铜/钨酸锆功能梯度薄膜有限元法优化及制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钨酸锆是各向同性的负热膨胀材料,对其负热膨胀性能及其复合材料的研究是当今材料科学的研究热点之一。本课题组用固相法、共沉淀法、溶胶凝胶法等制备方法得到了高纯度的钨酸锆粉体,用磁控溅射和脉冲激光溅射法制备了钨酸锆薄膜,并得到了铜/钨酸锆功能梯度薄膜。铜/钨酸锆功能梯度薄膜可用于电子器件热应力缓冲层,提高电子器件热稳定性,延长电子器件寿命。
     用有限元方法模拟不同技术参数制备的铜/钨酸锆功能梯度薄膜的热-应力场,可以提高研发效率,在重复实验次数的很少情况下,得到从基底层到表层热应力平缓变化的梯度薄膜。具体优化设计流程为总结以往的材料性能参数,建立数学模型模拟实际工况,得到各类铜/钨酸锆功能梯度薄膜的热-应力场特征;以数值模拟得到的技术参数制备功能梯度薄膜;表征薄膜性能,以优化后的参数带入数学模型进行验证计算,在实验3-4组后即可得到优化的薄膜技术参数。
     数值模拟分析过程中,用有限元软件ANSYS 11.0建立了铜/钨酸锆缓冲热应力功能梯度薄膜的数学模型,讨论了梯度薄膜的层数N,成分分布指数P,梯度层厚度Hf,基片厚度Hm与纯铜层厚Hc以及不同工作环境温度T对薄膜热应力场分布的影响。由热力学计算可知:梯度层数越多,缓和热应力效果越好。考虑到制备工艺复杂程度,参考数值模拟结果可知:当P=1N≥5时,可以达到减小热应力最大值的效果,热应力最大值出现在基体与梯度层的界面处;当N=5,P值介于2和3之间时,热应力最大值位于梯度薄膜中间层;适量增加梯度层厚度Hf和基片厚度Hm有利于减小热应力最大值,此梯度缓冲层在室温到α相钨酸锆陶瓷的相变温度(120℃)区间内,对于各厚度的纯铜层都能有良好的保护作用。
     依据优化结果,用磁控溅射法制备了铜/钨酸锆功能梯度薄膜。用x射线衍射法(XRD)分析薄膜的物相组成;扫描电镜(SEM)分析薄膜的表面形貌;X射线应力测试仪对薄膜残余热应力状况进行了表征。结果表明:薄膜残余热应力分布状况和数值模拟结果相吻合。以数值模拟优化结果为依据而制备的功能梯度薄膜可以使热应力值降低到原来的72%,且热应力最大值分布在功能梯度薄膜中间层。
Zirconium tungstate is a kind of isotropic negative thermal expansion material, the properties and the composite materials of Zirconium tungstate are new frontiers of material science. Zirconium tungstate powders were synthesized by solid state reaction; co-precipitation method; Sol-Gel method. Zirconium tungstate films were synthesized by the magnetic sputtering and laser sputtering. Cu/Zirconium tungstate functionally graded films prepared by magnetic sputtering would be used to decrease the heat stress on the surfaces of electronic equipments.
     Optimization on parametres of Cu/Zirconium tungstate functionally graded films by finite element method could accelerate the research progress:to establish mathmetical model with the parametres gotten from the previous experiments; to prepare functionally films according with the pre-optimized parametres; to measure the properties of film, then to modify the optimized parametres.
     A mathematical model of the Cu/ZrW_2O_8 functionally graded films was built using finite element method.The effects of the parameters, such as the quantity of layers (N), distribution of components (P), thickness of graded films (Hf), thickness of S substrate (Hm), thickness of pure Cu layer (Hc) and temperature (Τ), on the thermal stress fields of Cu/ZrW_2O_8 functionally graded films were discussed. The results of thermodynamic calculation show that the more layers of the functionally graded films, the more the thermal stress can reduce. When P= 1 and N≥5, the maximum value of heat stress between the silicon and the functionally graded films decreased. When N= 5 and 3≥P≥2, the maximum value of heat stress appeared inside the functionally graded films. The increased values of H_f and Hm can favor the reduction of the maximum value of heat stress. This functionally graded film can protect the pure Cu layer from room temperature to the a-ZrW_2O_8 phase transformation temperature (120℃).Several characterization methods were applied to analyse the phases constitute, the surface morphology, and the thermal stress of the film using the XRD, SEM, X-ray stress tester, respectively. The result show that the thermal stress distribution is similar to that from the numerical calculation. The maximum value of thermal stress decreases to 72%of the original coating without the functionally graded films, and it do appear in the middle of the functionally graded film.
引文
[1]O.C.Zienkiewica,有限元法,北京:科学出版社,1995
    [2]龙驭球,有限元方法概论,北京:机械工业出版社,1997
    [3]李大潜,有限元方法续讲,北京:科学出版社,1998
    [4]张佑启,有限元方法实用导论,广西:广西人民出版社,1997
    [5]李明达主编,有限单元法在燃气涡轮发动机零件强度计算中的应用,北京:国防工业出版社,1992
    [6]徐次达等,固体力学有限元理论、方法及程序,北京:水利电力出版社,1993
    [7]Chuang TJ,流体流动的有限元分析,北京:电子工业出版社,1990
    [8]李景湧,有限元法,北京:北京邮电大学出版社,1999
    [9]刘万勋等,大型稀疏线性系数方程组解法,北京:国防工业出版社,1991
    [10]孔祥谦等,有限单元法在传热学中的应用,北京:科学出版社,2000
    [11]刘鸿文,材料力学,北京:人民教育出版社,1999
    [12]黄炎,工程弹性力学,北京:清华大学出版社,1992
    [13]费祥麟主编,高等流体力学,西安:西安交通大学出版社,1993
    [14][苏铭德,计算流体力学基础,北京:清华大学出版社,1997
    [15]Rockey.K.C,The Finite element method,London:Granada Publishing,1993
    [16]Backer.A.J,Finite element computer fluid methames,New York:Hemisphere Publishing Corporation,1998
    [17]徐芝纶,弹性力学,北京:清华大学出版社,1980
    [18]大型有限元程序的原理结构与使用,北京:科学出版社,2001
    [19]Evans J SO,MaryTAet al.Chem.Mater.,1996,8:2809
    [20]SleightAW.Inorg.Chem.,1998,37:2854
    [21]OikawaK,KamiyamaTet al.J.of Solid State Chem.,2000,15,4524
    [22]AmosTG,YoKochi A,SleightAW.J.Sol.Stat.Chem.,1998,14,303
    [23]HarunaK,Maeta H,Ohashi Ket al.J.Phys.C:Sol.Stat.Phys.1986,19:5149
    [24]Gignoux D,Givord D,Givord Fet al.J.Magn.Magn.Mater.1979,10:288
    [25]AttfieldMP,SleightAW.Chem.Commun.,1998:601Woodcock DA,Lightfoot Pet
    al.Chem.Mater.1999,11:2508
    [26]MaryTA,Evans J SO,VogtTet al.Science,1996,272:90
    [27]Evans J SO,DavidWI F,SleightAW.Acta Cryst.,1999, B55,333
    [28]PrydeAlexandra KA,Hammonds Kenton D,DoveMartinTet al J.Phys. Condens.Matter, 1996,8:10973;1998,10:8417
    [29]SleightAW.Annu.Rev.Mater.Sci.,1998,28:29
    [30]Evans J SO,Hu Z,Jorgensen J Det al.Science,1997,275:61
    [31]Ernst G,BroholmC,Kowach GRet al.P,Nature,1998,396:147
    [32]Perottoni CA,Da Jornada J AH.Science,1998,280:886
    [33]Ramirez AP,Kowach GR.Phys.Rev.Lett.,1998,80:4903
    [34]DavidWI F,Evans J SO,SleightAW.Europhys.Lett.,1999,46(5):661
    [35]RavindranTRet al.Phys.Rev.Lett.,2000,84:3879
    [36]Lind Cora,WilkinsonAngus Pet al.Chem.Mater.,1998,10:2335
    [37]Mittal R,Chaplot SL.Phys.Rev.B,1999,60:7234
    [38]Evans J SO,Jorgensen J Det al.Phys.Rev.B,1999,60:14643
    [39]Carlson Stefanet al.Phys.Rev.B,2000,61:11209
    [40]WilkinsonAngus P,Lind Coraet al.Chem.Mater.,1999,11:101
    [41]Closmann C,SleightAWet al.J.Sol.Stat.Chem.,1998,139:424
    [42]孔向阳,吴建生,曾振鹏.硅酸盐学报,1999,27:265[Kong XY,Wu J S,Zeng Z P.J.of the Chinese Ceramic Society,1999,27:265(in Chinese)]
    [43]Evans J S O,Mary T A,Sleight A WJ.Sol.Stat.Chem.,1998,137:148
    [44]ForsterPM,SleightAW.Inter.J.of Inorg.Mater.,1999,1:123
    [45]Evans J SO,MaryTA.Inter J,of Inorg.Mater.,2000,2:13
    [46]Woodcock David A,Lightfoot Philip,Ritter Clemens.J.Sol.Stat. Chem.,2000,149:92
    [47]孔向阳,吴建生曾振鹏.ZrW2O8微波合成、表征及负膨胀行为研究[J].硅酸盐学报,1999,27(3):265~269.
    [48]李钢,姚杰,王克宇,周耀明,张宇.一种负热膨胀性材料的物相结构分析[J].南京师大学报(自然科学版),2000,2(1):56~59.
    [49]沈容,王天民,海龙,等.共沉淀法合成负热膨胀材料ZrW2O8[J].材料工程,2003,3:3-6.
    [50]邢奇凤,邢献然,杜凌,于然波,等.水热法合成负热膨胀材料ZrW2O8[J].金属学报,2005, 41(6):669~672.
    [51]Sleight A.W. Isotropic Negative Thermal Expansion [J]. AnnuRev. Mater. Sci.,1998, 28:29~43.
    [52]Evans J. S.0., DavidW. I. F, SleightA.W.[J]. Acta. Cryst.Sect. B:Struct. Sci.,1999, 55:333~340. [14]沈容,王聪,王天民.“负热膨胀”氧化物材料ZrW2O8的研究进展[J].无机材料学报,2002,17(6):1089~1094.
    [53]GrahamJ., WadsleyA.D., WeymouthJ.H., et.al. [J]. J. Am.Ceram. Soc.,1959,42:570.
    [54]Martinek C., Hummel F.A. [J]. JAm. Ceram. Soc.,1968,51:227~228.
    [55]Chang, L. L. Y., Scrober, M.G, Phillips, B. Condensed phase relations in the systems ZrO2-WO2-WO3andHfO2-WO2-WO3[J].J. Am. Ceram. Soc.,1967,50:211~216.
    [56]程晓农,孙秀娟,杨娟,徐桂芳.固相法合成负热膨胀性粉体ZrW2O8[J].江苏大学学报(自然科学版),2005,26(4):350~353.
    [57]孙秀娟,杨娟,刘芹芹,程晓农.共沉淀法制备负热膨胀性ZrW2O8粉体及其粒径控制初探[J].无机化学学报,2005,9:1412~1416.
    [58]De Meyer C., Van. Driessche, I., Hoste, S. Synthesis of thenegative thermal expansion compound ZrW2O8by the spray dryingtechnique[J]. Key Eng. Mater.,2002,11:206~213.
    [59]U. Kameswari, Sleight A.W., Evans J. S. O. Rapid synthesis ofZrW2O8and related phases and Structure refinement of ZrWMoO8[J]. Int. J.InorganicMaterials,2000,2:333~337.
    [60]Verdon, C., Dunand, D. C. High-temperature reactivity in the ZrW2O8-Cu system[J]. ActaMetall,1997,36(9):1075~1080.
    [61]Yilmaz S, Dunand, D. C. Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu60vol%-ZrW2O8 composite[J]. Comp. Sci. Technol,2004,64: 1895~1898.
    [62]Holzer. H, Dunand, D. C. Phase transformation and thermalexpansion of Cu/ZrW2O8[J]. JMater. Res.,1999,14(3):780-789.
    [63]Yilmaz S. Thermal mismatch stress development in Cu-ZrW2O8 composite investigated by synchrotron X-ray diffraction [J]. Comp. Sci. Technol,2002,62:1835~1839.
    [64]MatsumotoA., Kobayashi K, NishioT, Ozaki K. Fabrication and thermal expansionofAl-ZrW2O8composites bypulse currentsintering [J]. Mater. Sci. Forum,2003, 426(4):2279.
    [65]天振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,1992,127.
    [66]Eiki Niwa, Shuhji Wakamiko, Takaaki Ichikawa, et al. Preparation of dense ZrO2/ZrW2O8cosintered ceramics with controlled thermal expansion coefficients [J]. J. Jap. Ceram. Soc.,2004,112(5):271~275.
    [67]Lommens. P., Meyer C. De, Bruneel K. De, I. Van Driessche,S. Hoste. Synthesis and thermal expansion of ZrO2/ZrW2O8 composites [J]. J. Eur. Ceram. Soc.,2005, 25:3605~3610.
    [68]Nishiyama, S., Yoshida, H., Hattori, T. [C]. AnnMeet. of the Ceram. Soc. Jap.,2002,205.
    [69]Kofteros, M., Rodriguez, S., Tandon, V., Murr, L. E. A preliminary study of thermal expansion compensation in cement by ZrW2O8additions[J]. Scripta. Materialia,2001, 45:369~374.
    [70]Lisa. M. Sullivan and Charles M. Lukehart. Zirconium Tungstate (ZrW2O8)/Polyimide Nanocomposites ExhibitingReduced Coefficient of Thermal Expansion[J]. Chem. Mater., 2005,17:2136~2141.
    [71]Shi J. D., Pu Z. J., Wu K. H., Larkins G[C]. Mater. Res.Soc. Symp. Proc.,1997,445:229.
    [72]Michael S.Sutton and Joseph Talghader.Micromachined Negative Thermal Expansion Thin Films[A].The 12th International Conference on solid State Sensors, Actuators and Microsystems [C], Boston, America,2003:1148-1151
    [73]Noailles L D, Peng H-h, Starkovich J, et al. Thermal expansion and phase formation of ZrW2O8 aerogels[J], Chem Mater,2004,16:1252-1259.
    [74]肖兆娟,程晓农等.磁控溅射法制备钨酸锆薄膜[J].硅酸盐学报,2006,34(3):314-317
    [75]XIAO Zhaojuan, CHENG Xiaonong, YAN Xuehua. Effect of post-deposition annealing on ZrW_2O_8 thin films prepared by radio frequency magnetron sputtering[J]. Sur Coat Tech, 2007,201:5560-5563.
    [76]新野正之.日本复合材料学会志,1987,13(6):257
    [77]Kaysser W A,Hschner B.MRS Bull,1995,20(1):22
    [78]Yoshinari Miyamoto.J Am Ceram Soc,1997,80:843
    [79]西田俊产.粉体ゎょび粉末冶金,1998,45(3):299
    [80]Morteusen A,Suresh S.International Materials Reviews,1995,4(6):239
    [81]丁保华,李文超.耐火材料,1998,8(1):52
    [82]u J K,Li H,Shang B L.J Mater Sci,1994,29:2641
    [83]Kitaguchi S.Jpn Ceramics,1994,29:182
    [84]Yamagata H,Inoue A,Masumoto T.Mater Sci & Eng,1994,181:1300
    [85]Xiang Xinhua,Zhu Jingchuan et al.Surface and Coatings Technology,1996,88:66
    [86]Sarkar P,Huang X N,Nicholson P S.J Am Ceram Soc,1993,76:1055
    [87]Put S,Vleugels J,Van Der Biest O.Scripta Materialia,2001,45:1139
    [88]新日铁技报,1998,10:367
    [89]大参达也.日本金属学会志,1999,63(4):429
    [90]张幸红,郝晓东,韩杰才,等.复合材料学报,1999,16(4):24
    [91]Show I J,Munter Z A.J Am Ceram Soc,1998,81:344
    [92]Dadmavardhani D,Gomez A,Abbaschian R.J Intermetallics,1998,229:151
    [93]张联盟,李俊国,平井敏雄.复合材料学报,1999,16(4):8
    [94]Bsail R M,Jean B J Am Cream Soc,1994,77(10):2747
    [95]Zhu J C,Yin Z D,Lai Z H.J Mater Sci Tech,1994,10:188
    [96]Jedamzik R,Neubrand A,Rodel J. J Mater Sci,2000,35:477
    [97]Asmi D,Low I M.J Mater Pro Tech,2001,118:225
    [98]李耀天.金属功能材料,2000,7(4):15
    [99]张宇民,郝晓东,韩杰才.宇航材料工艺,1998,5:5
    [100]理查布鲁克.陶瓷工艺(材料科学与技术丛书第17B卷),北京:科学出社,1999
    [101]曾昭焕,郭正,巫世杰.导弹与航天运载技术,1996,2:60
    [102]Yi H C,Moore J.J Mater Sci,1990,25:1159
    [103]郑子樵,李益民,梁叔全.中国有色金属学报,1996,6(4):73
    [104]赵文趁.材料表面工程导论,西安:西安交通大学出版社,1998
    [105]张幸红,韩杰才,董世运等.宇航材料与工艺,1999,2:1
    [106]李金桂.腐蚀与防护,1999,20(2):51
    [107]新野正之,平井敏雄.倾斜机能材料-宇宙机用超耐热材料ち目指して[J].日本复合材料学会志.1987,13(6):257
    [108]乔学亮,陈建国,吴一平,等.A1含量对(Ti,A1)N薄膜微观结构与性能的影响[J],材料研究学报,1995,9(6):505.
    [109]李云奇.我国真空薄膜沉积技术的发展近况及动向[J].真空.1988,(2):2.
    [110]张伟.功能梯度材料的研究现状和前景[A].94秋季中国材料研讨会,新型功能材料[C],北京:化学工业出版社,1995.
    [111]於伟峰,张伟,包宗明,等.利用4He-O共振散射测量SiOxNy功能梯度薄膜中氧的深度分布[J].功能材料.1998,29(4),405.
    [112]远立贤.金属/陶瓷功能梯度涂层工艺的心用现状[J].金属热处理.1999,(1):30.
    [113]Pryde A K, Hammonds K D, Dove M T et al. Rigid unit modes in and the negative thermal expansion in ZrW_2O_8 [J]. Phase Transitions,1996,61(1-4):141-153.
    [114]Holzer H, Dunand D C. Phase transformation and thermal expansion of Cu-ZrW2O_8 metal matrix composites[J].J Matter Res,1999,14(2):780-786.
    [115]Verdon C, Dunand D C. High-temperature reactivity in the ZrW2O_8-Cu system[J].Scripta Materialia,1997,36(9):1075-1080.
    [116]Yilmaz S. Thermal mismatch stress development in Cu-ZrW2O_8composite investigated by synchrotron X-ray diffraction[J].Composite Science and Technology,2002,62(14): 1835-1839.
    [117]Yamamura Y,Nakajima N,Tsuji T. Heat capacity anomaly due to the α-to-β structural phase transition in ZrW2O_8[J].Solid State Communications,2000,114:453-455.
    [118]Gallardo-Amores J M, Amador U, Moran E, et al. XRD study of ZrW2O_8 versus temperature and pressure[J].International Journal of Inorganic Materials,2000,2(1):123-129.
    [119]ZHANG Mei-fen,YANG Juan,YAN Xue-hua,et al. Synthesis and high temperature transformation of ZrW2O8[J].Function Materials,2004,35(4):568-570.
    [120]TAN Cheng-yu,ZHENG Xue-bin,ZHAO Xu-shan,LIU Yu,LI Jing-feng, Preparation of Cu-ZrW2O_8 composite coatings by electric deposition[J]. Cent.South Univ.(Science and Technology),2008,4:234-238.
    [121]Xiaonong Cheng, Juan Song, Xuehua Yan, Synthesis of ZrW2O_8/Cu films by magnet sputtering [J]. J Chin Ceram Soc(in Chinese),2007,35(11):1515-1519.
    [122]Fujii K,Yamada R. Thermal shock resistance of SiC compositionally graded C/C composites [J] Journal of NuclearMaterials,1998,258-263:1953-1959.
    [123]Kim J I,Kim W J. Design of a C/SiC functionally graded coating for the oxidation protection of C/C composites[J],Carbon,2005,43;1749-1757.
    [124]Ravichandran K S. Thermal residual stresses in a functionally graded material system [J].Materials Science and Engineering A,1995,201(1-2);269-276.
    [125]Kawasaki A, Watanabe R. Microstructural designing and fabrication of disk shaped functionally gradient material by powder metallurgy [J].J Jap Soc Powder and Power Metall,1990,37(2):253-258.
    [126]Kawasaki A, Hibino A, Watanabe K. Effect of Gradient Microstructure on Thermal Shock Crack Extension in Metal/Ceramic Functionally Graded Materials[J].Functionally Graded Materials 1996,1997, Pages 143-148.
    [127]Cho J R, Tinsley Oden J. Functionally graded material:a parametric study on thermal-stress characteristics using the Crank-Nicolson-Galerkin scheme[J]. Comput. Methods Appl Mech Engrg,2000,188:17-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700