圆截面梁的高阶理论和梯度梁的动静态与稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由金属和陶瓷组成的功能梯度材料相比于金属或陶瓷的单一材料具有更好的陶瓷热阻能力和更强的机械性能,被广泛应用于航空航天,汽车,国防工业等领域。本论文建立了圆截面柱形梁杆的高阶理论,基于该理论模型讨论了径向功能梯度圆截面梁杆的弯曲、自由振动和屈曲问题,与Euler-Bernoulli梁和Timoshenko梁理论等经典模型不同,我们的解可以满足梁的圆周边界自由条件。另外,提出了一种解析的积分方程方法来处理轴向功能梯度Euler-Bernoulli梁的自由振动和屈曲问题。前一部分从弹性力学基本方程出发我们得到了均匀和径向功能梯度圆截面梁的弯曲、自由振动和屈曲时的耦合控制方程,建立了圆截面梁的高阶理论;后三章主要研究材料性质轴向任意连续变化的功能梯度材料和变截面Euler-Bernoulli梁的自由振动和屈曲问题。每一章都给出了利用新方法讨论计算相关问题的数值结果,以及与精确解和其他文献的数值结果对比,这些都表明本文方法研究圆截面功能梯度梁力学性质的有效性。
     本文取得主要成果如下:
     (1)建立了圆截面梁的高阶理论。基于圆周上应力自由的边界条件,我们构造出了轴向位移的表达式,并进一步建立了关于挠度和转角的两个耦合方程,且分析了均匀圆截面梁弯曲和自由振动问题。与Euler-Bernoulli梁,Timoshenko梁理论不同的是,构建中我们既考虑了剪切变形和惯性矩的影响,又不需要做出截面上剪力恒定的假设和引入类似于Timoshenko梁中的修正剪切系数,而且满足了圆周上的边界自由条件。将著名的Levinsion梁对矩形截面的高阶理论扩展到了圆截面梁。利用高阶理论讨论圆截面梁的动静态问题与三维弹性理论得到的数值结果比较吻合。
     (2)利用建立的高阶理论模型分析径向功能梯度圆截面梁的弯曲、自由振动,这种径向变化可以是任意的连续变化。给出了各种常见边界条件下功能梯度梁弯曲时的应力和位移分布与自由振动的自然频率及模态特征方程,研究了幂函数梯度参数对挠度、应力分布、自然频率等影响,并将高阶理论模型应用于求解圆柱壳的自由振动问题。
     (3)利用建立的高阶理论研究了径向功能梯度圆截面梁的稳定性问题。给出了利用高阶理论与Euler-Bernoulli梁和Timoshenko梁计算功能梯度梁屈曲时的临界荷载之间的关系,研究了剪切模量和材料梯度性质对临界荷载的影响,并讨论了双壁碳纳米管的屈曲问题。
     (4)分析了材料性质沿轴线方向任意连续变化的功能梯度梁和变截面梁的自由振动性质。结合梁两端的边界条件利用积分方法,提出了将微分控制方程转化为对应的Fredholm积分方程,然后通过模态的级数展开使得自由振动低阶和高阶的自然频率都由特征多项式方程确定。
     (5)研究材料性质沿轴线方向任意连续变化的功能梯度梁和变截面梁的稳定性,以及在弹性约束下的屈曲问题。利用新方法使得临界荷载由特征多项式方程确定,而且基于这种方法我们给出了简支圆柱形变截面梁的次优化设计分析,发现存在一个最优的设计使得梁的承载能力最强。
Due to the advantages of better thermal resistance of the ceramic phase and exhibiting stronger mechanical performance, functionally graded materials of metals and ceramics have been increasingly used in aerospace, automobile and defence industries. In this thesis, we have established a higher-order theory of circular cylindrical beams. Based on the theory, we have discussed the bending,vibration and buckling behaviors of homogeneous beams and circular cylindrical radially functionally graded beams. Different from other classical beam theories, such as Euler-Bernoulli beam and Timoshenko beam theories, the obtained solutions have satisfied the stress-free condition at the circumferential surface. Moreover, we present an analytical integral method for dealing with the free vibration and buckling of axially functionally graded Euler-Bernoulli beams. In the first part, we have obtained the two coupled governing equations for analyzing the bending,vibration and buckling behaviors of the circular cylindrical radially functionally graded beams starting from the elastic theory. Next we have mainly discussed the free vibration and buckling of functionally graded beams with varying materials properties along the axial direction. Based on the introduced methods, we have given the calculation of related issues in each chapter and compared the results with closed-form solutions as well as the existing numerial results, which show the effectiveness of the method for dealing with circular cylindrical functionally graded beams.
     Specific contents are as follows:
     (1) We have established the higher-order theory of a cicular beam. Based on the traction-free condition at the circumferential surface of the beam, expression for the axial displacements is constructed, then two coupled equations for the deflection and rotation are deduced, and they are used to investigate the bending and vibration of the homogeneous circular cylindrical beam. Different from the Euler-Bernoulli beam and Timoshenko beams, we not only take into account the effects of the rotary inertia and shear deformation, but also need not assume the shear stress uniform or introduce the revised shear correction factor. Moreover, the shear stress-free surface condition is satisfied at the circumferential surface. This higher-order theory is an extension to circular cylindrical beams of the Levinson higher-order beam theory suitable for rectangular beams. The results obtained by the proposed higher-order theory show very good agreement with the results of the three dimensional elastic analysis.
     (2) Based on the higher-order theory, we have studied the bending and free vibration of the circular cylindrical functionally graded beam, where the graded material properties are assumed to vary arbitrarily in the radial direction. For different boundary conditions, we have obtained the bending solutions, such as deflection and stress distribution, and charateristc equations of natural frequencies as well as the characteristic mode equations. The effects of gradient variation on deflection, stress distribution and natural frequencies are analyzed. Moreover, we apply this model to analyze the free vibration of an isotropic circular cylindrical shell.
     (3) We have exploited the higher-order theory to discuss the buckling of radial circular cylindrical functionally graded beam. The relationship of critical buckling loads, which is calculated through different beam theories, has been given. The effects of shear deformation and gradient variation critical buckling loads are analyzed. Furthermore, we have investigated the buckling behaviors of double-walled carbon nanotubes based on the higher-order theory.
     (4) We have analyzed the dynamic behaviors of graded non-uniform beams, where the material properties are assumed to vary arbitrarily in the axial direction. Combining with the boundary condition as well as the integral method, we present a novel approach for transforming the governing equation with varying coefficients to Fredholm integral equations. Then by expanding the mode shapes as power series, the natural frequencies can be determined by the polynomial characteristic equation.
     (5)We have investigated the buckling behaviors of axially graded non-uniform beams, and the buckling of axially non-uniform columns with elastic restrained has also been studied. Through the new method, critical buckling loads can be determined by the polynomial characteristic equation. Based on this method, an suboptimal design of varying cross-section simply supported beam is illustrated for a cylindrical bar. It has been found that there is an optimal design such that the bar achieves its maximum load-carrying capacity.
引文
[1]汤姆逊.振动理论及应用.北京:煤炭工业出版社,1980.
    [2]倪振华.振动力学.西安:西安交通出版社,1995.
    [3]李惠彤.振动理论与工程应用.北京:北京理工大学出版社.
    [4]查杰斯.结构稳定性理论原理.兰州:甘肃人民出版社,1982.
    [5]夏志斌.结构稳定理论.北京:高等教育出版社,1988.
    [6]陈铁云,沈惠申.结构的屈曲.上海:上海科学计算文献出版社.
    [7]康厚军.索拱结构的稳定和振动研究:[博士学位论文].长沙:湖南大学,2007.
    [8]S. Timoshenko. Vibration Problems in Engineering. New York:Wiley,1974.
    [9]E.W. Wong, P.E. Sheehan, C.M. Lieber. Nanobeam mechanics:elasticity, strength, and toughness of nanorods and nanotubes. Science.1997, 277:1971-1975.
    [10]A. Kis, S. Kasas, B. Babic, A.J. Kulik, W.Benoit, G.A.D. Briggs, C. Schonenberger, S. Catsicas, L. Forro. Nanomechanics of microtubules. Phys. Rev. Lett.2002,89:248101.
    [11]韩强,姚小虎.碳纳米管的原子模拟和连续体描述.北京:科学出版社,2007.
    [12]张志民.复合材料结构力学.北京:北京航天航空大学出版社,1993.
    [13]新野正之等.斜倾机能材料.日本复合材料学会志.1987,13(6):257-260.
    [14]高立名.功能梯度材料板中声表面波传播的分析:[博士学位论文].上海:同济大学,2007.
    [15]余茂黎,魏明坤.功能梯度材料的研究动态.功能材料,1992:184-191.
    [16]S.Suresh, A.Mortensen. Fundamentals of functionally graded materials. London:IOM Communication Ltd,1993.
    [17]M. Seyyed, Hasheminejad, M. Rajabi. Acoustic resonance scattering from a submerged functionally graded cylindrical shell. J. Sound. Vib.2007,302: 208-228.
    [18]A.E.H. Love, A Treatise of the Mathematical Theory of Elasticity.4th ed, Dover, New York,1944.
    [19]I. S. Sokolnikoff. Mathematical Theory of Elasticity.2nd ed. New York, McGraw-Hill,1956.
    [20]Y.K. Cheung, C.I. Wu. Free vibrations of thick, layered cylinders having finite
    length with various boundary conditions. J. Sound Vib.1972,24:189-200.
    [21]J. R. Hutchinson. Axisymmetric vibrations of free finite-length rod. J. Acoust. Soc. Am.1972,51:233-240.
    [22]Iesan D. Classical and Generalized Models of Elastic Rods. CRC Press, New York,2009.
    [23]J. R. Hutchinson. Transverse vibrations of beams, exact versus approximate solutions. ASME J. Appl. Mech.1981,48:923-928.
    [24]A.W. Leissa, J. So. Accurate vibration frequencies of circular cylinders from three-dimensional analysis. J. Acoust. Soc. Am.1995,98:2136-2141.
    [25]A. W. Leissa, J. So. Comparisons of vibration frequencies for rods and beams from one-dimensional and three-dimensional analyses. J. Acoust. Soc. Am. 1995,98:2122-2135.
    [26]D.Zhou,F.T.K.Au, S.H.Lo, Y.K.Cheung. Three-dimensional vibration analysis a torus with circular cross section. J. Acoust. Soc. Am.2002,112:2831-2839.
    [27]D.Zhou, Y.K.Cheung, S.H.Lo, F.T.K.Au.3D vibration analysis of solid and hollow circular cylinders via Chebyshev-Ritz method.Computer Methods In Applied Mechanics and Engineering.
    [28]I.A. Karnovsky, O.I. Lebed. Formulas for Structural Dynamics:Tables, Graphs and Solutions. McGraw-Hill, New York,2000.
    [29]S. M. Han, H. B. Benarory, T. Wei. Dynamic of transversely vibrating beams using four engineering theories. J. Sound Vib.1999,225:935-988.
    [30]单辉祖.材料力学.北京:高等教育出版社,2000.
    [31]刘鸿文.材料力学.北京:高等教育出版社,1992.
    [32]C.M.Wang, K.H.Ng, S.Kitipornchai. Stability criteria for Timoshenko columns with intermediate and end concentrated axial loads. J. Construe. Steel. Res.2002,58:1177-1193.
    [33]S. P. Timoshenko. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag.1921,41:744-746.
    [34]S.P.Timoshenko. On the transverse vibrations of bars of uniform cross-section. Philos. Mag.1922,43:125-131.
    [35]Z. Friedman, J.B. Kosmatka. Exact stiffness matrix of a nonuniform beam-Ⅱ. Bending of a timoshenko beam. Comp.Struct.1993,49:545-555.
    [36]I.E. Avramidis, K. Morfidis.Bending of beams on three-parameter elastic foundation.Int. J. Solids.Struct.2006,43:357-375.
    [37]Y.H.Mo, L.Ou,H.Z.Zhong. Vibration Analysis of Timoshenko Beams on a Nonlinear Elastic.Foundation.Tsinghua. Sci. Tech.2009,14:322-326.
    [38]W.J. Chang,H.L.Lee. Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko beam model.Phys. Let A. 2009,373:982-985.
    [39]楼梦麟,任志刚.Timoshenko简支梁的振动模态特性精确解.同济大学学报(自然科学版).2002,30:911-915.
    [40]董兴建,孟光,李鸿光.变截面压电层合梁自由振动分析.振动工程学报.2005,18:243-247.
    [41]T. Murmu, S.C. Pradhan. Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Phys E:Low-dimensional Systems and Nanostructures.2009,41:1232-1239.
    [42]S.Y. Lee, Y.H. Kuo, F.Y. Lin. Stability of a Timoshenko beam resting on a Winkler elastic foundation.J. Sound. Vib.1992,153:193-202.
    [43]M. Sabuncu, K. Evran. Dynamic stability of a rotating pre-twisted asymmetric cross-section Timoshenko beam subjected to an axial periodic force. Int.J. Mech. Sci.2006,48:579-590.
    [44]C.M.Wang, K.H.Ng, S.Kitipornchai. Stability criteria for Timoshenko columns with intermediate and end concentrated axial loads. J. Construc. Steel. Res. 2002,58:1177-1193.
    [45]G. R. Cowper. The shear coefficient in Timoshenko's beam theory. ASME J. Appl. Mech.1966,33:335-340.
    [46]T. Kaneko. On Timoshenko's correction for shear in vibrating beams. J. Phys. D:Appl. Phys.1975,8:1927-1936.
    [47]J. R. Hutchinson. Shear coefficients for Timoshenko beam theory. ASME J. Appl. Mech.2001,68:87-92 (2001).
    [48]M. Levinson. A new rectangular beam theory. J. Sound Vib.1981,74:81-87.
    [49]Y.K. Cheung, C.I. Wu. Free vibrations of thick, layered cylinders having finite length with various boundary conditions. J. Sound Vib.1972,24:189-200.
    [50]I.K. Silverman. Flexural vibrations of circular beams. J. Sound Vib.1998, 210:661-672.
    [51]刘延柱.圆截面弹性细杆的平面振动.力学与实践.2005,27:32-34.
    [52]钱管良.计算含裂纹圆截面梁振动的有限元法.机械强度.1992,11:7-10.
    [53]王保林,韩杰才,张幸红.非均匀材料力学.北京:科学出版社.2003.
    [54]M. Koizum. FGM activities in Japan. Compos:PartB.1997,28:1-4.
    [55]李永,宋健,张志民.梯度功能力学.北京:清华大学出版社,2003.
    [56]F. Ramirez, P. R. Heyliger, E. Pan. Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach.Compos.Part B-Eng. 2006,37:10-20.
    [57]E. Pan. Exact solution for functionally graded anisotropic elastic composite laminates. J. Compos. Mater.2003,37:1903-1919.
    [58]H.J. Ding, D.J.Huang, W.Q.Chen. Elasticity solutions for plane anisotropic functionally graded beams. Int. J.Solids. Struct.2007,44:176-196.
    [59]黄德进,丁皓江,陈伟球.线性分布载荷作用下功能梯度各向异性梁的解析解.应用数学和力学.2007,28:763-768.
    [60]黄德进,丁皓江,陈伟球.任意载荷作用下各向异性功能梯度梁的解析解和半解析解.中国科学G辑.2009,39:830-842.
    [61]A. Oral, G. Anlas. Effects of radially varying moduli on stress distribution of nonhomogeneous anisotropic cylindrical bodies. Int.J.Solids. Struct.2005,42: 5568-5588.
    [62]X.Wang, L.J.Sudak. Three-dimensional analysis of multi-layered functionally graded anisotropic cylindrical panel under thermomechanical loading. Mech.Mater 2008,40:235-54.
    [63]李永,宋健,张志民.功能梯度材料悬臂梁受复杂载荷作用的分层剪切理论.宇航学报.2002,23:62-67.
    [64]C.F. Lu, W.Q. Chen, R.Q. Xu, C.W. Lim. Semi-analytical elasticity solutions for bi-directional functionally graded beams. Int. J. Struct. Mater.2008,45: 258-275.
    [65]校金友,张铎,白宏伟.横向载荷作用下功能梯度简支梁的变形分析.首届全国航空航天领域中的力学问题学术研讨会.成都.2004,254-258.
    [66]M.A. Benatta, I. Mechab, A. Tounsi, E.A. Adda Bedia. Static analysis of functionally graded short beams including warping and shear deformation effects Comp. Mater. Sci.2008,44:765-773.
    [67]张能辉.热载荷作用下功能梯度材料梁的热粘弹性弯曲.力学季刊.2007,6:240-245.
    [68]Z. Zhong, T. Yu. Analytical solution of a cantilever functionally graded beam. Comput. Sci. Technol.2007,67:481-488.
    [69]R. Kadoli, K.Akhtar, N. Ganesan. Static analysis of functionally graded beams using higher order shear deformation theory. Appl. Math. Model.2008,32: 2509-2525.
    [70]B.V. Sankar. An elasticity solution for functionally graded beams. Compos. Sci. Tech.2001,61:689-696.
    [71]吕朝锋,陈伟球.功能梯度厚梁的二维热弹性力学解.中国科学G辑.2006,34:384-392.
    [72]于涛,仲政.均布荷载作用下功能梯度悬臂梁弯曲问题的解析解.固体力学学报.2006,27:15-20.
    [73]M.Aydogdu, V.Taskin. Free vibration analysis of functionally graded beams with simply supported edges. Mater. Des.2007,28:1651-1656.
    [74]徐业鹏,周叮.简支功能梯度变厚度梁的弹性力学解.南京理工大学学报(自然科学版).2009,33:132-136.
    [75]X.F. Li. A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams. J. Sound Vib.2008, 318:1210-1229.
    [76]S.A. Sina, H.M. Navazi, H. Haddadpour. An analytical method for free vibration analysis of functionally graded beams. Mater. Des.2009,30:741-747.
    [77]李世荣,范亮亮.功能梯度梁在热冲击下的动态响应.振动功能学报.2009,22:371-378.
    [78]C.T.Loy, K.Y.Lam, J.N. Reddy. Vibration of functionally graded cylindrical shells. Int. J. Mech. Sci.1999,41:309-324.
    [79]S.P. Timoshenko, J.M.Gere. Theory of Elastic Stability. New York:Mcgraw-Hill, 1960.
    [80]Z.P. Bazant, L.Cedolin. Stability of structures:elastic, inelastic, fracture, and damage theories. New York:Oxford University Press,1991.
    [81]C.M. Wang, C.Y. Wang, J.N.Reddy. Exact solutions for buckling of structural members. Boca Raton:CRC Press,2004.
    [82]S. Kapuria, M. Bhattacharyya, A.N.Kumar. Bending and free vibration response of layered functionally graded beams:A theoretical model and its experimental validation. Compos. Struct.2008,82:390-402.
    [83]S.Y. Oh, L. Librescua, O. Son. Vibration and instability of functionally graded circular cylindrical spinning thin-walled beams. J. Sound Vib.2005,285:1071-1091.
    [84]J. Yang, Y. Chen. Free vibration and buckling analyses of functionally graded beams with edge cracks. Compos. Struct.2008,83:48-60.
    [85]L.L. Ke, J. Yang, S. Kitipornchai. Postbuckling analysis of edge cracked functionally graded Timoshenko beams under end shortening. Compos. Struct. 2009,90:152-160.
    [86]R. K. Bhangale, N. Ganesan. Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core. J. Sound Vib.2006,295:294-316.
    [87]李世荣,张靖华,赵永刚.功能梯度材料Timoshenko梁的热过屈曲分析.应用数学与力学.2006,27:709-715.
    [88]I. Elishakoff and S. Candan. Apparently first closed-form solutions for vibrating inhomogeneous beams. International Journal of Solids and Structures.2001,38:3411-3441.
    [89]I. Elishakoff and S. Candan. Apparently first closed-form solution for frequencies of deterministically and/or stochastically inhomogeneous simply supported beams. J. Appl. Mech.2001,68:176-185.
    [90]I. Elishakoff and Z. Guede.Analytical polynomial solutions for vibrating axially graded beams. Mech. Advanced. Mater. Struct.2004,11:517-533.
    [91]L. Wu, Q. Wang and I. Elishakoff. Semi-inverse method for axially functionally graded beams with an anti-symmetric vibration mode. J. Sound. Vib 2005,284: 1190-1202.
    [92]I. Calio, I. Elishakoff. Closed-form trigonometric solutions for inhomogeneous beam-columns on elastic foundation. Int. J. Struct. Stability. Dynamics.2004,4: 139-146.
    [93]I. Calio, I. Elishakoff. Closed-form solutions for axially graded beam-columns. J. Sound. Vib.2005,280:1083-1094.
    [94]Q. S. Li. A new exact approach for determining natural frequencies and mode shapes of non-uniform shear beams with arbitrary distribution of mass or stiffness.Int. J. Solids.Struct.2007,37:5123-5141.
    [95]Q. S. Li. Classes of exact solutions for buckling of multi-step non-uniform columns with an arbitrary number of cracks subjected to concentrated and distributed axial loads. Int. J. Eng. Sci.2003,41:569-586.
    [96]李海洋,周建平,冯志刚.变截面梁的数值传递函数方法.国防科技大学学报.1999,21:22-25.
    [97]胡启平,李振宁.非均匀变截面梁弯曲问题的折线折算法.工程力学.2000,17:113-114.
    [98]楼梦麟,牛伟星.复杂变截面梁的轴向自由振动分析的近似方法.振动与冲击.2002,21:28-30.
    [99]徐腾飞,向天宇,赵人达.变截面Euler 2Bernoulli梁在轴力作用下固有振动的级数解.振动与冲击.2007,26:99-102.
    [100]P.A.A. Laura, B.V. De Greco, J. Utjes, R. Carnicer. Numerical experiments on free and forced vibrations of beams of non-uniform cross section. J. Sound. Vib.1988,120:587-596.
    [101]S. Abrate. Vibration of non-uniform rods and beams. J. Sound. Vib.1995,185: 703-716.
    [102]纪振义,叶开沅.非均匀变截面梁动力响应的一般解.应用数学和力学.1994,15:381-388.
    [103]H.H. Mabie, C.B. Rogers. Transverse vibrations of tapered cantilever beams with end loads. J. Acoust. Soc. Am.1964,36:463-469.
    [104]B. M. Kumar and R. I. Sujith. Exact solutions for the longitudinal vibration of non-uniform rods. J. Sound.Vib.1997,207:721-729.
    [105]S. Naguleswaran. Vibration of an Euler-Bernoulli beam of constant depth and with linearly varying breadth. J. Sound.Vib.1992,153:509-522.
    [106]S. Naguleswaran. A direct solution for the transverse vibration of Euler Bernoulli wedge and cone beams. J. Sound.Vib.1994,172:289-304.
    [107]K.V. Singh, G. Li, S.S. Pang. Free vibration and physical parameter identification of non-uniform composite beams. Compos.Struct.2006,74: 37-50.
    [108]S. Nachum and E. Altus. Natural frequencies and mode shapes of deterministic and stochastic non-homogeneous rods and beams. J. Sound. Vib.2007,302:903-924.
    [109]L.M. Keer, B., Stahl. Eigenvalue problems of rectangular plates with mixed edge conditions. ASME J. Appl.Mech.1972,39:513-520.
    [110]Y.A. Melnikov. Influence Functions and Matrices. New York:Marcel Dekker, 1999.
    [111]I. Elishakoff. A selective review of direct, semi-inverse and inverse eigenvalue problems for structures described by differential equations with variable coefficients. Arch. Comput. Meth. Eng.2000,7:451-526.
    [112]F. Bleich. Buckling strength of metal structure. New York:McGraw Hill. 1952.
    [113]H.Li,B-Balachandran. Buckling and free oscillations of composite microre-sonators. J. Microelectromech. Syst.2006,15:1057-7157.
    [114]C.H.Chuang, J.S.Huang. Effects of solid distribution on the elastic buckling of honeycombs. Int. J. Mech. Sci.2002,44:1429-1443.
    [115]I. Elishakoff, F.Pellegrini. Exact solutions for buckling of some divergencet-ype nonconservative systems in terms of Bessel and Lommel functions. Comput. Meth. Appl. Mech. Eng.1988,66:107-119.
    [116]Q.S.Li, H.Cao, G.Q.Li. Stability analysis of bars with varying cross-section. Int. J. Solids. Struct.1995,32:3217-3228.
    [117]Q.S.Li.Buckling analysis of non-uniform bars with rotational and translational springs. Eng. Struct.2003,25:1289-1299.
    [118]I. Elishakoff, O. Rollot. New closed-form solution for buckling of a variable stiffness column by Mathematica. J. Sound. Vib.1999,224:172-182.
    [119]I. Elishakoff. Inverse buckling problem for inhomogeneous columns. Int. J. Solids. Struct.2001,38:457-464.
    [120]I.Calio, I. Elishakoff.Closed-form solutions for axially graded beam-column. J. Sound. Vib.2005,280:1083-1094.
    [121]I.Elishakoff, C.W. Bert. Comparison of Rayleigh's noninteger-power method with Rayleigh-Ritz method.Comput. Meth. Appl.Mech.Eng.1988,67:297-309.
    [122]M.A.De Rosa, C.Franciosi. The Optimized Rayleigh method and Mathematica in vibrations and buckling problems. J. Sound. Vib.1996,191:795-808.
    [123]D.L.Karabalis, D.E.Beskos. Static, dynamic and stability analysis of structures composed of tapered beams. Comput. Struct.1983,16:731-748.
    [124]N. Bazeos, D.L.Karabalis. Efficient computation of buckling loads for plane steel frames with tapered members. Eng. Struct.2006,28:771-775.
    [125]M.O'Rourke, T.Zebrowski. Buckling load for nonuniform columns. Comput. Struct.1977,7:717-720.
    [126]M.J.Iremonger. Finite difference buckling analysis of non-uniform columns. Comput. Struct.1980,12:741-748.
    [127]E.J.Sapountzakis, G.C.Tsiatas. Elastic flexural buckling analysis of composite beams of variable cross-section by BEM. Eng. Struct.2007,29:675-681
    [128]F.Arbabi, F.Li. Buckling of variable cross-section columns:Integral-equation approach. J. Struct. Eng.1991,117:2426-2441.
    [129]Z.Elfelsoufi, L.Azrar. Buckling, flutter and vibration analyses of beams by integral equation formulations. Comput. Struct.2005,83:2632-2649.
    [130]GKarami, P.Malekzadeh. A new differential quadrature methodology for beam analysis and the associated differential quadrature element method. Comput. Meth. Appl. Mech. Eng.2002,191:3509-3526.
    [131]O.Civalek. Application of differential quadrature (DQ) and harmonic differen-tial quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct.2004,26:171-186
    [132]Smith W. Analytical solutions for tapered column buckling. Comput. Struct. 1988,28:677-681.
    [133]S.Yuan, K.S.Ye, C.Xiao, F.W.Williams, D.Kennedy. Exact dynamic stiffness method for non-uniform Timoshenko beam vibrations and Bernoulli-Euler column buckling. J. Sound. Vib.2007,303:526-537.
    [134]M.Eisenberger. Buckling loads for variable cross-section members with variable axial forces. Int. J. Solids. Struct.1991,27:135-143.
    [135]M.A.Bradford, N.A.Yazdi. A Newmark-based method for the stability of columns. Comput. Struct.1991,71:689-700.
    [136]E.Altus, E.M.Totry. Buckling of stochastically heterogeneous beams, using a functional perturbation method. Int. J. Solids. Struct.2003,40:6547-6565.
    [137]W.Lacarbonara. Buckling and post-buckling of non-uniform non-linearly elastic rods. Int. J. Mech. Sci.2008,50:1316-1325.
    [138]M. Eisenberger, J. Clastornik. Vibrations and buckling of a beam on a variable winkler elastic foundation. J. Sound. Vib.1987,115:233-241.
    [139]Q. S. Li. Buckling of multi-step non-uniform beams with elastically restrained boundary conditions. J. Construct. Steel. Res.2001,57:753-77.
    [140]署恒木.海底悬空管道弹性约束静态分析.石油大学学报(自然科学版).2005,29:94-97.
    [141]刘延柱,薛纭.受圆柱面约束弹性杆的平衡与稳定性.应用力学学报.2005,22:391-394.
    [142]P. Malekzadeh, G. Karami.A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations. Appl. Math. Model.2008,32:1381-1394.
    [143]K. V. Singh, G. Q. Li. Buckling of functionally graded and elastically restrained non-uniform columns.Compos:Part B.2009,40:393-403.
    [144]M. T. Atay, S. B. Coskun. Elastic stability of Euler columns with a continuous elastic restraint using variational iteration method. Comput. Math. Appl.2009, doi:10.1016/j.camwa.2009.03.051.
    [145]I. Calio and I. Elishakoff, Closed form trigonometric solutions for inhomoge-neous beam-column on elastic foundation. Int. J. Struct. Stab. Dynamics.2004, 4:139-146.
    [146]徐芝纶.弹性力学.北京:高等教育出版社,2002.
    [147]R. Asaro, V. Lubarda. Mechanics of Solids and Materials. New York: Cambridge University Press,2006.
    [148]C.R. Fuller, S.J. Elliott, P.A. Nelson. Active Control of Vibration. London: Academic,1996.
    [149]B. Geist, J.R. McLaughlin, Double eigenvalues for the uniform Timoshenko beam. Appl.Math. Lett.1997,10:129-134.
    [150]E. Kausel, Nonclassical modes of unrestrained shear beams. J. Eng. Mech. 2002,128:663-667.
    [151]N.F.J. van Rensberg, A.J. van der Merwe. Natural frequencies and modes of a Timoshenko beam. Wave Motion.2006,44:58-69.
    [152]S.S.Vel, R.C.Batra. Three-dimensional exact solution for the vibration of functionally graded rectangular plates. J. Sound. Vib.2004,272:703-730.
    [153]N.A.Apetre, B.V.Sankar, D.R.Ambur. Analytical modeling of sandwich beams with functionally graded core. J. Sand. Struct. Mater.2008,10:53-74.
    [154]K.P.Soldatos, V.P.Hajigeoriou.Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels. J. Sound. Vib. 1990,137:369-384.
    [155]S.C.Pradhan, C.T.Loy, K.Y.Lam, J.N.Reddy. Vibration characteristics of func-tionally graded cylindrical shells under various boundary. Appl. Acoust. 2000,61:111-129.
    [156]R.D.Blevins. Formulas for Natural Frequency and Mode Shape. New York: Van Nostrand Reinhold,1979
    [157]X.M.Zhang,GR.Liu, K.Y.Lam. Vibration analysis of thin cylindrical shells using wave propagation approach. J. Sound. Vib.2001,239:397-403.
    [158]J. Blaauwendraad. Timoshenko beam-column buckling:Does Dario stand the test? Eng. Struct.2008,30:3389-3393.
    [159]宋子康.材料力学.上海:同济大学出版社.1997.
    [160]C.M.Wang, J.N.Reddy, K.H.Lee. Shear Deformable Beams and Plates: Relationships with Classical Solutions, Elsevier, Oxford, UK,2000.
    [161]H. Matsunaga. Free vibration and stability of functionally graded circular cylindrical shells according to a 2D higher-order deformation theory. Compos. Struct.2009,88:519-531.
    [162]C.Q.Ru. Column buckling of multiwalled carbon nanotubes with interlayer radial displacement. Phys. Rev. B.2000,62:16962-16967.
    [163]X.F.Li, B.L.Wang, Y.W.Mai. Effects of a surrounding elastic medium on flexural waves propagating in carbon nanotubes via nonlocal elasticity. J. Appl. Phys.2008,103:074309.
    [164]L. J.Sudaka. Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys.2003,94:7281-7287.
    [165]S. Nas, S.Yalcinbas, M.Sezer. A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations. Int. J. Math. Educ. Sci. Tech.2000,31:213-225.
    [166]G. Han, R. Wang. Richardon extrapolation of interated discrete Galerkin solution for two-dimensional Fredholm integral equations Equations. J. Comp. Appl. Math.2002,139:49-63.
    [167]S. M. Hosseini, S. Shahmorad. Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases. Appl. Math. Model. 2003,27:145-154.
    [168]Y. Huang, X.F. Li.Approximate solution of a class of linear integro-differential equations by Taylor expansion method, Int.J. Comp. Math.2010,87:1277-1288.
    [169]W. Weaver, Jr., S.P. Timoshenko, D.H. Young. Vibration Problems in Engineering. New York:Wiley-Interscience,1990.
    [170]D.H. Hodges, Y.Y. Chung and X. Y. Shang. Discrete transfer matrix method for non uniform rotating beams. J. Sound.Vib.1994,169:276-283.
    [171]V.H. Cortinez and P.A.A. Laura. An extension of Timoshenko's method and its application to buckling and vibration problems. J. Sound.Vib.1994, 169:141-144.
    [172]L.J. Sudak, Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys.2003,11:7281-7287.
    [173]Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys.2005,98:124301.
    [174]Q. Wang, V.K. Varadan. Vibration of carbon nanotubes studied using nonlocal continuum mechanics, Smart Mater. Struct.2006,15:659-666.
    [175]C.M. Wang, Y.Y. Zhang, S.S. Ramesh, S. Kitipornchai. Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory.J. Phys. D:Appl. Phys.2006,39:3904-3909.
    [176]M. Xu. Free transverse vibrations of nano-to-micron scale beams. Proc. Roy. Soc. A 2006,1-19.
    [177]Y.Q. Zhang, G.R. Liu, J.S. Wang, Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression, Phys.Rev. B.2004,70: 71954046-2054301.
    [178]Y.Q. Zhang, G.R. Liu, X.Y. Xie. Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity.Phys. Rev. B.2005,71: 195404-1-7.
    [179]秦庆华,杨庆生.非均匀材料多场耦合行为的宏细观理论.北京:高等教育出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700