Letters, 2010,490:58-62.
    [40]Lewandowski M. Extension of a Two-Site transient kinetic model of TiO2 deactivation during photocatalytic oxidation of aromatics:concentration variations and catalyst regeneration studies[J]. Applied Catalysis B:Environmental,2003,45(3): 223-238.
    [41]Lewandowski M, Ollis D F. A Two-Site kinetic model simulating apparent deactivation during photocatalytic oxidation of aromatics on titanium dioxide (TiO2)[J]. Applied Catalysis B:Environmental,2003,43(4):309-327.
    [42]Coronado J M, Zorn M E, Tejedor-Tejedor I, et al. Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films:a kinetic study on the influence of water vapor[J]. Applied Catalysis B:Environmental,2003,43(4):329-344.
    [43]Doucet N, Bocquillon F, Zahraa 0, et al. Kinetics of photocatalytic VOCs abatement in a standardized reactor[J]. Chemosphere,2006,65(7):1188-1196.
    [44]Yang R, Zhang Y, Xu Q, et al. A mass transfer based method for measuring the reaction coefficients of a photocatalyst[J]. Atmospheric Environment,2007,41(6): 1221-1229.
    [45]Mo J, Zhang Y, Yang R. Novel insight into VOC removal performance of photocatalytic oxidation reactors[J]. Indoor Air,2005,15(4):291-300.
    [46]Mo J, Zhang Y, Yang R, et al. Influence of fins on formaldehyde removal in annular photocatalytic reactors[J]. Building and Environment,2008,43(3):238-245.
    [47]Wang W, Ku Y, Ma C M, et al. Modeling of the photocatalytic decomposition of gaseous benzene in a TiO2 coated optical fiber photoreactor[J]. Journal of Applied Electrochemistry,2005,35(7-8):709-714.
    [48]Riffat S B, Zhao X. Preliminary study of the performance and operating characteristics of a mop-fan air cleaning system for buildings[J]. Building and Environment,2007,42(9):3241-3252.
    [49]Shiraishi F, Nomura T, Yamaguchi S, et al. Rapid removal of trace HCHO from indoor air by an air purifier consisting of a continuous concentrator and photocatalytic reactor and its computer simulation[J]. Chemical Engineering Journal, 2007,127(1-3):157-165.
    [50]Mo J, Zhang Y, Xu Q, et al. Photocatalytic purification of volatile organic compounds in indoor air:A literature review[J]. Atmospheric Environment, 2009,43(14):2229-2246.
    [51]Wang K H, Tsai H H, Hsieh Y H. A study of photocatalytic degradation of trichloroethylene in vapor phase on TiO2 photocatalyst. [J]. Chemosphere, 1998,36(13):2763-2773.
    [52]Benoit-Marquie F, Wilkenhoner U, Simon V. VOC photodegradation at the gas-solid interface of a Ti02 photocatalyst Part I:1-butanol and 1-butylamine[J]. Journal of Photochemistry and Photobiology A:Chemistry,2000,132:225-232.
    [53]Shie J L, Lee C H, Chiou C S, et al. Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver ti tanium oxide photocatalyst[J]. Journal of Hazardous Materials,2008,155(1-2):164-172.
    [54]Egerton T A, King C J. Influence of light intensity on photoactivity in titanium dioxide pigmented systems[J]. Oil and Colour Chemists' Association,1979,62: 386-391.
    [55]Chen F, Yang X, Wu Q. Photocatalytic Oxidation of Escherischia col i, Aspergillus niger, and Formaldehyde under Different Ultraviolet Irradiation Conditions[J]. Environ Sci Technol,2009,43(12):4606-4611.
    [56]Park D R, Zhang J, Ikeue K, et al. Photocatalytic Oxidation of Ethylene to CO: and H20 on Ultrafine Powdered TiO2 Photocatalysts in the Presence of O2 and H2O[J]. Journal of Catalysis,1999,185:114-119.
    [57]Raillard C, Hequet V, Le Cloirec P, et al. Kinetic study of ketones photocatalytic oxidation in gas phase using TiO2-containing paper:effect of water vapor[J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,163(3):425-431.
    [58]Cao L, Huang A, Spiess F J, et al. Gas-Phase Oxidation of 1-Butene Using Nanoscale TiO2 Photocatalysts[J]. Journal of Catalysis,1999,188:48-57.
    [59]Djeghri N, Formenti M, Juillet F, et al. Photointeraction on the surface of titanium dioxide between oxygen and alkanes[J]. Faraday Discussions of the Chemical Society, 1974,58:185.
    [60]obee T N, Hay S O. Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania[J]. Environ Sci Technol,1997,31(7):2034-2038.
    [61]Sano T, Negishi N, Takeuchi K, et al. Degradation of toluene and acetaldehyde with Pt-loaded TiO2 catalyst and parabolic trough concentrator[J]. Solar Energy, 2004,77(5):543-552.
    [62]Ao C H, Lee S C, Yu J Z, et al. Photodegradation of formaldehyde by photocatalyst TiO2:effects on the presences of NO, SO2 and VOCs[J]. Applied Catalysis B: Environmental,2004,54(1):41-50.
    [63]Bosc F, Edwards D, Keller N, et al. Mesoporous TiO2-based photocatalysts for UV and visible light gas-phase toluene degradation[J]. Thin Solid Films, 2006,495(1-2):272-279.
    [64]Kamat PV, Meisel D. Nanoparticles in advanced oxidation processes[J]. Current Opinion in Colloid & Interface Science,2002,7:282-287.
    [65]Khan S. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2[J]. Science,2002,297(5590):2243-2245.
    [66]Chen C, Bai H, Chang S M, et al. Preparation of N-doped TiO2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources[J]. Journal of Nanoparticle Research,2006,9(3):365-375.
    [67]Nasr C, Vinodgopal K, Fisher L, et al. Environmental Photochemistry on Semiconductor Surfaces. Visible Light Induced Degradation of a Textile Diazo Dye, Naphthol Blue Black, on TiO2 Nanoparticles[J]. J Phys Chem,1996,100(20): 8436-8442.
    [68]Vinodgopal K, Hua X, Dahlgren R L, et al. Photochemistry of R(bpy)2(dcbpy)+on Al2O3 and TiO2 Surfaces. An Insight into the Mechanism of Photosensitization[J]. J Phys Chem,1995,99(27):10883-10889.
    [69]Belver C, Lopez-Munoz MaJ, Coronado J M, et al. Palladium enhanced resistance to deactivation of titanium dioxide during the photocatalytic oxidation of toluene vapors[J]. Applied Catalysis B:Environmental,2003,46(3):497-509.
    [70]Mo J, Zhang Y, Xu Q, et al. Effect of TiO2/adsorbent hybrid photocatalysts for toluene decomposition in gas phase [J]. Journal of Hazardous Materials,2009,168(1): 276-281.
    [71]Chin P, Yang L, Ollis D. Formaldehyde removal from air via a rotating adsorbent combined with a photocatalyst reactor:Kinetic modeling[J]. Journal of Catalysis, 2006,237(1):29-37.
    [72]Yang L, Liu Z, Shi J, et al. Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes[J]. Separation and Purification Technology,2007,54(2): 204-211.
    [73]Di L B, Li X S, Zhao T L, et al. Tuning effect of Nu on atmospheric-pressure cold plasma CVD of TiO2 photocatalytic films[J]. Plasma Science and Technology, (on press)
    [74]轻工业部造纸工业科学研究所.GB/T 12910-1991纸和纸板二氧化钛含量的测定方法[s].1991.
    [75]高敬铭,柴凤兰.小麦粉中二氧化钛的测定方法研究[J].广州化工,2010,38(9):126-127.
    [76]罗敏.紫外分光光度法测定聚酯纤维中二氧化钛含量[J].应用化工,2006,35(2):144-146.
    [77]Jackson N B, Wang C M, heller A, et al. Attachment of TiO2 Powders to Hollow Glass Microbeads:Activity of the TiO2-Coated Beads in the Photoassisted Oxidation of Ethanol to Acetaldehyde[J]. Journal of the Electrochemical Society,1991,138(12): 3660-3664.
    [78]Di L B, Li X S, Shi C, et al. Atmospheric-pressure plasma CVD of TiO2 photocatalytic films using surface dielectric barrier discharge[J]. Journal of Physics D:Applied Physics,2009,42(3):032001.
    [79]Ching W H, Leung M, Leung D Y. Solar photocatalytic degradation of gaseous formaldehyde by sol-gel TiO2 thin film for enhancement of indoor air quality[J]. Solar Energy,2004,77(2):129-135.
    [80]Ollis D F, Pelizzetti E, Serpone N. Photocatalyzed destruction of water contaminants[J]. Environ Sci Technol,1991,25(9):1523-1529.
    [81]Block S S, Seng V P, Goswami D W. chemically enhanced sunlight for killing bacteria[J]. Journal of Solar Energy Engineering,1997,119(1):85-91.
    [82]Obee T N, Brown R T. TiO2 Photocatalysis for Indoor Air Applications, Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene[J]. Environ Sci Technol,1995,29(5):1223-1231.
    [83]底兰波.大气压介质阻挡放电一步制备TiO2光催化薄膜[D].大连:大连理工大学物理与光电工程学院,2012.
    [84]Obee T N. Photooxidation of Sub-Parts-per-Million Toluene and Formaldehyde Levels on Titania Using a Glass-Plate Reactor. [J]. Environ Sci Technol,1996,30(12): 3578-3584.
    [85]Sakaguchi K, Shimakawa K, Hatanaka Y. Photoconductive Characteristics of Hydro-Oxygenated Amorphous Titanium Oxide Films Prepared by Remote Plasma-Enhanced Chemical Vapor Deposition[J]. Japanese Journal of Applied Physics,2006,45 (5A): 4183-4186.
    [86]Mills A, Hunte S L. An overview of semiconductor photocatalysis[J]. Journal of Photochemistry and Photobiology A:Chemistry,1997,108:1-35.
    [87]Mills A, Lepre A, Elliott N, et al. Characterisation of the photocatalyst Pilkington ActivTM:a reference film photocatalyst?[J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,160(3):213-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700