夹心式超净化材料菌净化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了夹心式超净化材料制备工艺优化以及菌净化性能。首先选择制备夹心式超净化材料的基体原材料,需要综合考虑材料的物理性能,化学性能,生产技术的可行性以及生产成本等因素。解决制备材料过程中出现的问题,设定材料检验标准,确定最佳的制备工艺参数。结果证明,这种新型材料的生产工艺简单。研究夹心式超净化材料的物理性能,结果表明,该材料有良好的力学性能。对这种新型材料过滤霉菌浊液的过滤效率以及滤液的浊度变化值等参数进行测定,结果表明,这种新型材料对水中的霉菌有很高的净化效率,例如,对浊度100NTU左右的菌浊液净化后的滤液浊度最低0.4NTU,过滤效率最高可以达到99.97%,而传统滤布无法过滤掉的水中的霉菌。同时还证明这种材料能够重复利用。对材料的菌净化机理也进行了探讨。
     在静电纺丝溶液中加入纳米二氧化钛,对夹心式纳米超净化材料改性,研究其抗菌灭菌性能。结果表明,改性的净化材料能够更快、更彻底的杀灭霉菌。
This article mainly introduces the process to produce a novel sandwich structure super-cleaning material and the property of purification of water containing microzyme with this novel material. Firstly the normal filtration material used to produce the super-cleaning material was chosen by considering the physical and chemical property of the materials, as well as their technological feasibility and cost. The difficulties occurring in the process of production were resolved, the test standard of this novel material were set up and the optimal technological parameters were determined. The results show that the novel sandwich structure ultra-filtration material has simple manufacturing operation. The physical property of this novel material was investigated, and the results show that this novel material exhibits excellence in its mechanical property. Purification of water containing microzyme with this novel material was studied, and parameters such as filtration efficiency, the variety of turbidity value of filtrate were also determined. The results show that this novel material has high filtration efficiency in removing the microzyme in the water, for example, a turbidity of about 100 NTU of water containing microzyme was filtrated, and the results show that the highest filtration efficiency can reach 99.97%, and the lowest turbidity value is 0.4 NTU, however, it is impossible for the traditional filtration material to remove the microzyme in the water. It was proved that this novel material can be reused. The mechanism of purification of water containing microzyme with this novel material was also discussed. The anti-bacterial property of this novel material by adding nano- TiO_2 particle to the polymer solution used to electrospin was studied, and the results show that this novel material can sterilize microzyme more quickly and thoroughly.
引文
[1] 蒋绍阶.石长恩.江志贤.膜过滤技术用于饮用水消毒可行性探讨[J].重庆环境科学,2003,4:52-54
    [2] 张淑敏.纳米超净化材料的研究[D].北京:北京化工大学,2004
    [3] Thandavamoonhy Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, S. S. Ramkumar, Electrospinning of Nanofibers[J]. Applied Polymer Science, 2005, Vol. 96, 557-560
    [4] 张淑敏.刘太奇,纳米尼龙丝的制备及性能[J].高分子材料科学与工程,2005,21(5):289-292
    [5] Pitt Supaphol. Chidchanok Mit-uppatham, Manit Nithitanakul, Ultrafine Electrospun Polyamide-6 Fibers: Effects of Solvent System and Emitting Electrode Polarity on Morphology and Average Fiber Diameter. Macromolecular materials and engineering [J], 2005, 290, 933-942
    [6] 孟庆杰,张兴祥,静电法超细纤维的性能与应用研究[J].高分了材料科学与工程,2004,20(6):15-19
    [7] 王洪涛,刘太奇,新型纳米/亚微米纤维态催化剂的制备及表征[J].高分子材料科学与工程,2006,22(6):229-232
    [8] Phillip G, Heidi SG. Donald R. Transport properities of porous membranes based on electrospun nanofibers. Colloids and surfaces A[J], 2001, 187188: 469—481.
    [9] Timothy G, Mark G. Marry B, Nanofibers in Filtration Applications in Transportation, Presented at Filtration 2001 International Conference and Exposition of the INDA[C], 2001, 12, 3-5
    [10] Kristine G. Ming O, Tom R, Polymeric Nanofibers in Air Filtration Applications. the Fifteenth Annual Technical Conference & Expo of the American Filtration & Separations Society[C], 2002, 4, 9-12.
    [11] 刘太奇,张淑敏.一种夹心式纳米/亚微米电纺丝基过滤材料的制备办法[P].中国发明专利,申请号:200410029988.0,2005.1.12,147
    [12] 王泽民,硅藻土助滤剂在水过滤中的应用[J].工业水处理,2000,20(8):4-7
    [13] 尹古兰,江群拥,膜分离技术简介[J].Teaching and Learning Reference For Middle School Chemistry[J],2004,(12):49-51
    [14] 杨亚楠,王鹏,郑庆柱,改性高分子超滤膜的研究进展[J].离子交换与吸附,2005,20(1):87-94
    [15] 梁雪梅,陆晓峰,王彬芳等,高分子纳滤膜的研究及进展[J].功能高分子学报,1999,3,(12):102-108
    [16] 周军锋,张瑞霞,用膜生物反应器处理废水[J].国际造纸,2005,24(2):25-26
    [17] 孟建平,范谨初,谢燕菊等,硅藻土过滤(DEF)技术的研究[J].中国给水排水,1994,10(2):8-11
    [18] 蒋绍阶,石长恩,江志贤.膜过滤技术用于饮用水消毒可行性探讨[J].重庆环境科学,2003,4:52-54
    [19] 张捍民,张兴文,杨风林等,生物陶粒柱-PAC-MBR系统处理饮用水研究[J].大连理工大学学报,2002,42(6):669-673
    [20] 于景华,张莉莉,窦君,鲜奶微过滤除菌初探[J].中国乳品工业,2000,(4):13-14
    [21] 王昕伟,张先达,刘文秀.生啤酒膜法过滤除菌技术的试验研究[J].农业机械学报,1994,(12):53-57
    [22] 袁天才.膜技术在酿造食醋过滤除浊除菌工艺中的应用[J].水处理技术,2002,28(4):247-248
    [23] 曹学军,膜分离技术在医药工业中的应用[J].国外医药抗生素分册,2000,9(212-214)
    [24] 许钟麟,空气洁净技术原理[M],北京:科学出版社,2003,82-94
    [25] Timothy G, Mark G, Marty B, Nanofibers in Filtration Applications in Transportation. Presented at Filtration 2001 International Conference and Exposition of the INDA, 2001, 12, 3-5.
    [26] 宋宇,张小清,黄雨荪,滤膜、过滤器的选择及其在制约除菌中的应用[J].中国药业,2001,10(5):63-64
    [27] 谢小军,黄翔,驻极体空气过滤材料静电驻极方法初探[J].洁净与空调技术,2005,2:41-44
    [28] 黄翔,顾群,吴生,聚合物驻极体空气过滤材料(器)在空调中的应用[J].洁净与空调技术,2003,4:38-42
    [29] 黄翔,顾群,狄育慧,功能性空气过滤材料及其应用[J].洁净与空调技术,2003,3:38-42
    [30] 师奇松,于建香,顾克壮等,静电纺丝技术及其应用[J].化学世界,2005,5:313-316
    [31] 李光,江建明,抗微生物聚丙烯及其纤维的发展[J].产业用纺织品,2000,6:9-13
    [32] 洪贤良,茶多酚改性PP滤网的抗菌效果,制冷与空调,2005,5(3):93-95
    [33] 洪贤良等,电气石空气过滤网的抗菌除臭负离子效果研究[J].洁净与空调技术,2005,4:51-52
    [34] 黄翔,梁才航,顾群.纳米光催化功能性滤料的试验研究[J].棉纺织技术,2006,36(4):321-325
    [35] 王正顺,袁令赞,纪培红,光触媒空气滤纸及其性能研究[J].黑龙江造纸,2005,1:6-9
    [36] Akira Fujishima. TataN. Rao, Donald A.Tryk. Titanium dioxide photo catalysis[J]. Journal of Photochemistry and Photobiology C: Photo chemistry Reviews, 2000, 1: 1-21.
    [37] Angela-Guiovana Rinon, Cesar Pulgarin. Bactericidal action of illuminated TiO_2 on pure Escherichia coil and natural bacterial consortia: post irradiation events in the dark and assessment of the effective disinfection time [J]. Applied Catalysis B: Environmental, 2004, 49: 99-112.
    [38] T.Satio, T.Iwase, T.Morioka. Mode of photo catalytic bactericideal action powdered semiconductor TiO_2 on mutant streptococci [J]. Journal of Photochemistry and Photobiology B: Biology, 1992, 14: 369-379.
    [39] CaiRX, Hashimoto K, ItohK, etal.. Photo killing malignant cells with ultrafine TiO_2 powder[J]. Bulletin of Chemical Society of Japan, 1991, 64(4): 1268-1273.
    [40] Matsunaga, TomodaR, NakajimaT. etal. Detection of microbial cells by cyclic voltammetry. FEMS MicrobiolLett, 1985, 29(2): 211—290
    [41] Matsunaga T. Tomoda R. Nakajima T, etal. Continuous-sterilization system that uses photo catalytic semiconductor powders. Appl Environ Microbiol. 1988, 54(4): 1330~1333
    [42] MatsunagaT, NambaY. Selective determination of microbial cells by graphite electrode. AnalChimActa, 1984, 159(1): 87~94
    [43] CaiRX, Sakai H, Hashimoto K, etal. Phagocytosis of TiO2 particles and titanium dioxide particles chemically modified by hem atoporphyrin. Denki Kagaku, 1992, 60(4): 314~321
    [44] Matsunaga T, Tomoda R. Nakajima T, etal. Detection of microbial cells by cyclic voltammetry. FEMS MicrobiolLett, 1985, 29(2): 211~290
    [45] IrelandJC, K Iostermann P, Rice E W, etal. Inactivation of E Coli by TiO_2 photo catalytic oxidation. Appl Environ Mi-crobiol, 1993, 59(5): 1668~1673
    [49] WeiC, LinWY, ZainalZ, etal. Bactericidal acrivity of TiO2 photocatalyst in aqueous media. EnvironSciTechnol, 1994, 28(5): 934~38
    [47] CaiRX, Kubota Y, Shuin T, etal. Induction of cytotoxicity by photo excited TiO_2 panicles. CancerRes, 1992, 52: 2346~2348
    [48] SakaiH, ItoE, CaiRX, etal. Intracellular Ca~(2+) concentration change of T24 cell. BiochimBiophys Acta, 1994, 1201: 259~265
    [49] SakataT, KawaiT. Hydrogen production from bimass and water by photo catalytic processes. NouvJChim, 1981, 5(2): 279~286
    [50] IlmayJA, Fridovichl. Suppression of oxidative envelope damage by pseudoreversion of a superoxide dismutase defi-cientmutant of E.Coli. J Bacteriol, 1992, 174(3): 953~961
    [51] JaegerCD, BardAJ. Spintrapping and electronspin resonance detection of radical intermediates in the photodecomposition of water at TiO_2 particle system. JPhysChem, 1979, 83(13): 3146~3152
    [52] FujishimaA, CaiRX, SakaiH, etal. Increment of photo catalytic killing of cancer cells using TiO_2 with the aid of superoxide dismutase. ChemLett, 1992, 3(3): 427~430
    [53] ManessPC, SmolinskiS, BlakeDM, etal.. Bactericidal activity of photo catalytic TiO_2 reaction: Towardan understanding of its killing mechanism[J]. Applied and Environmental Microbiololgy, 1999, 65(9): 4094-4098.
    [54] 郑连英,朱江峰,孙昆山.壳聚糖的抗菌性能研究[J].材料科学与工程,2000,18(2):22-24.
    [55] LiuXiaofei, GuanYue Lin, LiDongzhi, etal. Antihacterial action of chitosan[J]. Journal of Applied Polymer Science, 2001, 79: 1324-1335
    [56] 黎军英.李红叶.壳聚糖对桃褐腐病菌的抑曲作用[J].电子显微学报,2002,21(2):38-140.
    [57] 王鸿.沈月新.不同脱乙酰度壳聚糖的抑菌性[J].上海水产大学学报,2001,10(1):380-382.
    [58] 宋献周,沈月新,不同平均分子量的α壳聚糖的抑菌作用[J].上海水产大学学报,2000,9(2):138-141.
    [59] 商成杰,纺织品抗菌检测方法的发展现状[J].针织工业,2006,7,61-62
    [60] Borunda. etal. Photoinduced bactericidal activity against Pseudomonas aerugi nosa by TiO_2 based thin films[J]. FEMS MicrobiologyLetters, 2002, 211: 183-188.
    [61] S.A. Theron, A.L. Yarin. E. Zussman, E. Kroll, Multiple jets in electrospinning: experiment and modeling. Polymer [J], 2005 (46): 2889-2899
    [62] 赵斌,何绍江,微生物学实验.北京:科学出版社,2002,67-69
    [63] 刘太奇,纳米空气净化技术[M].北京:化学工业出版社,2004,90
    [64] GB5749—2005.生活饮用水卫生标准[S]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700