多层功能梯度直梁和曲梁的理论分析及其应用研究系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对各向同性及正交各向异性多层功能梯度直梁和曲梁的弹性弯曲问题进行了研究,推导出了相应的悬臂梁、简支梁、简支-固支梁和固支梁等四种梁的弹性力学解和近似解,在此基础上进行了有关应用研究。主要工作和结论如下:
     (1)用应力函数法推导出了含功能梯度过渡层的各向同性双材料直梁和多层正交各向异性功能梯度直梁上表面受均布载荷作用时的弹性力学解,其中,各向同性梯度层的泊松比为常数,其弹性模量和正交各向异性梯度层的柔度系数皆为厚度坐标的任意函数。
     (2)确定了多层梯度圆弧曲梁外表面受均布载荷作用时的应力函数形式,给出了弹性力学解的求解过程;具体求解出了弹性模量分别为Ei0(r+βi)和Ei0rmeλr、泊松比为常数时的多层各向同性功能梯度曲梁和柔度系数分别为Sklirm(r+βkli)和Sklirmeλr时的多层正交各向异性功能梯度曲梁的弹性力学解。
     (3)用有限元数值分析结果和已知解检验了上述直梁及曲梁弹性力学解的正确性和有效性。上述弹性力学解可进行多种形式的退化和应用。
     (4)多层功能梯度梁中,不论是梯度层的材料性能还是厚度的变化,对挤压应力的分布和大小基本上没有影响,对最大弯曲正应力和最大弯曲切应力有一定影响;梯度性能的变化对梯度层中的弯曲正应力的影响较大;当梁的跨高比达到10时,梁的横截面在变形后仍基本保持为平面,但对于夹芯梁,由于层间的柔度系数比较大,横截面在变形后呈Z字型。
     (5)固支端的约束形式对应力和位移有一定程度的影响;弹性力学解中的固支约束条件BC1(使固支端附近的轴向微分线段固定)比实际约束强,而固支约束条件BC2(使固支端附近的横向微分线段固定)则比实际约束弱,两者的平均值与实际约束比较接近。
     (6)分别用Euler-Bernoulli梁理论和Timoshenko梁理论推导出了多层功能梯度直梁和曲梁的基本微分方程组,具体给出了受均布载荷作用时的近似解,并与弹性力学解和有限元解作了对比分析,发现:用近似解计算出的弯曲正应力的精度基本能满足工程需要,直梁中,Timoshenko梁理论解在固支约束条件BC2下的精度最高,曲梁中,两种近似解的区别不大;由近似解计算出的挠度有一定误差,但直梁中的Timoshenko梁理论在固支约束条件BC2下的计算精度较高,与有限元解非常接近。
In this dissertation, the elastic bending of multilayer functionally graded straight and curved beams is studied. Elasticity and approximate solutions are derived for cantilever, simply supported, simply-fixed, and fixed-end beams, respectively. Based on the solutions, some applications are discussed. The main works and some conclusions are listed as follows:
     (1) Using the Airy stress function, elasticity solutions are derived for both the bi-material isotropic straight beam with a graded intermediate layer and multilayer orthotropic functionally graded straight beam. The beams are subjected to a uniform load on upper surfaces, in which Poisson's ratio of the isotropic layer is kept a constant, and its Young's modulus and the elastic compliance parameters of the orthotropic layer are both assumed to be arbitrary functions of the thickness coordinate.
     (2) The form of the Airy stress function is selected for the multilayer functionally graded circular curved beam subjected to a uniform load on its outer surface, and the process to obtain the elasticity solution is given. The solutions are derived for the multilayer isotropic functionally graded curved beam with Young's modulus respectively being Ei0(r+βi) and Eiormeλr and Poisson's ratio being a constant and the multilayer orthotropic functionally graded curved beam with the elastic compliance parameters being Sklirm (r+βkli,) and Sklirmeλr, respectively.
     (3) The above elasticity solutions are demonstrated to be correct and effective by the FEM (finite element method) and the known solutions. The obtained solutions can be degenerated into different forms and also have many applictions.
     (4) In multilayer functionally graded beam, neither the thickness nor the material property of the graded layer influences the bearing stress, but they influence the maximum bending and shear stresses a little. The material property of the graded layer obviously affects the bending stress in the graded layer. When the ratio of span to thickness is not less than ten, the cross section of the beam will remain plane. However, the section will become zigzag in a sandwich beam for the compliance ratio between the face-sheet and core is too big.
     (5) The type of description for the fixed end partly affects the stresses and displacements. In the elasticity solutions, the constraint condition BC1(an element of the axis of the beam being fixed at the fixed end) is stronger than the real case while the condition BC2(a vertical element of the cross section being fixed at the fixed end) weaker than the real one, but the averages of the results for BC1and BC2are close to the FEM ones.
     (6) Based on the Euler-Bernoulli and Timoshenko beam theories, basic differential equations are deduced for multilayer functionally graded straight and curved beams, and the approximate solutions are obtained for the beam subjected to a uniform load on the upper/outer surface. The precision of the bending stress of these solutions can meet the engineering needs; here, the precision of the Timoshenko beam theory with BC2is higher than the others in the straight beam while the precisions of the Euler-Bernoulli and Timoshenko beam theories are similar in the curved beam. For the bending deflection, the only one of the straight beam, obtained by the Timoshenko beam theory with BC2, is close to the FEM result.
引文
[1]Bever M B, Duwez P E. Gradient in composite materials [J]. Materials Science Engineering, 1972,10:1-8.
    [2]Shen M, Bever M B. Gradient in polymeric materials [J]. Journal of Materials Science,1972, 7(7):741-746.
    [3]Niino M, Kumakawa A, Watanabe R, et al. Fabrication of a high pressure thrust chamber by the CIP forming method[J]. Metal Powder Report,1986,41 (9):663-664,667-668.
    [4]新野正之,平井敏雄,渡边龙三.倾斜机能材料[J].日本复合材料学会志,1987,13(4):257-264.
    [5]Yoshimi W, Hisashi S. Novel fabrication method of FGM containing nano-particles-Centrifugal mixed-powder method [J]. Key Engineering Materials,2010,434-435:751-756.
    [6]Yoshimi W, Yoshimi I, Hisashi S, et al. Fabrication of titanium/biodegradable -polymer FGM for medical application [J]. Materials Science Forum,2010,631-632:199-204.
    [7]Yoshimi W, Yoshimi 1, Hisashi S, et al. Microstructures and mechanical properties of titanium/biodegradable-polymer FGM for bone tissue fabricated by spark plasma sintering method [J]. Journal of Materials Processing Technology,2011,211 (12):1919-1926.
    [8]李永,张志民,马淑雅.耐热梯度功能材料的热应力研究进展[J].力学进展,2000,30(4):571-580.
    [9]Hou Q R, Gao J. Enhanced adhesion of diamond-like carbon films with a compositional-graded intermediate layer [J]. Applied Physics A:Materials Science & Processing,1999, 68(3):343-347.
    [10]Sun C Q, Fu Y Q, Yan B B, et al. Improving diamond-metal adhesion with graded TiCN interlayers[J]. Journal of Applied Physics,2002,91 (4):2051-2054.
    [11]Hsueh C H, Lee S. Modeling of elastic thermal stresses in two materials joined by a graded layer[J]. Composites Engineering B:Engineering,2003,34 (8):747-752.
    [12]Dahan I, Admon U, Frage N, et al. The development of a functionally graded TiC-Ti multilayer hard coating [J]. Surface and Coatings Technology,2001,137 (2-3):111-115.
    [13]Venkataraman S, Sankar B V. Analysis of sandwich beams with functionally graded core[C]. Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA paper,2001,1:752-759.
    [14]Apetre N A, Sankar B V, Ambur D R. Low-velocity impact response of sandwich beams with functionally graded core[J]. International Journal of Solids and Structures,2006,43(9): 2479-2496.
    [15]Etemadi E, Afaghi Khatibi A, Takaffoli M.3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact [J]. Composite Structures, 2009,89(1):28-34.
    [16]Shen H S, Li S R. Postbuckling of sandwich plate with FGM face sheets and temperature-dependent properties [J]. Composites Part B:Engineering,2008,39(2): 332-344.
    [17]解挺,陈雪辉,焦明华等.基于DYNAFORM的自润滑轴套卷制成形的数值模拟[J].轴承,2005,(12):8-12.
    [18]Teixeira V. Numerical analysis of the influence of coating porosity and substrate elastic properties on the residual stresses in high temperature graded coatings [J]. Surface and Coatings Technology,2001,146-147:79-84.
    [19]Ravichandran K S. Thermal residual stresses in a functionally graded system [J]. Materials Science and Engineering A,1995, A201 (1-2):269-276.
    [20]舒小平.功能梯度涂层壳体热残余应力分析[J].机械科学与技术,2010,29(10):1370-1375.
    [21]Jin Z H. An asymptotic solution of temperature field in a strip of a functionally graded material [J]. International Communications in Heat and Mass Transfer,2002,29(7): 887-895.
    [22]Ootao Y, Tanigawa Y. Transient thermoelastic problem of functionally graded thick strip due to nonuniform heat supply [J]. Composite Structures,2004,63 (2):139-149.
    [23]Sladek J, Sladek V, Zhang C. Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method [J]. Computer Materials Science,2003,28 (3-4):494-504.
    [24]Chen J, Liu Z, Zou Z. Transient internal crack problem for a nonhomogeneous orthotropic strip (Mode I) [J]. International Journal of Engineering Science,2002,40 (15):1761-1774.
    [25]Sutradhar A, Paulino G H. The simple boundary element method for transient heat conduction in functionally graded materials [J]. Computer Methods in Applied Mechanics and Engineering,2004,193 (42-44):4511-4539.
    [26]Sutradhar A, Paulino G H, Gray L J. On hypersingular surface integral in the symmetric galerkin boundary element method:application to heat conduction in exponentially graded materials [J]. International Journal for Numerical Methods in Engineering,2005,62 (1): 122-157.
    [27]Venkataraman S, Haftka R T, Sankar B V, et al. Optimal functionally graded metallic foam thermal insulation [J]. AIAA Journal,2004,42 (11):2356-2363.
    [28]Aboudi J, Arnold S M, Pindera M J. Response of functionally Graded Composites to thermal gradients [J]. Compsites Engineering,1994,4(1):1-18.
    [29]Sankar B V, Tzeng J T. Thermal stresses in functionally graded beams [J]. AIAA Journal, 2002,40(6):1228-1232.
    [30]Nirmala K, Upadhyay P C, Prucz J, et al. Thermoelastic stresses in composite beams with functionally graded layer [J]. Journal of Reinforced Plastics and Composites,2005,24(18): 1965-1977.
    [31]Huang D J, Ding H J, Chen W Q. Analytical solution for functionally graded anisotropic cantilever beam under thermal and uniformly distributed load[J]. Journal of Zhejiang University SCIENCE A,2007,8(9):1351-1355.
    [32]Kapuria S, Bhattacharyya M, Kumar A N. Theoretical modeling and experimental validation of thermal response of metal-ceramic functionally graded beams [J]. Journal of Thermal Stresses,2008,31 (8):759-787.
    [33]李永,宋健,张志民.功能梯度材料悬臂梁受复杂载荷作用的分层剪切理论[J].宇航学报,2002,23(4):62-67.
    [34]李永,张志民,马淑雅.梯度功能材料层梁受机械/热载作用的结构特性分析[J].强度与环境,2002,29(1):20-26.
    [35]Shodja H M, Haftbaradaran H, Asghari M. A thermoelasticity solution of sandwich structures with functionally graded coating [J]. Composites Science and Technology 2007,67(6): 1073-1080.
    [36]王鲁,吕广庶,王富耻等.功能梯度热障涂层热负荷下的有限元分析[J].兵工学报,1999,20(1):51-54.
    [37]Alibeigloo A. Thermoelasticity analysis of functionally graded beam with integrated surface piezoelectric layers [J]. Composite Structures,2010,92 (6):1535-1543.
    [38]Mohammadi-Alasti B, Rezazadeh G, Borgheei A M, et al. On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure [J]. Composite Structures,2011,93 (6):1516-1525.
    [39]李世荣,范亮亮.功能梯度梁在热冲击下的动态响应[J].振动工程学报,2009,22(4):371-378.
    [40]Babaei M H, Abbasi M, Eslami M R. Coupled thermoelasticity of functionally graded beams [J]. Journal of Thermal Stresses,2008,31 (8):680-697.
    [41]Ma L S, Lee D W. A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading [J]. Composite Structures,2011,93 (2):831-842.
    [42]Afshar A, Abbasi M, Eslami M R. Two-dimensional solution for coupled thermoelasticity of functionally graded beams using semi-analytical finite element method [J]. Mechanics of Advanced Materials and Structures,2011,18(5):327-336.
    [43]张能辉.热载荷作用下功能梯度材料梁的热粘弹性弯曲[J].力学季刊,2007,28(2):240-245.
    [44]马连生,徐刚年.FGM梁稳定性分析的DQ法[J].兰州理工大学学报,2011,37(2):164-167.
    [45]Kutis V, Murin J. Stability of a slender beam-column with locally varying Young's modulus [J]. Structural Engineering and Mechanics,2006,23 (1):15-27.
    [46]Anandrao K S, Gupta R K, Ramchandran P, et al. Thermal post-buckling analysis of uniform slender functionally graded material beams [J]. Structural Engineering and Mechanics,2010, 36(5):545-560.
    [47]李世荣,张靖华,赵永刚.功能梯度材料Timoshenko梁的热过屈曲分析[J].应用数学和力学,2006,27(6):709-715.
    [48]李世荣,苏厚德.热环境中功能梯度材料Euler梁的自由振动[J].兰州理工大学学报,2008,34(4):164-169.
    [49]李世荣,苏厚德,程昌钧.热环境中粘贴压电层功能梯度材料梁的自由振动[J].应用数学和力学,2009,30(8):907-918.
    [50]苏厚德,李世荣,高颖.粘贴压电层功能梯度材料Timoshenko梁的热过屈曲分析[J].计算力学学报,2010,27(6):1067-1072.
    [51]牛牧华,马连生.基于物理中面FGM梁的非线性力学行为[J].工程力学,2011,28(6):219-225.
    [52]李清禄,李世荣.功能梯度材料梁在后屈曲构形附近的自由振动[J].振动与冲击,2011,30(9):76-78.
    [53]Bhangale R K, Ganesan N. Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core[J]. Journal of Sound and Vibration,2006,295:294-316.
    [54]李世荣,龚云.功能梯度材料梁自由振动问题的常微分方程求解器解[J].兰州理工大学学报,2009,35(6):163-166.
    [55]Lii C F, Chen W Q. Free vibration of orthotropic functionally graded beams with various end conditions [J]. Structural Engineering and Mechanics 2005,20 (4):465-476.
    [56]Goupee A J, Vel S S. Optimization of natural frequencies of bidirectional functionally graded beams [J]. Structural and Multidisciplinary Optimization,2006,32(6):473-484.
    [57]Ying J, Lii C F, Chen W Q. Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations [J]. Composites Structures,2008,84 (3):209-219.
    [58]比德几里里Y,图斯A,贝拉巴赫H M等.纤维体积分数可变的复合材料梁计及转动惯量和剪切变形时的固有频率[J].应用数学和力学,2009,30(6):667-676.
    [59]Murin J, Aminbaghai M, Kutis V. Exact solution of the bending vibration problem of FGM beams with variation of material properties [J]. Engineering Structures,2010,32(6): 1631-1640.
    [60]Mahi A, Adda Bedia E A, Tounsi A, et al. An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions [J]. Composite Structures,2010,92(8):1877-1887.
    [61]Atmane H A, Tounsi A, Ziane N, et al. Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section [J]. Steel and Composite Structures, 2011,11(6):489-504.
    [62]Filipich C P, Piovan M T. The dynamics of thick curved beams constructed with functionally graded materials [J]. Mechanics Research Communications,2010,37 (6):565-570.
    [63]Xiang H J, Yang J. Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction [J]. Composites Part B:Engineering,2008,39(2): 292-303.
    [64]Asghari M, Rahaeifard M, Kahrobaiyan M H, et al. The modified couple stress functionally graded Timoshenko beam formulation [J].Materials and Design,2011,32(3):1435-1443.
    [65]Ansari R, Gholami R, Sahmani S. Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory [J]. Composite Structures,2011,94(1):221-228.
    [66]刘玮,闫铂,刘英同.具有压电元件功能梯度梁的振动控制[J].吉林大学学报(理学版),2008,46(1):1-5.
    [67]Pradhan S C, Murmu T. Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method [J]. Journal of Sound and Vibration,2009,321 (1-2):342-362.
    [68]Mohanty S C, Dash R R, Rout T. Parametric instability of a functionally graded Timoshenko beam on Winkler's elastic foundation [J]. Nuclear Engineering and Design,2011,241 (8): 2698-2715.
    [69]Kona M, Ray K. Parametric instability and control of functionally graded beams [J]. Advances in Vibration Engineering,2010,9(1):105-118.
    [70]Simsek M. Vibration analysis of a functionally graded beam under a moving mass by using different beam theories [J]. Composite Structures,2010,92 (4):904-917.
    [71]孙丹,罗松南.梯度功能梁中一维非线性波的孤波解[J].振动与冲击,2009,28(9):188-191.
    [72]Simsek M. Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load [J]. Composite Structures,2010,92 (10):2532-2546.
    [73]Ke L L, Yang J, Kitipornchai S. An analytical study on the nonlinear vibration of functionally graded beams [J]. Meccanica,2010,45 (6):743-752.
    [74]Apetre N A, Sankar B V, Venkataraman S. Indentation of a sandwich beam with functionally graded core[C]. Proceedings of the 43rd AIAA Structures, Structural Dynamics and Materials Conference, AIAA paper,2002,1683:1-7.
    [75]Chakraborty A, Gopalakrishnan S. A spectrally formulated finite element for wave propagation analysis in functionally graded beams [J]. International Journal of Solids and Structures,2003,40 (10):2421-2448.
    [76]Chakraborty A, Gopalakrishnan S. A spectral finite element for axial-flexural-shear coupled wave propagation analysis in lengthwise graded beam[J]. Computational Mechanics,2005, 36(1):1-12.
    [77]谭飞,韩旭.基于代理模型的功能梯度梁的材料特性参数反求[J].复合材料学报,2008,25(5):175-180.
    [78]魏东,刘应华.含裂纹功能梯度Euler-Bernoulli梁和Timoshenko梁的屈曲载荷计算与分析[J].复合材料学报,2010,27(4):124-130.
    [79]Ke L L, Yang J, Kitipornchai S. Postbuckling analysis of edge cracked functionally graded Timoshenko beams under end shortening [J]. Composite Structures,2009,90 (2):152-160.
    [80]王保林,韩杰才,杜善义.动态载荷下功能梯度复合材料的圆币形裂纹问题[J].固体力学学报,1999,20(3):219-225.
    [81]Upadhyay A K, Simha K R Y. Equivalent homogeneous variable depth beams for cracked FGM beams; Compliance approach[J]. International Journal of Fracture,2007,144(3): 209-213.
    [82]Li X F, Fan T Y. Dynamic analysis of a crack in a functionally graded material sandwiched between two elastic layers under anti-plane loading [J]. Composite Structures,2007,79(2): 211-219.
    [83]Cheng Z, Zhong Z. Analysis of a moving crack in a functionally graded strip between two homogeneous layers [J]. International Journal of Mechanical Sciences,2007,49(9): 1038-1046.
    [84]Avila A F. Failure mode investigation of sandwich beams with functionally graded core[J]. Composite Structures,2007,81 (3):323-330.
    [85]Yang J, Chen Y. Free vibration and buckling analyses of functionally graded beams with edge cracks[J]. Composite Structures,2008,83(1):48-60.
    [86]Ke L L, Yang J, Kitipornchai S, et al. Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials [J]. Mechanics of Advanced Materials and Structures,2009,16 (6):488-502.
    [87]Kitipornchai S, Ke L L, Yang J, et al. Nonlinear vibration of edge cracked functionally graded Timoshenko beams [J]. Journal of Sound and Vibration,2009,324 (3-5):962-982.
    [88]Yan T, Kitipornchai S, Yang J. Parametric instability of functionally graded beams with an open edge crack under axial pulsating excitation [J]. Composite Structures,2011,93(7): 1801-1808.
    [89]Yan T, Yang J, Kitipornchai S. Nonlinear dynamic response of an edge-cracked functionally graded Timoshenko beam under parametric excitation [J]. Nonlinear Dynamics,2012,67(1): 527-540.
    [90]张靖华,李世荣,杨静宁.功能梯度材料Timoshenko梁的非线性大变形分析[J].兰州理工大学学报,2007,33(1):166-169.
    [91]Agarwal S, Chakraborty A, Gopalakrishnan S. Large deformation analysis for anisotropic and inhomogeneous beams using exact linear static solutions [J]. Composite Structures,2006, 72(1):91-104.
    [92]Kang Y A, Li X F. Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force [J]. International Journal of Non-linear Mechanics, 2009,44 (6):696-703.
    [93]Kang Y A, Li X F. Large deflections of a non-linear cantilever functionally graded beam [J]. Journal of Reinforced Plastics and Composites,2010,29 (12):1761-1774.
    [94]Kocaturk T, Simsek M, Akbas S D. Large displacement static analysis of a cantilever Timoshenko beam composed of functionally graded material [J]. Science and Engineering of Composite Materials,2011,18 (1-2):21-34.
    [95]Asghari M, Ahmadian M T, Kahrobaiyan M H, et al. On the size-dependent behavior of functionally graded micro-beams [J]. Materials and Design,2010,31(5):2324-2329.
    [96]Agarwal S, Chakraborty A, Gopalakrishnan S. Large deformation analysis for anisotropic and inhomogeneous beams using exact linear static solutions [J]. Composite Structures,2006, 72(1):91-104.
    [97]陈盈,石志飞.梯度功能压电悬臂梁的一组基本解及其应用[J].固体力学学报,2004,25(2):241-245.
    [98]Bian Z G, Lim C W, Chen W Q. On functionally graded beams with integrated surface piezoelectric layers [J]. Composite Structures,2006,72(3):339-351.
    [99]Kapuria S, Bhattacharyya M, Kumar A N. Assessment of coupled ID models for hybrid piezoelectric layered functionally graded beams [J]. Composite Structures,2006,72(4): 455-468.
    [100]Berrabah H M, Mechab I, Tounsi A, et al. Electro-elastic stresses in composite active beams with functionally graded layer [J]. Computational Materials Science,2010,48 (2):366-371.
    [101]Kutis V, Murin J, Belak R, et al. Beam element with spatial variation of material properties for multiphysics analysis of functionally graded materials [J]. Computers and Structures, 2011,89(11-12):1192-1205.
    [102]聂国隽,康继武,仲政.功能梯度纯弯曲梁弹塑性问题的解析解[J].广西大学学报(自然科学版),2009,34(1):28-32.
    [103]谢贻权,林钟祥,丁皓江.弹性力学[M].浙江:浙江大学出版社,1988.
    [104]吴家龙.弹性力学[M].北京:高等教育出版社,2001.
    [105]Timoshenko S P, Goodier J N. Theory of Elasticity [M]. New York:McGraw-Hill,1970.
    [106]张福学,王丽坤.现代压电学[M].北京:科学出版社,2001.
    [107]柳拥军,杨德庆.均匀分布载荷作用下压电悬臂梁弯曲问题解析解[J].固体力学学报,2002,23(3):366-372.
    [108]Li X F, Wang B L, Han J C. A higher-order theory for static and dynamic analyses of functionally graded beams[J]. Archive of Applied Mechanics,2010,80(10):1197-1212.
    [109]Benatta M A, Mechab I, Tounsi A, et al. Static analysis of functionally graded short beams including warping and shear deformation effects [J]. Computational Materials Science,2008, 44 (2):765-773.
    [110]Benatta M A, Tounsi A, Mechab I, et al. Mathematical solution for bending of short hybrid composite beams with variable fibers spacing [J].Applied Mathematics and Computation, 2009,212(2):337-348.
    [111]Giunta G, Belouettar S, Carrera E. Analysis of FGM beams by means of classical and advanced theories [J]. Mechanics of Advanced Materials and Structures,2010,17(8): 622-635.
    [112]Sankar B V. An elasticity solution for functionally graded beams [J]. Composites Science and Technology,2001,61 (5):689-696.
    [113]Zhong Z, Yu T. Analytical solution of a cantilever functionally graded beam [J]. Composites Science and Technology,2007,67(3-4):481-488.
    [114]于涛,仲政.均布荷载作用下功能梯度悬臂梁弯曲问题的解析解[J].固体力学学报, 2006,27(1):15-20.
    [115]Ding H J, Huang D J, Chen W Q. Elasticity solutions for plane anisotropic functionally graded beams [J]. International Journal of Solids and Structures,2007,44(1):176-196.
    [116]黄德进,丁皓江,陈伟球.线性分布载荷作用下功能梯度各向异性悬臂梁的解析解[J].应用数学和力学,2007,28(7):763-768.
    [117]徐业鹏,周叮.简支功能梯度变厚度梁的弹性力学解[J].南京理工大学学报,2009,33(1):132-136.
    [118]黄德进,丁皓江,陈伟球.任意载荷作用下各向异性功能梯度梁的解析解和半解析解[J].中国科学(G辑:物理学力学天文学),2009,39(6):830-842.
    [119]Dryden J. Bending of inhomogeneous curved bars[J]. International Journal of Solids and Structures,2007,44(11-12):4158-4166.
    [120]Magnucka-Blandzi E, Magnucki K. Effective design of a sandwich beam with a metal foam core [J]. Thin-Walled Structures,2007,45 (4):432-438.
    [121]Zhu H, Sankar B V. Analysis of sandwich TPS panel with functionally graded foam core by Galerkin method [J]. Composite Structures,2007,77 (3):280-287.
    [122]Conde Y, Pollien A, Mortensen A. Functional grading of metal foam cores for yield-limited lightweight sandwich beams [J]. Scripta Materialia,2006,54 (4):539-543.
    [123]Ben-Oumrane S, Abedlouahed T, Ismail M, et al. A theoretical analysis of flexional bending of Al/A12O3 S-FGM thick beams [J]. Computational Materials Science,2009,44(4): 1344-1350.
    [124]Rogers T G, Watson P, Spencer A J M. Exact three-dimensional elasticity solutions for bending of moderately thick inhomogeneous and laminated strips under normal pressure [J]. International Journal of Solids and Structure,1995,32(12):1659-1673.
    [125]亢一澜,徐千军,余寿文.功能梯度材料(FGM)温度应力的实验研究[J].科学通报,1998,43(4):442-445.
    [126]Oden J T, Ripperger E A. Mechanics of elastic structures [M].2nd ed. New York: McGraw-Hill,1981.
    [127]Timoshenko S P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars[J]. Philosophical Magazine,1921,41 (245):744-746.
    [128]Timoshenko S P. On the transverse vibration of bars of uniform cross-section [J]. Philosophical Magazine,1922,43(253):125-131.
    [129]Lim C W, Wang C M, Kitipornchai S. Timoshenko curved beam bending solutions in terms of Euler-Bernoulli solutions [J]. Archive of Applied Mechanics,1997,67(3):179-190.
    [130]Lee J. In-plane free vibration analysis of curved Timoshenko beams by the pseudospectral method [J]. KSME International Journal,2003,17 (8):1156-1163.
    [131]Lyckegaard A, Thomsen O T. Nonlinear analysis of a curved sandwich beam joined with a straight sandwich beam[J]. Composites Part B:Engineering,2006,37(2-3):101-107.
    [132]Green A E. Stress systems in aeolotropic plates II[J]. Proceedings of the Royal Society of London, Series A:Mathematical and Physical Sciences,1939,173 (953):173-192.
    [133]Lekhnitskii S G. Anisotropic Plates [M]. New York:Gordon and Breach,1968.
    [134]Silverman I K. Orthotropic beams under polynomial loads [J]. Journal of Engineering Mechanics Division,1964,90(5):293-320.
    [135]Hashin Z. Plane anisotropic beams [J]. Journal of Applied Mechanics,1967,34(2): 257-263.
    [136]Liu J Y, Cheng S. Analysis of orthotropic beams [R]. USDA Forest Service Research Paper FPL (Forest Products Laboratory),1979,343.
    [137]Gerhardt T D, Liu J Y. Orthotropic beams under normal and shear loading [J]. Journal of Engineering Mechanics,1983,109(2):394-410.
    [138]Ding H J, Huang D J, Wang H M. Analytical solution for fixed-end beam subjected to uniform load[J]. Journal of Zhejiang University SCIENCE,2005,6A (8):779-783.
    [139]丁皓江,黄德进,王惠明.均布载荷作用下各向异性固支梁的解析解[J].应用数学和力学,2006,27(10):1144-1149.
    [140]Kilic O, Aktas A. Determination of stress functions of a curved beam subjected to an arbitrarily directed single force at the free end[J]. Mathematical and Computational Applications,2002,7(2):181-188.
    [141]Bagci C. Exact elasticity solutions for stresses and deflections in curved beams and rings of exponential and T-sections [J]. Journal of Mechanical Design,1993,115 (3):346-358.
    [142]Lekhnitskii S G. Theory of elasticity of an anisotropic body[M].1st ed. Moscow:Mir Publishers,1981.
    [143]Tutuncu N. Plane stress analysis of end-loaded orthotropic curved beams of constant thickness with applications to full rings [J]. Journal of Mechanical Design,1998,120(2): 368-374.
    [144]Wang W, Shenoi R A. Analytical solutions to predict flexural behavior of curved sandwich beams [J]. Journal of Sandwich Structures and Materials,2004,6 (3):199-216.
    [145]Anderson T A. A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere [J]. Composite Structures,2003,60 (3): 265-274.
    [146]Timoshenko S P. Analysis of bi-metal thermostats [J]. Journal of the Optical Society of America,1925,11:233-255.
    [147]黄德进,丁皓江,陈伟球.任意载荷作用下各向异性功能梯度梁的解析解和半解析解[J].中国科学G辑:物理学力学天文学.2009,39(6):830-842.
    [148]Fraternali F, Bilotti G. Nonlinear elastic stress analysis in curved composite beams[J]. Computers and Structures.1997,62(5):837-859.
    [149]Dadras P. Plane strain elastic-plastic bending of a strain-hardening curved beam[J]. International Journal of Mechanical Sciences.2001,43(1):39-56.
    [150]Hu N, Hu B, Yan B, et al. Two kinds of C0-type elements for buckling analysis of thin-walled curved beams [J]. Computer Methods in Applied Mechanics and Engineering, 1999,171(1):87-108
    [151]Murphy G M. Ordinary Differential Equations and Their Solutions [M],1st ed. Princeton: Van Nostrand,1960.
    [152]Hoeij M V, Ragot J F, Ulmer F, et al. Liouvillian solutions of linear differential equations of order three and higher[J]. Journal of Symbolic Computation,1999,28(4-5):589-609.
    [153]Slater L J. Generalized Hypergeometric Functions [M].1st ed. New York:Cambridge University Press,1966.
    [154]Ronveaux A. Heun's Differential Equation [M].1st ed. Oxford:Oxford University Press, 1995.
    [155]布卢曼GW,安科SC著.闫振亚译.微分方程的对称与积分方法[M].1版.北京:科学出版设,2009.
    [156]同济大学应用数学系.高等数学[M].5版.北京:高等教育出版设,2002.
    [157]Gradshteyn I S, Ryzhik I M. Table of integrals, series, and products [M].7th ed. New York: Academic press,2007.
    [158]Tsia S W. Composites Design[M].3rd ed. Dayton OH:Think Composites,1987.
    [159]Barari A, Kaliji H D, Ghadimi M, et al. Non-linear vibration of Euler-Bernoulli beams [J]. Latin American Journal of Solids and Structures.2011,8 (2):139-148.
    [160]Civalek O, Demir C. Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory [J]. Applied Mathematical Modelling.2011,35 (5):2053-2067.
    [161]朱媛媛,胡育佳,程昌均.Euler型梁-柱结构的非线性稳定性和后屈曲分析[J].应用数学和力学.2011,32(6):674-682.
    [162]Pakar I, Bayat M. Analytical study on the non-linear vibration of Euler-Bernoulli beams [J]. Journal of Vibroengineering.2012,14(1):216-224.
    [163]Shahba A, Rajasekaran S. Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials [J]. Applied Mathematical Modelling.2012,36(7): 3094-3111.
    [164]Cheng F Y. Vibrations of Timoshenko beams and frameworks[J]. Journal of Structural Division.1970,96(3):551-571.
    [165]Howson W P, Williams F W. Natural frequencies of frames with axially loaded Timoshenko members [J]. Journal of Sound and Vibration.1973,26(4):503-515.
    [166]Abramovich H, Elishakoff I. Application of the Krein's method for determination of natural frequencies of periodically supported beam based on simplified Bresse-Timoshenko equations[J]. Acta Mechanica.1987,66(1-4):39-59.
    [167]Chandrashekhara K, Krishnamurthy K, Roy S. Free vibration of composite beams including rotary inertia and shear deformation [J]. Composite Structures.1990,14 (4):269-279.
    [168]Oliveto G. Dynamic stiffness and flexibility functions for axially strained Timoshenko beams [J]. Journal of Sound and Vibration.1992,154(1):1-23.
    [169]Chen W Q, Lv C F, Bian Z G. Elasticity solution for free vibration of laminated beams [J]. Composite Structures.2003,62 (1):75-82.
    [170]Horr A M, Schmidt L C. Closed-form solution for the Timoshenko beam theory using a computer-based mathematical package [J]. Computers and Structures.1995,55(3): 405-412.
    [171]Banerjee J R. Frequency equation and mode shape formulae for composite Timoshenko beams [J]. Composite Structures.2001,51 (4):381-388.
    [172]Li X F. A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams [J]. Journal of Sound and Vibration.2008,318(4-5): 1210-1229.
    [173]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981.
    [174]刘鸿文.材料力学[M].5版.北京:高等教育出版社。2011.
    [175]Qatu M S. Theories and analyses of thin and moderately thick laminated composite curved beams [J]. International Journal of Solids and Structures.1993,30(20):2743-2756.
    [176]Lim C W, Wang C M, Kitipornchai S. Timoshenko curved beam bending solutions in terms of Euler-Bernoulli solutions [J]. Archive of Applied Mechanics.1997,67(3):179-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700