干制技术与干辣椒品质变化相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以贵州本地新鲜红辣椒为实验原料,进行人工干制工艺技术及干制品质特性的研究。通过建立辣椒干燥模型、干制辣椒色泽的模型,对辣椒干制工艺进行研究、人工干制与传统干制辣椒的品质进行评价,并对引起干椒“花壳”现象的形成原因进行初步研究。实验结果表明:
     1、采用薄层干燥的单项扩散模型、指数模型、Page模型进行模型分析,结果显示:电热、远红外、微波干制辣椒时,含水率的变化可用Page模型表示;在干燥过程中,干制温度(或功率)越高、装载量越小、单位质量干制温度(或单位质量干制功率)越大,辣椒干制所需的时间越短。
     2、色泽是辣椒品质的重要指标,本文将机械视觉技术、色度学运用于辣椒干制研究,定量评价颜色的感觉。通过测定微波干燥过程中辣椒的CIE三刺激值、各色泽参数及水分含量,以此为依据建立相应色泽参数评价模型。结果表明,a值是色泽参数中的最佳指标,可作为整果直接检测和控制辣椒干制过程辣椒色泽变化的方法。
     3、通过单因素试验筛选,并通过L9(34)正交试验进行辣椒干制工艺研究。结果表明:单因素试验结果可以确定联合干制试验的水平。联合干制正交实验中,前期干制方式、装载量、转换水分含量、后期干制方式四个因素对辣椒品质的影响均达到极显著水平。对正交试验结果的分析,可以确定影响各联合干制试验的最优工艺参数。
     4、以干辣椒中重要组成成分及其含量为一个数据集,采用聚类分析方法对自然干制、炕房干制、远红外-微波联合干制、远红外-电热联合干制、电热-微波联合干制方法进行归类。结果表明,五种干制方法分为3类:(1)自然干制、(2)远红外-电热联合干制、(3)炕房干制、电热-微波联合干制、远红外-微波联合干制,此时λ最大值可达到0.995。同一类干制方法加工的干辣椒,其品质具有相似性。
     5、比较电热-微波联合干制、远红外-微波联合干制、远红外-电热联合干制三种方法加工的干辣椒的品质。结果显示:电热-微波联合干制优于远红外-电热联合干制,远红外-电热联合干制优于远红外-微波联合干制。比较自然干制、电热-微波联合干制、炕房干制三种方法加工的干辣椒的品质。结果显示:电热-微波联合干制优于炕房干制,炕房干制优于自然干制。该结果说明,人工干制辣椒的品质优于自然干制辣椒的品质;电热-微波联合干制是最佳的干制方法,最佳参数是:电热干制温度80℃、220g装载量、转换30%水分含量,微波715w。
     6、针对辣椒干制加工中容易出现的色泽褪变、“花壳”现象,本文初步探讨了辣椒色泽变化的影响因素,研究紫外线对不同成熟度辣椒色泽变化的影响。对辣椒“花壳”部位进行微生物分离及初步鉴定,观察分离微生物对辣椒色泽的影响。试验结果显示:紫外线照射是干辣椒色泽褪变的重要影响因素,不同成熟度辣椒对紫外线照射的稳定性差异明显,成熟度越低,变色越严重。辣椒“花壳”部位的微生物主要为细菌、霉菌两类。
The local red capsicums in Guizhou as experimental materials, this paper studies on artificial drying technique and the quality characteristic of dried-capsicum. This paper establishes drying model of capsicum. This paper establishes color model of dried-capsicum. This paper studies on drying technique of capsicum. This paper evaluates quality of dried-capsicum, which dried by artificial drying method and traditional drying method. This paper researches the reason of the phenomenon above the change of dried-capsicum's color. Experimental results show that:
     1. The single-item diffuseness model and index model and page model are thin layer drying model. Thin layer drying is adopted by analysis of the drying mathematical model. The results show that:The change of capsicum's water content can be showed by page model, when capsicum dried by electric or far-infrared or microwave. During the drying process, the bigger the drying temperature or drying power, the smaller the loadage, the bigger the drying temperature per gram or the drying power per gram and the shorter the required time.
     2. The color is an important quality appraisal target. In this paper, machinery visual technique and colorimetry are used by researching capsicum's drying technique. This paper studies quantitative evaluation of color. Determination of microwave drying process of capsicum CIE tristimulus values, as the basis for establishes of the corresponding model. Determination of microwave drying process of capsicum color parameters and water content, as the basis for establishes of the corresponding model. The results indicate that "a" of value is the optimal parameter in those values. It can be regard as the method about detection of the whole capsicum and control of the color's change.
     3. Through the single factor experiment, the experiment conditions are sieved. In this study, orthogonal designs L9(34) are adopted for the research of capsicum's drying process. The results show that:through the result of the single factor experiment, the levels of combined drying orthogonal tests are determined. In combined drying orthogonal tests, four factors are frontal drying method、. loadage、transform moisture and posterior drying method. The effect of every factor on the capsicum's quality reaches very significant level. Through analysis of the result of the orthogonal tests, the parameters of the best artificial dried method are determined.
     4. Different methods are used to dry capsicum. They were separately the natural drying method, dried in drying room, infrared-microwave combined drying method, infrared-electric combined drying method and electric-microwave combined drying method. The important composing components and its contents in dried-capsicums were considered as a date congregation. Through hierarchical cluster analysis, the dried methods are classify. The results show that five kinds of capsicum are subdivided into three categories. First is dried with the natural drying method; second is dried with infrared-electric combined drying method; the third is dried with other three methods. The results show that when those five kinds of dried methods are subdivided into three categories, maximum value of X can be 0.995. Moreover, capsicum has similar quality, which dried by the same kind of methods.
     5. Compare the quality of capsicum, which dried by electric-microwave combined method, infrared-microwave combined drying method and infrared-electric combined drying method. The results show that the quality of capsicum dried by electric-microwave combined method better than dried by infrared-electric combined drying method, and the quality of capsicum dried by infrared-electric combined drying method better than dried by infrared-microwave combined drying method. Compare the quality of capsicum, which dried by the natural drying method, dried in drying room and dried by electric-microwave combined method. The results show that the quality of capsicum dried by electric-microwave combined method better than dried in drying room, and the quality of capsicum dried in drying room better than dried by the natural drying method. Those results show that the quality of capsicum dried by artificial methods batter than the quality of capsicum dried by the natural drying method. The electric-microwave combined method is the best dried method. The best parameters are electric-microwave combined dried at 80℃, the loadage of 220g, transform moisture with 30%, the microwave power at 715.
     6. Aim at the phenomenon of the change of dried-capsicum's color during drying process, this paper studies the influence factor of the change of dried-capsicum's color. This paper studies the ultraviolet radiation's effects of the change of capsicum's color, which in different ripening degree. Separate microorganism at the location of the color's change. Appraise microorganism. Observe the effect of microorganism of the color's change. The results show that ultraviolet irradiation is an important effect factor of the color's change of dried-capsicum. The stability of ultraviolet irradiation of capsicum in different ripening degree has obvious differences. The lower the ripening degree, the more seerious the color's change. The microorganism mainly contains bacteria and mold, which at the location of the color's change.
引文
1.赵性鹏.辣椒无国界.食品与生活.2007(3):37.
    2.白石.辣椒食用历史可追溯到6000年前.科学画报.2007(4):57.
    3.高翔.辣椒的保健功能及其产品的开发研究.食品研究与开发,2004,25(3):115-116.
    4.徐小万,李颖,王恒明.中国辣椒工业的现状、发展趋势及对策.中国农学通报,2008,11:332-228.
    5.邹学校主编.中国辣椒.北京:中国农业出版社,2002.
    6.华景清,蔡健.辣椒的药用价值.中国食物与营养.2004(12):52-53.
    7.彭书练,丁芳.辣椒中的几种功能成分及其应用.辣椒杂志.2008(1):26-29.
    8.张西露.毛亦卉.向拉蛟.国内外辣椒产业研究开发的现状分析.辣椒杂志.2008(1):1-5.
    9.董剑钊.对我国辣椒工业发展前景的思考.经济论坛,2005,(9):60-61.
    10.戴雄泽,刘志敏.初论我国辣椒产业的现状及发展趋势.辣椒杂志,2005,(2):1-6.
    11.詹永发,姜虹,韩世玉,杨红,余文中.贵州辣椒产业发展的形势分析与展望.贵州农业科学,2005,33(4):98-100.
    12.姜虹,杨红,韩世玉.贵州辣椒产业科技创新体系建设的思考.辣椒杂志,2006(2):5-8.
    13.詹永发,姜虹,韩世玉.贵州辣椒产业发展的形势分析与展望.贵州农业科学,2005,33(4):98-101.
    14.余文忠,姜虹,杨红等.贵州辣椒.辣椒杂志,2005(3):1-4
    15.胡明文.贵州辣椒产业现状与发展策略.贵州农业科学·百年院庆专刊,2005,(33):98-100.
    16.Mujumdar A S. Handbook of industrial drying. New York:Marcel Dekker, USA,1966.
    17.联合国粮农组织贸易年鉴第42卷.罗马.1988.
    18.联合国粮农组织贸易年鉴第56卷.罗马.2003.212-214.
    19.汪玉海.饮食文化的融合加快辣椒产业发展.农业工程技术(农产品加工业).2008(9):48.
    20.潘静娴.园艺产品贮藏加工学.北京:中国农业大学出版社.2007.
    21.Mujumdar A S. Handbook of industrial drying. New York:Marcel Dekker, USA,1966.
    22. Vega-Mercado H, Gongora-Nieto M M, Barbosa-Canovas G V. Advances in dehydration of foods. Journal of Food Engineering,2001,49:271-289
    23. Dalgleish J McN. Freeze-drying for the food industries. New York:Elsevier,1900.
    24.孔凡真.真空冻干食品市场前景广阔.食品科技,2003,(6):28-29
    25. Jones P L, Rowley A T. Dielectric drying. Drying Technology,1996,14(5):1063-1098
    26. Cohen J S, Yang T C S. Progress in food dehydration. Trends in Food Science and Technology,1995(6):20-24
    27.朱德泉,王继先,朱德文,周杰敏,邵陆寿,李兵.小麦微波干燥特性及其对品质的影响.农业工程学报,2006(04):182-185.
    28.朱德泉,周杰敏,王继先,朱德文,夏萍.小麦微波干燥特性及工艺优化研究.包装与食品机械.2006(01):18-22.
    29.陆生海,宋亚英.蚕茧微波干燥技术的研究.丝绸,2005(11):17-19
    30.胡浩,彭增华,谭蓉,王胜民,何明奕,赵晓军.微波干燥生产线干燥黄姜的工艺研究.昆明理工大学学报(理工版),2005(05):35-37
    31.张薇,王泽槐,许静芬.淮山药微波干燥过程温度水分的特征变化研究.中药材,2005(09):760-764.
    32.朱德泉,周杰敏,王继先,朱德文.玉米微波干燥特性及工艺参数的研究.包装与食品机械,2005(03):5-9.
    33.王喜鹏,张进疆,徐成海,胡光华.胡萝卜的真空微波干燥特性研究及工艺优化.现代农业装备,2005(Z2):84-88.
    34.张进疆,胡光华,胡萝卜微波真空干燥试验研究.农业工程科技创新与建设现代农业——2005年中国农业工程学会学术年会论文集第四分册.2005.
    35.李远志,王娟,陈人人,苏敏,彭瑾,章斌,张慧敏.微波真空干燥速溶香蕉粉的工艺研究.食品科学, 2005(S1):31-34.
    36.姜元欣,许时婴,王璋.南瓜渣的微波真空干燥[J].食品与发酵工业,2004.05(12):58-62
    37.王喜鹏,胡光华,张进疆.龙眼的真空微波干燥试验研究[J].现代农业装备,2004(10):44-47
    38.崔政伟,杨以清.微波真空干燥大蒜片的研究[J].农产品加工,2004(09):38-39
    39.陈燕,陈羽白.荔枝的微波干燥特性及其对品质的影响研究[J].农业工程学报,2004(04):192-194
    40.申彩英,李峰,朴在林.香菇远红外连续干燥主要工艺参数的试验研究[J].农机化研究,2006(09):132-134
    41.刘建学,李红涛,朱文学,张玉先.远红外谷物干燥复合材料及其干燥效果研究[J].食品科学.2005(26):46-48
    42. Nijhuis H H, Torringa H M, Muresan S, et al. Approaches to improving the quality of dried fruit and vegetable. Trends in Food Science and Technology,1998,9:13-20
    43. Feng H, Tang J. Microwave finish drying of diced apples in a spouted bed. Journal of Food Science,1998,63(4):679-683
    44. Prbhanjian D G, Ramaswamy HS, Raghavan G S V. Microwave-assisted convective air drying of thin layer carrots. Journal of Food Engineering,1995,25(2):283-293
    45. Funebo T, Ohlsson T. Microwave-assisted air dehydration of apple and mushroom. Journal of Food Engineering,1998,38(3):353-367
    46. Raghavan G S V, Silveira A M. Shrinkage characteristics of strawberries osmotically dehydrated in combination with microwave drying. Drying Technology,2001(2):405-414.
    47.张海红,韩小珍,刘贵珊.蔬菜干燥技术与理论研究动态.宁夏工程技术.2005(3):97-100.
    48.张黎骅,张芳,赵超.花椒微波干燥数学模型的试验研究..农业花研究2008(12):104-109.
    47.梁静.莲子微波干燥特性及干燥工艺研究.福建农林大学.2007.
    48.欧春艳,杨磊,李思东,章超桦,张强.甲壳素红外干燥特性及动力学模型研究.农业工程学报.2008(24):287-289.
    49.何学连,过世东.白对虾真空干燥的研究.食品逾发酵工业.2008(34):89-94
    50.俞秀玲.研究了花粉热风干燥特性的研究.食品以及与开发.2007(28):44-46.
    51.常学东,朱京涛,刘秀凤,高海生,采金星.京东板栗干燥失水特性.河北科技师范学院学报.2007(21):19-23.
    52.闻陶,朱跃钊,孙庆梅,崔群,王海燕,姚虎卿.马铃薯吸附干燥特性及模型拟合.生物加工过程.2006(4):56-61.
    53.诸爱士,成忠.西芹热风干燥动力学研究.农业化研究.2007(3):139-142.
    54.诸爱士,李武,成忠.洋葱薄层脱水工艺.农业化研究.2007(10):117-120.
    55.沈晓萍,王蒙蒙,卢晓黎.熟化甘薯热风干燥特性及数学模型研究.机械与设计.2007(23):119-142.
    56.欧春艳,杨磊,李思东,章超桦,张强.壳聚糖红外干燥特性及动力学模型研究.农业工程学报.2007(23):91-94.
    57.张丽华,徐怀德,李顺峰.不同干燥方法对木瓜干燥特性的影响.农业机械学报.2008(39):70-75.
    58.刘中深,于辅超,王良,马中苏.玉米低温真空干燥薄层模型.广西轻工业.2007(9):22-23.
    59.崔明辉,杨昭.蜜枣太阳能对流干燥最佳工况的试验研究.太阳能学报.2007(8):800-804.
    60.肖旭霖.洋葱真空远红外薄层干燥模型.食品科学.2002(23):40-43.
    61.段振华,冯爱国,向东,王志国.罗非鱼片的热风干燥模型及能耗研究.食品科学.2007(28):201-205.
    62.黄卫萍,李长友,李格萍.菊花脑热风干燥特性试验研究.食品工程.2008(7):116-119.
    63.牛智友,赵思明,姜开明.苹果渣干燥特性与模型的试验研究.农机化研究.2008(6):134-137.
    64.许峰,李亚男,邹传品等.辣素提取技术进展.防化研究.2000,(4):47-51.
    65.周菁,王伯初,彭亮.辣椒色素提取精致工艺概述.重庆大学学报,2004,27(1):116-119.
    66.李亨.颜色技术原理及其应用.北京:科学出版社,1994年04月第1版.P50.
    67.Magdalini K Krokida, Zacharias BMaroulis, George D Saravacos. The effect of the method of drying on the color of dehydrated products. International Journal of Food Science and Technology,2001,36:53-59.
    68.荆其诚.色度学.北京:科学出版社,1991.
    69.汤顺青.色度学.北京:北京理工大学出版社,1990.
    70.殷延勃,马洪文.宁夏水稻品种农艺性状分析及聚类分析.种子.2008(10):72-74.
    71.李伟,程超,张应团,严玲,莫开菊.不同火棘果实功效成分的聚类分析.食品科学.2008(29):207-210.
    72.杨玉霞,吴卫,郑有良,王俊,李建,邬昌禄.苦荞品种(系)主要农艺性状与蛋白质含量的聚类分析.种子.2008(10):30-34.
    73.韦本辉,甘秀芹,韦威旭,宁秀呈,何虎翼,覃维治,何龙飞.不同淮山药品种(种质)资源营养特性与聚类分析.广西农业科学.2008(39):596-600.
    74.陈金宝,周正奎,许尚忠,李俊雅,高雪,任红艳.应用产奶指数和产肉指数对16个牛品种的聚类分析.中国畜牧兽医.2008,35(11):91-93.
    75.方华丽,李鹏,成海宏,常天军,王健林.西藏野生芥菜型油菜种质资源的聚类分析.生态科学.2008,27(2):77-84.
    76.黄如葵,孙德利,张曼,方锋学,罗海玲.苦瓜遗传多样性的形态学性状聚类分析.广西农业科学.2008,39(3):351-356.
    77.张鹏,张海洋,郑永战,郭旺珍,魏利斌,张天真.芝麻种质资源因子分析及聚类分析.中国油料作物学报.2008,30(1):71-78.
    78.苏春华,李育明,黄迎冬,何素兰,杨洪康.甘薯主要亲本材料的主成分分析及聚类分析.杂粮作物.2007,27(6):405-409.
    79.姜炜.超临界萃取技术在辣椒红色素中的应用.南京理工大学学报,2002,26(1):80-82.
    80.朱凯,程康华,毛连山.超临界二氧化碳精制辣椒红色素的研究.化工时刊,2004,18(12):25-27.
    81.祝青,李红梅,晏传奇等.超临界CO2萃取辣椒素最优工艺参数的研究及含量HPLC分析.化学与生物工程,2005,(4)40-42.
    82.减志清,周端美,林述英.超临界二氧化碳萃取红辣椒的夹带剂筛选.农业工程学报,1999,15(2):208-212.
    83.孙进平,杨更亮,陈义.辣椒碱主要成分的RP-HPLC法测定.河北大学学报,2002,22(2):145-147.
    84.Aczel,Altila. Determination of capsaicin content in red pepper by HPLC. Planar Chromatogr-Mod TLC, 1989,2(2):151-155.
    85.Harumi kaga, Masaktsu Miura, Kazuhiko Orito. A facile procedure for synthesis of casaicin. J Org Chem, 1989,54(14):3477-3478.
    86.ISO7543-2, Chillies and chilli oleoresins-determination of total capsaicinoid content-Part 2:Method using high-performance liquid chromatography.
    87.李明远,武东繁.干辣椒“虎皮”原因的调查与研究.植物保护.1994(2):21-22.
    88.李合生主编.植物生理生化实验原理和技术.北京:高等教育出版社,2000.
    89.韩亚珊主编.食品化学实验指导.北京:北京农业大学出版社,1992.
    90.吴仲儿,黄绍华,李志达,佘世望.食品化学实验.广州:暨南大学出版社,1994.
    91.张云贵,刘祥云,李天俊主编.生物化学试验指导.北京:中国农业出版社,2007.
    92.钱可萍,韩志坚,陈佩琴,黄孟健.无机及分析化学实验.上海:高等教育出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700