功能梯度材料平面问题的辛弹性力学解法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能梯度材料(FGM)是一种多相复合的非均匀材料,由于宏观特性沿空间坐标连续变化而具有优越的物理力学性能,在航空、航天、电子、机械、光学等多个领域获得广泛的应用。将梯度变化的概念引入压电和压电压磁材料产生了功能梯度压电材料(FGPM)和功能梯度压电压磁材料(FGMEEM),进一步推动了材料科学和智能结构的发展。
     本文将辛弹性力学方法推广应用于功能梯度弹性、压电和压电压磁材料平面问题的力学分析。假设材料特性沿长度方向指数形式分布,通过引入新的应力(电位移和磁感应强度)分量,构造出新的状态向量,并建立相应的状态方程,进而利用分离变量和本征展开的方法对相关问题进行了探讨。
     与均匀材料不同,FGM、FGPM和FGMEEM平面问题的算子矩阵并非哈密顿矩阵,本文提出了移位Hamilton矩阵的新概念,并利用其性质对本征值和本征解问题作了分析。通过求解发现,零本征值的本征解为圣维南问题的基本解;特殊本征值-α的本征解由于材料非均匀性的影响而发生明显的变化,其对应原问题的解去除刚体运动、常电势或常磁势后描述圣维南问题的解;般本征值对应原问题的解描述了边界效应的影响和随距离指数衰减的过程。
     将辛方法用于求解双向功能梯度材料(2D-FGM)平面问题时,假设材料参数沿长度和厚度方向均按指数形式变化,算子矩阵表现出一些特殊的性质。对特殊本征值(零和-α)进行分析得到了圣维南问题的解,并且本征值-α的Jordan型本征向量的求解方法与均匀材料及单向FGM情形不同。通过求解发现,一般本征值对应原问题的解不再表现为简单对称和反对称变形状态,且材料非均匀性对其具有较大的影响作用。
     按照传统的本征解展开式,当采用较多的项数时总会遇到数值计算不稳定的现象。文中对展开式中的一类本征解进行改写,可以在计算过程中避免大数的出现,从而有效改善了辛弹性力学方法中的数值计算稳定性。
     本文工作表明,辛求解方法可应用于求解功能梯度材料结构问题,其进一步发展和完善将极大地丰富非均匀材料结构的分析手段。
As a special kind of inhomogeneous multiphase composites, functionally graded materials (FGMs) with material constants varying continuously with spatial positions exhibit excellent physical and mechanical properties, and hence they have been widely used in aeronautics and astronautics, electronics, machine, optics and so on. Functionally graded piezoelectric materials (FGPMs) and functionally graded magneto-electric-elastic materials (FGMEEMs) have also been developed by integrating the concept of FGM with piezoelectric and magneto-electro-elastic materials. These new types of functional materials promote a prospective development and application in material science and smart structures.
     This paper extends the symplectic approach to investigate the plane problems of functionally graded elastic, piezoelectric and magneto-electric-elastic materials. The material properties are assumed to vary along the length direction in an identical exponential form. By introducing the new components of stress (electric displacement and magnetic induction), the modified state vector is constructed and the state equation is derived. Within the symplectic framework, the origin problem can be converted into analyzing the eigenvalues and eigensolutions through the method of separation of variables along with the eigenfunction expansion technique.
     In contrast to the homogenous materials, the operator matrices for FGM, FGPM and FGMEEM are not in a conventional Hamiltonian form. In this paper, a new concept, i.e. the Shift-Hamiltonian operator, is coined since its eigenvalues are symmetric with respect to-α/2, instead of zero as for the conventional Hamiltonian matrix. The zero eigensolutions bear definite physical interpretations; while the origin solutions corresponding to the particular eigenvalue -a exhibit some unique characteristics, which can not describe the Saint-Venant solutions directly because of the influence of material inhomogeneity. The origin solutions corresponding to other general eigenvalues (i.e. those excluding the particular eigenvalues zero and-α) represent the local effect and the decay exponentially with the distance.
     The symplectic method is also applied to analyze plane problems of two-dimensional functionally graded materials (2D-FGMs), whose elastic modulus varies exponentially both along the axial and transverse coordinates while the Poisson's ratio remains constant. The operator matrix exhibits somehow different characteristics when compared with the conventional Hamiltonian matrix as well as the Shift-Hamiltonian matrix. From the physical point of view, it is known that the Saint-Venant solutions still correspond to the particular eigenvalues zero and-α. The first-order eigenvector of Jordan normal form for the special eigenvalue-αis solved in a different way than that for the homogenous materials and the 1D axial FGM. The material inhomogeneity has an important effect on the general eigenvalues.
     According to the traditional formulation of the symplectic expansion series, enormous difference in magnitudes exists between two sets of general eigensolutions when a large number of eigensolutions are adopted to obtain accurate results. The large numbers can be avoided by rewriting the expansion formula so as to achieve the stability of numerical calculation. The numerical examples show that the treatment is simple and effective for both homogenous and functionally graded materials.
     Through the present study, it is seen that the symplectic method can be an alternative to solve problems of functionally graded materials. Its further development will greatly enrich the current analysis methodology for heterogeneous materials and structures.
引文
[1]Aboudi, J., Pindera, M.J., Arnold, S. (1996a) Thermoelastic theory for the response of materials functionally graded in two directions. International Journal of Solids and Structures,33(7):931-966.
    [2]Aboudi, J., Pindera, M.J., Arnold, S. (1996b) Thermoplasticity theory for bi-directionally functionally graded materials. Journal of Thermal Stresses,19(9):809-861.
    [3]Aboudi, J., Pindera, M.J., Arnold, S.M. (1999) Higher-order theory for functionally graded materials. Composites Part B:Engineering,30(8):777-832.
    [4]Afolabi, D. (1994) Symplectic geometry and vibrating systems with periodic coefficients. Journal of Sound and Vibration,177(5):623-634.
    [5]Arnold, V.I. (1989) Mathematical Methods of Classical Mechanics, Symplectic Geometry. New York:Springer-Verlag.
    [6]Asgari, M., Akhlaghi, M., Hosseini, S.M. (2009) Dynamic analysis of two-dimensional functionally graded thick hollow cylinder with finite length under impact loading. Acta Mechanica,208:163-180.
    [7]Aydogdu, M., Taskin, V. (2007) Free vibration analysis of functionally graded beams with simply supported edges. Materials and Design,28:1651-1666.
    [8]Barber, J.R. (1992) Elasticity. Dordrecht:Kluwer.
    [9]Bhangale, R.K., Ganesan, N. (2005) Free vibration studies of simply supported non-homogeneous functionally graded magneto-electro-elastic finite cylindrical shells. Journal of Sound and Vibration,288(1-2):412-422.
    [10]Bhangale, R.K., Ganesan, N. (2006a) Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates. International Journal of Solids and Structures,43:3230-3253.
    [11]Bhangale, R.K., Ganesan, N. (2006b) Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method. Journal of Sound and Vibration,294(4-5):1016-1038.
    [12]Bian, Z.G., Ying, J., Chen, W.Q. and Ding, H. J. (2006a) Bending and free vibration analysis of a smart functionally graded plate. Structural Engineering and Mechanics, 23(1),97-1131.
    [13]Bian, Z.G., Lim, C.W., Chen, W.Q. (2006b) On functionally graded beams with integrated surface piezoelectric layers. Composite Structures,72:339-35.
    [14]Borrelli, A., Horgan, C.O., Patria, M.C. (2004) Exponential decay of end effects in anti-plane shear for functionally graded piezoelectric materials. Proceedings of the Royal Society of London, Series A,460:1193-1212.
    [15]Borrelli, A., Horgan, C.O., Patria, M.C. (2006) Saint-Venant end effects for plane deformations of linear piezoelectric solids. International Journal of Solids and Structures, 43:943-956.
    [16]Braga, M.B., Herrmann, G. (1992) Floquet waves in anisotropic periodically layered composites. The Journal of the Acoustical Society of America,91(3):1211-1227.
    [17]Callister Jr., W.D. (2001) Materials Science and Engineering-An Introduction. New York: John Wiley & Sons.
    [18]Chakraborty, A., Gopalakrishnan, S., Reddy, J.N. (2003) A new beam finite element for the analysis of functionally graded materials. International Journal of Mechanical Sciences, 45:519-539.
    [19]Chan, Y.S., Gray, L.J., Kaplan, T., Paulino, G.H. (2004) Green's function for a two-dimensional exponentially graded elastic medium. Proceedings of Royal Society of London-Series A,460(2046):1689-1706.
    [20]Chang, H.H., Tarn, J.Q. (2007) A state space approach for exact analysis of composite laminates and functionally graded materials. International Journal of Solids and Structures,44(5):1409-1422.
    [21]Chen, J.Y., Chen, H.L., Pan, E. (2006) Free vibration of functional graded, magneto-electro-elastic, and multilayered plates. Acta Mechanica Solida Sinica, 19(2):160-166.
    [22]Chen, J.Y., Pan, E., Chen, H.L. (2007) Wave propagation in magneto-electro-elastic multilayered plates. International Journal of Solids and Structures,44(3-4):1073-1085.
    [23]Chen, J.Y., Chen, W.Q. (2007) 3D analytical solution for a rotating transversely isotropic annular plate of functionally graded materials. Journal of Zhejiang University (SCIENCE A),8(7):1038-1043.
    [24]Chen, J.Y., Ding, H.J., Chen, W.Q. (2007) Three-dimensional analytical solution for a rotating disc of piezoelectric functionally graded materials with transverse isotropy. Archive of Applied Mechanics,77(4):241-251.
    [25]Chen, W.Q., Shioya, T., Ding, H.J. (1999) The elasto-electric field for a rigid conical punch on a transversely isotropic piezoelectric half-space. Journal of Applied Mechanics,66: 764-771.
    [26]Chen, W.Q., Ding, H.J. (2000) Bending of functionally graded piezoelectric rectangular plates. Acta Mechanica Solida Sinica,13:312-319.
    [27]Chen, W.Q., Ding, H.J. (2002) On free vibration of a functionally graded piezoelectric rectangular plate. Acta Mechanica,153:207-216.
    [28]Chen, W.Q., Lee, K.Y. (2003) Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates. International Journal of Solids and Structures,40:5689-5705.
    [29]Chen, W.Q., Bian, Z.G., Lu, C.F., Ding, H.J. (2004) 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid. International Journal of Solids and Structures,41:947-964.
    [30]Chen, W.Q., Lee, K.Y, Ding, H.J. (2005) On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates. Journal of Sound and vibration,279: 237-251.
    [31]Cheng, Z.Q., Lim, C.W., Kitipornchai, S. (1999) Three-dimensional exact solution for inhomogeneous and laminated piezoelectric plates. International Journal of Solids and Structures,37:1425-1439.
    [32]Cheng, Z.Q., Lim, C.W., Kitipornchai, S. (2000) Three-dimensional asymptotic approach to inhomogeneous and laminated piezoelectric plates. International Journal of Solids and Structures,37:3153-3175.
    [33]Ching, H.K., Yen, S.C. (2005) Meshless local Petrov-Galerkin analysis for 2D functionally graded elastic solids under mechanical and thermal loads. Composites Part B:Engineering, 36:223-40.Ching, H.K., Yen, S.C. (2006) Transient thermoelastic deformations of 2D functionally graded beams under nonuniformly convective heat supply. Composite Structures,73:381-93.
    [35]Cho, J.R., Ha, D.Y. (2002) Optimal tailoring of 2D volume-fraction distributions for heat-resisting functionally graded materials using FDM. Comput. Methods Appl. Mech. Eng.,191:3195-3211.
    [36]Clements, D.L., Kusuma, J., Ang, W.T. (1997) A note on antiplane deformations of inhomogeneous materials. International Journal of Engineering Science,35(6):593-601.
    [37]Clements, D.L., Budhi, W.S. (1999) A boundary element method for the solution of a class of steady-state problems for anisotropic media. Heat Transf,121:462-465.
    [38]Dai, H.T., Cheng, W., Li, M.Z. (2008) Static/dynamic analysis of functionally graded and layered magneto-electro-elastic plate/pipe under Hamiltonian system. Chinese Journal of Aeronautics,21:35-42.
    [39]Delale, F., Erdogan, F. (1983) The crack problem for nonhomogeneous plane. Journal of Applied Mechanics,50(3):609-614.
    [40]Dhaliwal, R.S., Singh, B.M. (1978) On the theory of elasticity of a non-homogeneous medium. Journal of Elasticity,8(2):211-219.
    [41]Ding, H.J., Chen, W.Q., Guo, Y.M., Yang, Q.D. (1997) Free vibration of piezoelectric cylindrical shells filled with compressible fluid. International Journal of Solids and Structures,34:2025-2034.
    [42]Ding, H.J., Peng, N.L., Li, Y. (1998) The Wedge Subjected to tractions proportional to rn: A Paradox Resolved. Int. J. Solids and Structures,35(20):2695-2714.
    [43]Ding, H.J., Chen, W.Q., Xu, R.Q. (2000a) New state space formulations for transversely isotropic piezoelasticity with application. Mechanics Research Communications,27: 319-326.
    [44]Ding, H.J., Xu, R.Q., Chi, Y.W., Chen, W.Q. (2000b) Free axisymmetric vibration of transversely isotropic piezoelectric circular plates. International Journal of Solids and Structures,36:4629-4652.
    [45]Ding, H.J., Chen, W.Q. (2001) Three Dimensional Problems of Piezoelasticity. New York: Nova Science Publishers.
    [46]Ding, H.J., Jiang, A.M. (2004) A boundary integral formulation and solution for 2D problems in magneto-electro-elastic media. Computers and Structures,82:1599-1607.
    [47]Ding, H.J., Huang, D.J., Chen, W.Q. (2007) Elasticity solutions for plane anisotropic functionally graded beams. International Journal of Solids and Structures,44(1):176-196.
    [48]Elishakoff, I. (2005) Closed-form solutions for axially graded beam-columns. Journal of Sound and Vibration,280:1083-1094.
    [49]Elishakoff, I., Johnson V. (2005) Apparentlythe first closed-form solution of vibrating inhomogeneous beam with a tip mass. Journal of Sound and Vibration,286:1057-1066.
    [50]Elishakoff, I., Pentaras, D. (2006) Apparently the first closed-form solution of inhomogeneous elastically restrained vibrating beams. Journal of Sound and Vibration,298: 439-445.
    [51]Feng, K., Wu, H.M., Qin, M.Z., Wang, D.L. (1989) Construction of canonical difference schemes for Hamiltonian formulation via generating functions. Journal of Computers in Mathematics and Science Teaching,11:71-96.
    [52]Feng, K., Qin, M.Z. (1991) Hamiltonian algorithms for Hamiltonian systems and a comparative numerical study. Computer Physics Communications,65:173-187.
    [53]He, X.Q., Wang, J.S., Qin, Q.H. (2007) Saint-Venant decay analysis of FGPM laminates and dissimilar piezoelectric laminates. Mechanics of Materials,39:1053-1065.
    [54]Hirai, T. (1996) Functionally graded materials. Material Science and Technology, Processing of Ceramics-Part 2,17B:292.
    [55]Hou G.L., Alatancang. (2008) On the feasibility of variable separation method based on Hamiltonian system for plane magnetoelectroelastic solids. Chinese Physics B,17(8): 2753-2758.
    [56]Hou, P.F., Ding, H.J., Leung, A.Y.T. (2006) The transient responses of a special non-homogeneous magneto-electro-elastic hollow cylinder for axisymmetric plane strain problem. Journal of Sound and Vibration,291(1-2):19-47.
    [57]Huang, D.J., Ding, H.J., Chen, W.Q. (2007a) Analytical solution for functionally graded anisotropic cantilever. Journal of Zhejiang University (SCIENCE A),8(9):1351-1355.
    [58]Huang, D.J., Ding, H.J., Chen, W.Q. (2007b) Analytical solution for functionally graded anisotropic cantilever beam subjected to linearly distributed load. Applied Mathematics and Mechanics,28(7):855-860.
    [59]Huang, D.J., Ding, H.J., Chen, W.Q. (2007c) Piezoelasticity solutions for functionally graded piezoelectric beams. Smart Materials and Structures,16(3):687-695.
    [60]Huang, D.J., Ding, H.J., Chen, W.Q. (2007d) Analytical solution for functionally graded magneto-electro-elastic plane beams. International Journal of Engineering Science, 45(2-8):467-485.
    [61]Huang, D.J., Ding, H.J., Chen, W.Q. (2008) Analysis of functionally graded and laminated piezoelectric cantilever actuators subjected to constant voltage. Smart Materials and Structures,17(1):1-11.
    [62]Huang, D.J., Ding, H.J., Chen, W.Q. (2009a) Analytical solution and semi-analytical solution for anisotropic functionally graded beam subject to arbitrary loading. Science in China(Series G:Physics Mechanics and Astronomy),52(8):1244-1256.
    [63]Huang, D.J., Ding, H.J. Chen, W.Q. (2009b) A Unified Solution for an Anisotropic Functionally Graded Piezoelectric Beam Subject to Sinusoidal Transverse Loads. Journal of Intelligent Material Systems and Structures,20(12):1401-1414.
    [64]Huang, D.J., Ding, H.J., Chen, W.Q. (2010) Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading. European Journal of Mechanics-A/Solids,29(3):356-369.
    [65]Huang, GY., Wang, Y.S., Yu, S.W. (2005) A new model for fracture analysis of functionally graded coatings under plane deformation. Mechanics of Materials,37:507-516.
    [66]Gandhi, M.V., Thompson, B.S. (1992) Smart Materials and Structures. London; New York: Chapman & Hall.
    [67]Gortz, P., Scherer, R. (1997) Hamiltonian systems and symplectic integrators. Nonlinear Analysis, Theory, Methods & Applications,30(3):1887-1892.
    [68]Goupee, A.J., Vel, S.S. (2006) Optimization of natural frequencies of bidirectional functionally graded beams. Structural and Multidisciplinary Optimization,32 (6):473-484.
    [69]Gu, Q., Xu, X.S., Leung, A.Y.T. (2005) Application of Hamiltonian system for two-dimensional transversely isotropic piezoelectric media. Journal of Zhejiang University-Science A,6A (9):915-921.
    [70]Kadoli, R., Akhtar, K. Ganesan, N. (2008) Static analysis of functionally graded beams using higher order shear deformation theory. Applied Mathematical Modelling,32: 2509-2525.
    [71]Ke, L.L., Wang, Y.S. (2006) Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties. International Journal of Solids and Structures,43:5779-5798.
    [72]Kruusing, A. (2000) Analysis and optimization of loaded cantilever beam microactuators. Smart Materials and Structures,9:186-196.
    [73]Kuo, H.Y., Chen, T.Y. (2005) Steady and transient Green's functions for anisotropic conduction in an exponentially graded solid. International Journal of Solids and Structures,42(3-4):1111-1128.
    [74]Lage, R.G., Soares, C.M.M., Soares, C.A.M., Reddy, J.N. (2004) Layerwise partial mixed finite element analysis of magneto-electro-elastic plates. Computers and Structures,82: 1293-1301.
    [75]Lee, J. S., Jiang, L. Z. (1996) Exact electroelastic analysis of piezoelectric laminae via state space approach. International Journal of Solids and Structures,33:977-990.
    [76]Leung, A.Y.T., Mao, G. (1992) Symplectic integration of an accurate beam finite element in nonlinear vibration. Computers & structures,54(6):1135-1147.
    [77]Leung, A.Y.T., Mao, G. (1995) A Symplectic Galerkin method for non-linear vibration of beams and plates. Journal of Sound and vibration,183(3):475-491.
    [78]Leung, A.Y.T., Zheng, J.J. (2007) Closed form stress distribution in 2D elasticity for all boundary conditions. Applied Mathematics and Mechanics,28(12):1629-1642.
    [79]Leung, A.Y.T, Xu, X.S., Gu, Q., Leung, C.T.O., Zheng, J.J. (2007) The boundary layer phenomena in two-dimensional transversely isotropic piezoelectric media by exact symplectic expansion. International Journal for Numerical Methods in Engineering,69: 2381-2408.
    [80]Leung, A.Y.T., Zheng, J.J., Lim, C.W., Zhang, X.C., Xu, X.S., Gu, Q. (2008) A new symplectic approach for piezoelectric cantilever composite plates. Computers & structures, 86:1865-1874.
    [81]Leung A.Y.T., Xu, X.S., Zhou, Z.H., Wu, Y.F. (2009) Analytic stress intensity factors for finite elastic disk using symplectic expansion. Engineering Fracture Mechanics,76(12): 1866-1882.
    [82]Li, X.Y., Ding, H.J., Chen, W.Q. (2006) Pure bending of simply supported circular plate of transversely isotropic functionally graded material. Journal of Zhejiang University (SCIENCEA),7(8):1324-1328.
    [83]Li, X.Y., Ding, H.J., Chen, W.Q. (2008a) Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qrk International Journal of Solids and Structures,45(1):191-210.
    [84]Li, X.Y., Ding, H.J., Chen, W.Q. (2008b) Axisymmetric elasticity solutions for a uniformly loaded annular plate of transversely isotropic functionally graded materials. Acta Mechanica,196(3-4):139-159.
    [85]Li, X.Y., Ding, H.J., Chen, W.Q. (2008c) Three-dimensional analytical solution for a transversely isotropic functionally graded piezoelectric circular plate subject to a uniform electric potential difference. Science in China(Series G:Physics Mechanics and Astronomy),51(8):1116-1125.
    [86]Li, X.Y., Ding, H.J., Chen, W.Q. (2008d) Three-dimensional analytical solution for functionally graded magneto-electro-elastic circular plates subjected to uniform load. Composite Structures,83(4):381-390.
    [87]Lim, C.W., Cui, S, Yao, W.A. (2007) On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported. International Journal of Solids and Structures,44:5396-5411.
    [88]Lim, C.W., Yao, W.A., Cui, S. (2008) Benchmarks of analytical symplectic solutions for bending of corner-supported rectangular thin plates. The IES Journal Part A:Civil & Structural Engineering,1(2):106-115.
    [89]Lim, C.W., Lu, C.F., Xiang, Y., Yao, W. (2009) On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. International Journal of Engineering Science,47:131-140.
    [90]Liu, Y.M., Li, R. (2010) Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach. Applied Mathematical Modelling,34(4):856-865.
    [91]Lu, P., Lee, H.P., Lu, C. (2006) Exact solutions for simply supported functionally graded piezoelectric laminates by Stroh-like formalism. Composite Structures,72:352-363.
    [92]Lii, C.F., Chen, W.Q. (2005) Free vibration of orthotropic functionally graded beams with various end conditions, Structural Engineering and Mechanics,20(4):465-476.
    [93]Lii, C.F., Chen, W.Q., Zhong, Z. (2006) Two-dimensional thermoelasticity solution for functionally graded thick beams. Science in China (Series G),49(4):451-460.
    [94]Lii, C.F., Chen, W.Q., Xu, R.Q., Lim, C.W. (2008) Semi-analytical elasticity solutions for bi-directional functionally graded beams. International Journal of Solids and Structures, 45(1):258-275.
    [95]Lu, C.F., Lim, C.W., Chen, W.Q. (2009a) Exact solutions for free vibrations of functionally graded thick plates on elastic foundations. Mechanics of Advanced Materials and Structures,16(8):576-584.
    [96]Lu, C. F., Lim, C. W., Chen, W.Q. (2009b) Semi-analytical analysis for multi-directional functionally graded plates:3-D elasticity solutions. International Journal for Numerical Methods in Engineering,79(1):25-44.
    [97]Maalej, M., Ahmed, S.F.U., Paramasivam, P. (2003) Corrosion durability and structural response of functionally-graded concrete beams. Journal of Advanced Concrete Technology,1(3):307-316.
    [98]Malekzadeh, P. (2009) Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations. Composite Structures,89:367-373.
    [99]Marin, M. (2005) Numerical solution of the Cauchy problem for steady-state heat transfer in two-dimensional functionally graded materials. International Journal of Solids and Structures,42:4338-4351.
    [100]Musielak, Z.E., Roy, D., Swift, L.D. (2008) Method to derive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coefficients. Chao, Solitons and Fractals,38(3):894-902.
    [101]Nemat-Alla, M., Noda, N. (1996a) Thermal stress intensity factor for functionally gradient half space with an edge crack under thermal load. Archive of Applied Mechanics,66: 569-580.
    [102]Nemat-Alla, M., Noda, N. (1996b) Study of an edge crack problem in a semi-infinite functionally graded medium with two dimensionally non-homogenous coefficient of thermal expansion under thermal load. Journal of Thermal Stresses,19:863-888.
    [103]Nemat-Alla, M., Noda, N. (2000) Edge crack problem in a semi-infinite FGM plate with a bi-directional coefficient of thermal expansion under two-dimensional thermal loading. Acta Mechanics,144:211-229.
    [104]Nemat-Alla, M., Noda, N., Hassab-Allah, I. (2001) Analysis and investigation of thermal stress intensity factor for edge cracked FGM plates. Bulletin of the Faculty of Engineering, Assiut university, Egypt,29:89-102.
    [105]Nemat-Alla, M. (2003) Reduction of thermal stresses by developing two-dimensional functionally graded materials. International Journal of Solids and Structures,40(26): 7339-7356.
    [106]Nemat-Alla, M., Ahmed, K.I.E., Hassab-Allah, I. (2009) Elastic-plastic analysis of two-dimensional functionally graded materials under thermal loading. International Journal of Solids and Structures,46(14-15):2774-2786.
    [107]Nie, G.J., Zhong, Z. (2007) Semi-analytical solution for three-dimensional vibration of functionally graded circular plates. Computer Methods in Applied Mechanics and Engineering,196:4901-4910.
    [108]Nie G.J., Zhong, Z. (2008) Vibration analysis of functionally graded annular sectorial plates with simply supported radial edges. Composite Structures,84:167-176.
    [109]Nie, G.J., Zhong, Z. (2010) Dynamic analysis of multi-directional functionally graded annular plates. Applied Mathematical Modelling,34:608-616.
    [110]Ouyang, H.J., Zhong, W.X. (1994) A Finite strip method in Hamiltonian formulation. Computer & structures,53(2):241-244.
    [111]Pan, E. (2001) Exact solution for simply supported and multilayered magneto-electro-elastic plates. Journal of Applied Mechanics,68:608-618.
    [112]Pan, E., Heyliger, P.R. (2002) Free vibrations of simply supported and multilayered magneto-electro-elastic plates. Journal of Sound and Vibration,252:429-442.
    [113]Pan, E. (2003) Exact solution for functionally graded anisotropic elastic composite laminates. Journal of Composite Materials,37(21):1903-1920.
    [114]Pan, E., Heyliger, P.R. (2003) Exact solutions for magneto-electro-elastic laminates in cylindrical bending. International Journal of Solids and Structures,40:6859-6876.
    [115]Pan, E., Han, F. (2005) Exact solution for functionally graded and layered magneto-electro-elastic plates. International Journal of Engineering Science,43(3-4): 321-339.
    [116]Pestel, E.C., Leckie, F.A. (1963) Matrix Methods in Elasto Mechanics. New York: McGraw-Hill.
    [117]Priya, S., Islam, R., Dong, S.X., Viehland, D. (2007) Recent advancements in magnetoelectric particulate and laminate composites. Journal of Electrocearmics,19: 147-164.
    [118]Qian, L.F., Ching, H.K. (2004) Static and dynamic analysis of 2D functionally graded elasticity by using meshless local Petrov-Galerkin method. Journal of the Chinese Institute of Engineers,27:491-503.
    [119]Qiang, G., Zhong, W.X., Howson, W.P. (2004) A precise method for solving wave propagation problems in layered anisotropic media. Wave Motion,40:191-207.
    [120]Ramirez, F., Heyliger, P.R., Pan, E. (2006a) Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates. Mechanics of Advanced Materials and Structures,13:249-266.
    [121]Ramirez, F., Heyliger, P.R., Pan, E. (2006b) Free vibration response of two-dimensional magneto-electro-elastic laminated plates. Journal of Sound and Vibration,292:626-644.
    [122]Ruan, X.P., Stephen, C.D., Ahmad, S., Chou, T.W. (2000) Saint-Venant end effects in piezoceramic materials. International Journal of Solids and Structures,37:2625-2637.
    [123]Sankar, B.V. (2001) An elastic solution for functionally graded beams. Composites Science and Technology,61(5):689-696.
    [124]Shi, Z.F. (2002) General solution of a density functionally gradient piezoelectric cantilever and its applications. Smart Materials and Structures,11:122-129.
    [125]Shi, Z.F., Chen, Y. (2004) Functionally Graded Piezoelectric Cantilever Beam under Load. Archive of Applied Mechanics,74(34):237-247.
    [126]Sih, G.C., Chen, E.P. (2003) Dilatational and distortional behavior of cracks in magneto-electroelastic materials. Theoretical and Applied Fracture Mechanics,40:1-21.
    [127]Sina, S.A., Navazi, H.M., Haddadpour, H. (2009) An analytical method for free vibration analysis of functionally graded beams. Materials and Design,30:741-747.
    [128]Steinberg, M.A. (1986) Materials for aerospace. Scientific American,255(4),59-64.
    [129]Steele, C.R., Kim, Y.Y. (1992) Modified mixed variational principle and the state vector equation for elastic bodies and shells of revolution. Journal of Applied Mechanics,59: 587-595.
    [130]Stephen, N.G. (2004) State Space Elastostatics of Prismatic Structures. International Journal of Mechanical Sciences,46(9):1327-1347.
    [131]Stephen, N.G., Ghosh, S. (2005) Eigenanalysis and continuum modelling of a curved repetitive beam-like structure. International Journal of Mechanical Sciences,47: 1854-1873.
    [132]Stephen, N.G., Zhang, Y. (2006) Eigenanalysis and continuum modeling of pre-twisted repetitive beam-like structures. International Journal of Solids and Structure,43: 3832-3855.
    [133]Stephen, N.G. (2006) Transfer matrix analysis of the elastostatics of one-dimensional repetitive structures. Proceedings of the Royal Society of London,462:2245-2270.
    [134]Suresh, S., Mortensen, A. (1998) Fundamentals of Functionally Graded Materials. London: Maney.
    [135]Sutradhar, A., Paulino, G.H. (2004) The simple boundary element method for transient heat conduction in functionally graded material. Computer Methods in Applied Mechanics and Engineering,193(42-44):4511-4539.
    [136]Tarn, J.Q. (2002a) A state space formalism for anisotropic elasticity. Part Ⅰ:Rectilinear anisotropy. International Journal of Solids and Structures,39(20):5143-5155.
    [137]Tarn, J.Q. (2002b) A state space formalism for anisotropic elasticity. Part Ⅱ:Cylindrical anisotropy. International Journal of Solids and Structures,39(20):5157-5172.
    [138]Tarn, J.Q. (2002c) A state space formalism for piezothermoelasticity. International Journal of Solids and Structures,39(20):5173-5184.
    [139]Tarn, J.Q., Huang L.J. (2002d) Saint-Venant end effects in multilayered piezoelectric laminates. International Journal of Solids and Structures,39:4979-4998.
    [140]Tarn, J.Q., Chang, H.H. (2008a) A refined state space formalism for piezothermoelasticity. International Journal of Solids and Structures,45:3021-3032.
    [141]Tarn, J.Q., Chang, H.H. (2008b) Torsion of cylindrically orthotropic elastic circular bars with radial inhomogeneity:some exact solutions and end effects. International Journal of Solids and Structures,45:303-319.
    [142]Tarn, J.Q., Tseng, W.D., Chang, H.H. (2009a) A circular elastic cylinder under its own weight. International Journal of Solids and Structures,46(14-15):2886-2896.
    [143]Tarn, J.Q., Chang, H.H., Tseng, W.D. (2009b) Axisymmetric deformation of a transversely isotropic cylindrical body:a Hamiltonian state-space approach. Journal of Elasticity,91(2):131-154.
    [144]Timoshenko, S.P., Goodier, J.N. (1970) Theory of Elasticity. New York:McGraw-Hill.
    [145]Tsai, Y.H., Wu, C.P., Syu, Y.S. (2008) Three-dimensional analysis of doubly curved functionally graded magneto-electro-elastic shells. European Journal of Mechanics-A/ Solids,27(1):79-105.
    [146]Tsai, Y.H., Wu, C.P. (2008) Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. International Journal of Engineering Science,46(9):843-857.
    [147]Tupper, P.F. (2007) Computing statistics for Hamiltonian systems:A case study. Journal of Computational and Applied Mathematics,205:826-834.
    [148]Wang, J.G, Chen, L.F., Fang, S.S. (2003) State vector approach to analysis of multilayered magneto-electro-elastic plates. International Journal of Solids and Structures,40: 1669-1680.
    [149]Wang, J.G., Qu, L., Qian, F. (2010) State vector approach of free-vibration analysis of magneto-electro-elastic hybrid laminated plates. Composite Structures,92:1318-1324.
    [150]Wang, J.S., Qin, Q.H. (2007) A symplectic model for piezoelectric wedges and its application to analysis of electroelastic singularities. Philosophical Magazine,87:225-251.
    [151]Wu, B., Yu, J.G., He, C.F. (2008) Wave propagation in non-homogeneous magneto-electro-elastic plates. Journal of Sound and Vibration,317:250-264.
    [152]Wu, C.P., Lo, J.Y., Chao, J.K. (2005) A three-dimensional asymptotic theory of laminated piezoelectric shells. Computers, Materials & Continua,2(2):119-137.
    [153]Wu, C.P., Lo, J.Y. (2006) An asymptotic theory for dynamic response of laminated piezoelectric shells. Acta Mechanica,183:177-208.
    [154]Wu, C.P., Syu, Y.S., Lo, J.Y. (2007) Three-dimensional solutions of multilayered piezoelectric hollow cylinders by an asymptotic approach. International Journal of Mechanical Sciences,49:669-689.
    [155]Wu, C.P., Tsai, Y.H. (2007) Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. International Journal of Engineering Science,45:744-69.
    [156]Wu, C.P., Lu, Y.C. (2009) A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates. Composite Structures,90(3):363-372.
    [157]Wu, C.P., Tsai, Y.H. (2010) Dynamic responses of functionally graded magneto-electro-elastic shells with closed-circuit surface conditions using the method of multiple scales. European Journal of Mechanics A/Solids,29:166-181.
    [158]Wu, C. P., Chen, S.J. Chiu, K.H. (2010) Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method. Mechanics Research Communications,37(1):54-60.
    [159]Wu, L., Wang, Q.S., Elishakoff, I. (2005) Semi-inverse method for axially functionally graded beams with an anti-symmetric vibration mode. Journal of Sound and Vibration,284: 1190-1202.
    [160]Wang, J.S., Qin, Q.H. (2007) A symplectic model for piezoelectric wedges and its application to analysis of electroelastic singularities. Philosophical Magazine,87: 225-251.
    [161]Xiang, H.J., Yang, J. (2008) Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Composites:Part B,39:292-303.
    [162]Xu, X.S., Zhong, W.X., Zhang, H.W. (1997) The Saint-Venant problem and principle in elasticity. International Journal of Solids and Structures,34:2815-2827.
    [163]Xu, X.S., Gu Q., Leung, A.Y.T. (2005) A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media. Journal ofZhejiang University,6A (9):922-927.
    [164]Xu, X.S., Ma, Y., Lim, C.W., Chu, H.J. (2006a) Dynamic buckling of cylindrical shells subject to an axial impact in a symplectic system. International Journal of Solids and Structures,43(13):3905-3919.
    [165]Xu, X.S., Zhang, W.X., Li, X., Wang, G.P. (2006b) An application of the symplectic system in two-dimensional viscoelasticity. International Journal of Engineering Science, 44:897-914.
    [166]Xu, X.S., Chu, H.J., Lim, C.W. (2008a) Hamiltonian system for dynamic buckling of transversely isotropic cylindrical shells subjected to an axial impact. International Journal of Structural Stability and Dynamics,8(3):487-504.
    [167]Xu, X.S., Leung, A.Y.T., Gu, Q., Yang, H., Zheng, J.J. (2008b) 3D symplectic expansion for piezoelectric media. International Journal for Numerical Method in Engineering,74: 1848-1871.
    [168]Xu, X.S., Ma, J.Q., Lim, C.W. Chu, H.J. (2009) Dynamic local and global buckling of cylindrical shells under axial impact. Engineering Structures,31(5):1132-1140.
    [169]Xu, X.S., Ma, J.Q., Lim, C.W., Zhang, G. (2010) Dynamic torsional buckling of cylindrical shells. Computers & Structures,88(5-6):322-330.
    [170]Yang, B., Ding, H.J., Chen, W.Q. (2008) Elasticity solutions for functionally graded plates in cylindrical bending. Applied Mathematics and Mechanics,29(8):999-1004.
    [171]Yang, B., Ding, H.J., Chen, W.Q. (2008) Elasticity solutions for a uniformly loaded annular plate of functionally graded materials. Structural Engineering and Mechanics, 30(4):501-512.
    [172]Yang, B., Ding, H.J. and Chen, W.Q. (2009) Elasticity solutions for a uniformly loaded rectangular plate of functionally graded materials with two opposite edges simply supported. Acta Mechanica,207(3-4):245-258.
    [173]Yao, W.A., Zhong, W.X., Su, B. (1999) New solution system for circular sector plate bending and its application. ACTA Mechanics Solida Sinica,12(4):307-315.
    [174]Yao, W.A., Xu, C. (2001) A restudy of paradox on an elastic wedge based on the Hamiltonian system. Journal of Applied Mechanics,68:678-681.
    [175]Yao, W.A., Zhong, W.X. (2001) Hamiltonian system based Saint Venant solutions for multi-layered composite plane anisotropic plates. International Journal of Solids and Structures,38:5807-5817.
    [176]Yao, W.A., Sui, Y.F. (2004) Symplectic solution system for Reissner plate bending. Applied Mathematics and Mechanics (English Edition),25(2):178-185.
    [177]Yao, W.A., Li, X.C. (2006) Symplectic duality system on plane magnetoelectroelastic solids. Applied Mathematics and Mechanics (English Edition),27(2):195-205.
    [178]Ying, J., Lu, C.F., Chen, W.Q. (2008) Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Composite Structures,84:209-219.
    [179]Zhai, J.Y, Xing, Z.P., Dong, S.X., Li, J.F., Viehland, D. (2008) Magnetoelectric laminate composites:An overview. Journal of the American Ceramic Society,91:351-358.
    [180]Zhang, C.L., Yang, J.S., Chen, W.Q. (2008) Magnetoelectric effects in laminated multiferroic shells. International Journal of Electromagnetics and Mechanics,28:441-454.
    [181]Zhang, C.L., Chen, W.Q., Li, J.Y, Yang, J.S. (2009) Two-dimensional analysis of magnetoelectric effects in multiferroic laminated plates. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,56:1046-1053.
    [182]Zhang, C.L., Chen, W.Q., Li, J.Y., Yang, J.S. (2009) One-dimensional equations for piezoelectromagnetic beams and magnetoelectric effects in fibers. Smart Materials and Structures,18:095026.
    [183]Zhang, H.W., Zhong, W.X., Li, Y.P. (1996) Stress singularity analysis at crack tip on bi-material interfaces based on Hamiltonian principle. ACTA Mechanics Solida Sinica,9: 124-138.
    [184]Zhang, H.W., Yao, Z., Wang, J.B., Zhong W.X. (2007) Phonon dispersion analysis of carbon nanotubes based on inter-belt model and symplectic solution method. International Journal of Solids and Structures,44:6428-6449.
    [185]Zhang, W.X., Xu, X.S. (2008) A symplectic method in 2D thermo-viscoelasticity. Journal of University of Science and Technology of China,38(2):200-206.
    [186]Zhong, Y., Li, R. (2009) Exact bending analysis of fully clamped rectangular thin plates subjected to arbitrary loads by new symplectic approach. Mechanics Research Communications,36(6):707-714.
    [187]Zhong, Y., Li, R., Liu, Y.M., Tian, B. (2009) On new symplectic approach for exact bending solutions of moderately thick rectangular plates with two opposite edges simply supported. International Journal of Solids and Structures,46(11-12):2506-2513.
    [188]Zhong, W.X., Williams, F.W. (1994) On the direct solution of wave-propagation for repetitive structures. Journal of Sounds and Vibrations,181:485-501.
    [189]Zhong, W.X., Lin, J.H., Zhu, J.P. (1994) Computation of gyroscopic systems and symplectic eigensolutions of skew-symmetric matrices. Computer & structures,52(5): 999-1009.
    [190]Zhong, W.X., Yao, W.A. (1997) The Saint Venant solutions of multi-layered composite plates. Advances in Structural Engineering,1(2):127-133.
    [191]Zhong, W.X., Williams, F.W., Leung, A.Y.T. (2003) Symplectic analysis for periodical electro-magnetic waveguides. Journal of Sound and Vibration,267:227-244.
    [192]Zhong, Z., Shang, E.T. (2003) Three-dim ensional exact analysis of a simply supported functionally gradient piezoelectric plate. International Journal of Solids and Structures,40: 5335-5352.
    [193]Zhong, Z., Yu, T. (2007) Analytical solution of a cantilever functionally graded beam. Composites Science and Technology,67:481-488.
    [194]Zhu, H., Sankar, B. V. (2004) A Combined Fourier Series-Galerkin Method for the Analysis of Functionally Graded Beams. Journal of Applied Mechanics,71(3):421-424.
    [195]Zou G.P., Tang, L.M. (1995a) A semi-analytical solution for laminated composite plates in Hamiltonian system. Computer Methods in Applied Mechanics and Engineering, 128(3-4):395-404.
    [196]Zou G.P., Tang, L.M. (1995b) A semi-analytical solution for thermal stresses analysis of laminated composite plates in the Hamiltonian system. Computer & structures,55(1): 113-118.
    [197]Zou, G. (1998) An exact symplectic geometry solution for the static and dynamic analysis of Reissner plates. Computer Methods in Applied Mechanics and Engineering,156: 171-178.
    [198]边祖光.(2005)功能梯度材料板壳结构的耦合问题研究.浙江大学博士学位论文.杭州:浙江大学.
    [199]边祖光,陈伟球,丁皓江.(2005)界面特性对功能梯度智能梁静动态响应的影响研究. 固体力学学报,26(4):466-472.
    [200]边文凤,孙芳,王彪.(2005)哈密顿体系下机电耦合问题的基本方程.计算力学学报,22(4):411-414.
    [201]代海涛,程伟,李明志.(2007) Hamilton体系下的功能梯度电磁弹性固体内的导波研究.振动与冲击,26(12):79-83.
    [202]方诗圣,柳彬彬,王建国.(2008)功能梯度压电矩形板热机电耦合三维分析.合肥工业大学学报,31(3):407-411.
    [203]方纯,仲政.(2008)基于Haar小波方法的功能梯度压电材料矩形板三维力学分析.工程力学,25(11):205-211.
    [204]冯康,秦孟兆.(2003)哈密尔顿系统的辛几何算法.杭州:浙江科学技术出版社.
    [205]黄彬彬,石志飞.(2002)梯度功能压电悬臂梁的几个解析解.复合材料学报,19(4):106-113.
    [206]李翔宇.(2007)横观各向同性功能梯度圆板和环板的轴对称问题.浙江大学博士学位论文.杭州:浙江大学.
    [207]罗建辉,刘光栋.(2003)各向同性平面弹性力学求解新体系正交关系的研究.计算力学学报,20(2):199-203.
    [208]罗建辉,龙驭球,刘光栋.(2004)薄板理论的正交关系及其变分原理.力学学报,36(5):527-532.
    [209]吕朝锋,陈伟球,仲政.(2006)功能梯度厚梁的二维热弹性力学解.中国科学:G缉,36(4):384-392.
    [210]马坚伟,徐新生,杨慧珠,钟万勰.(2002)基于哈密顿体系求解空间粘性流体问题.工程力学,19(3):1-6.
    [211]聂国隽,仲政.(2009)功能梯度磁电弹性圆板的三维动力特性分析.同济大学学报(自然科学版),37(6):749-754.
    [212]尚尔涛,仲政.(2003)功能梯度热释电材料平板柱形弯曲问题的精确解.应用力学学报,20(4):122-125.
    [213]石志飞,黄彬彬,杜善义.(2001a)功能材料力-电耦合问题的几个基本解-(Ⅰ)悬臂梁受力偶作用.复合材料学报,18(1):105-108.
    [214]石志飞,黄彬彬,杜善义.(2001b)功能材料力-电耦合问题的几个基本解-(Ⅱ)悬臂梁梁端受轴向集中力作用.复合材料学报,18(1):109-111.
    [215]唐立民.(1992)混合状态Hamilton元的半解析解和叠层板的计算.计算结构力学及应用,9(4):347-360.
    [216]王艳,邓子辰.(2008a) Hamilton体系下环扇形域的Stokes流动问题.计算力学学报,25(2):144-149.
    [217]王艳,邓子辰.(2008b) Stokes流问题的环向辛对偶求解方法.机械科学与技术,27(3):374-378.
    [218]伍晓红,沈亚鹏.(2003)压电功能梯度板自由振动的三维解.固体力学学报,24:75-82.
    [219]校金友,张铎,白宏伟.(2005)用应力函数法求功能梯度梁的弹性理论解.强度与环境,32(4):17-21.
    [220]徐新生,钟万勰.(1995) Hamilton体系下的二维非线性浅水波.大连理工大学学报,35(6):796-800.
    [221]徐新生,王尕平.(2006) Stokes流问题中的辛本征解方法.力学学报,38(5):682-687.
    [222]徐新生,张维祥,李雪.(2007)粘弹性厚壁筒问题的辛本征解方法.计算力学学报,24(2):153-158.
    [223]徐新生,邱文彪,周震寰,褚洪杰.(2008a)哈密顿体系下的弹性圆板热屈曲问题.大连理工大学学报,48(1):1-5.
    [224]徐新生,王尕平,孙发明.(2008b)二维矩形域内Stokes流问题的辛解析和数值方法.应用数学与力学,29(6):639-648.
    [225]杨正光,仲政,戴瑛.(2004)功能梯度矩形板的三维弹性分析.力学季刊,25(1):15-20.
    [226]姚伟岸.(2001)极坐标哈密顿体系约当型与弹性楔的佯谬解.力学学报,33(1):79-86.
    [227]姚伟岸,钟万勰.(2002)辛弹性力学.北京:高等教育出版社.
    [228]姚伟岸.(2004)电磁弹性固体反平面问题辛求解体系及圣维南原理.大连理工大学学报,44(5):630-633.
    [229]于涛,仲政.(2006a)均布荷载作用下功能梯度悬臂梁弯曲问题的解析解.固体力学学报,27(1):15-20.
    [230]于涛,仲政.(2006b)功能梯度压电悬臂梁的弯曲分析.中国科学G辑,36(5):518-529.
    [231]张琳楠,石志飞.(2002)简支梯度压电梁的解析解.北方交通大学学报,26:71-76.
    [232]章梓茂,石志飞,黄彬彬.(2001)功能材料力-电耦合问题的几个基本解-(Ⅲ)悬臂梁梁端受轴向集中力.复合材料学报,18(1):112-114.
    [233]张赤东,周建方.(2003) Hamilton体系的弹性力学数值解法.河海大学常州分校学报,17(4):10-14.
    [234]钟万勰.(1991)条形域平面弹性问题与哈密尔顿体系.大连理工大学学报,31(4):373-384.
    [235]钟万勰.(1994)弹性平面扇形域问题及哈密顿体系.应用数学与力学,12(15):1058-1066.
    [236]钟万勰.(1995)弹性力学求解新体系.大连:大连理工大学出版社.
    [237]钟万勰,姚伟岸.(1999)板弯曲求解辛体系及其应用.力学学报,31(2):173-183.
    [238]钟阳,刘铭山,胡培能,陈绍强.(2003)弹性矩形薄板问题的辛几何法.广州大学学报(自然科学版),2(2):109-122.
    [239]钟阳,张永山.(2005)弹性地基上矩形薄板问题的Hamilton正则方程及解析解.固体力学学报,26(3):325-328.
    [240]仲政,于涛.(2006)功能梯度悬臂梁弯曲问题的解析解.同济大学学报:自然科学版,34(4):443-447.
    [241]朱昊文,李尧臣,杨昌锦.(2005)功能梯度压电材料板的有限元解.力学季刊,26(4):567-571.
    [242]周建方,卓家寿,李典庆.(2000a) Hamilton体系下弹性力学半解析法的一个守恒律.河海大学学报,28(5):41-43.
    [243]周建方,卓家寿,李典庆.(2000b)基于Hamilton方法的有限元.河海大学常州分校学报,14(3):1-6.
    [244]周建方,卓家寿.(2001)极坐标下弹性力学的一个新解答.力学学报,33(6):839-846.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700