基于Kriging代理模型的分数阶粘弹性反问题的数值求解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分数阶导数粘弹性本构参数的识别具有重要的工程应用背景与理论探讨价值。在分数阶粘弹性反问题的求解中,由于敏度分析较为困难,一般需利用蚁群算法等智能类优化算法进行计算,而这类算法需多次求解正问题,计算成本颇大。本文将Kriging代理模型技术应用于分数阶粘弹性本构参数的识别,论文的主要学术贡献是:
     1.提出了一种基于Kriging代理模型的求解分数阶粘弹性正问题的数值求解方法。利用拉丁超立方采样技术选取样本点,借助有限元和有限差分技术计算样本点的位移响应,从而建立Kriging代理模型。并针对问题的时间相关性,提出了构建Kriging代理模型时域分段建模的策略。通过均质和区域非均质两个分数阶粘弹性算例,对所提方法和策略的计算精度和计算效率进行了测试。测试分析表明,代理模型可提供合用的计算精度,当问题规模较大且正问题需要多次求解时,有望显著降低计算时间。
     2.提出了一种基于Kriging代理模型的求解分数阶粘弹性反问题的数值求解方法。以已构建的Kriging代理模型作为正问题求解模型,以一种改进的连续域蚁群算法作为反问题求解模型。通过均质和区域非均质两个分数阶粘弹性参数组合反演的算例,对所提方法的反演计算精度和计算效率进行了测试,并探讨了数据噪音对反演结果的影响。计算结果表明,所提方法在保证了一定的反演计算精度的同时,能够显著地缩短反演计算时间。
     本文的研究工作有望为提高分数阶粘弹性反问题与优化问题的计算效率提供有价值的参考和依据。
It has important application background in engineering and research value in theory to identify constitutive parameters of fractional viscoelastic problems. The Intelligent Optimization Algorithms, such as Ant colony Algorithm, are employed to solve the inverse fractional viscoelastic problems due to the difficulty of sensitivity analysis, but they are required to solve direct problem repeatedly which lead to a considerable amount of computing cost. In this paper, the Kriging surrogate model is applied to identify constitutive parameters of fractional viscoelastic problems, and the main academic contributions of this paper are:
     1. Developing a Kriging surrogate model based numerical method to solve direct fractional viscoelastic problems. The Kriging surrogate model is set up by making use of the displacement solution given by FEM and FDM at sample points, and sample points are selected via a Latin Hypercube sampling technique. The paper proposes a strategy of piecewise modeling in time domain for constructing Kriging surrogate model due to the temporal correlations. The computing accuracy and efficiency of the proposed method and strategy are tested via homogeneous/regionally inhomogeneous fractional viscoelastic numerical examples. The test indicates that the surrogate model is able to provide a reasonable computing accuracy, and is hopefully to save considerable amount of computing expense for large scale direct fractional viscoelastic problem which are required to solve repeatedly.
     2. Developing a Kriging surrogate model based numerical method to solve the inverse fractional viscoelastic problems. The established Kriging surrogate model is used as the solution model of direct problem and an improved Ant colony algorithm is employed as the solution model of inverse problem. The computing accuracy and efficiency of the proposed method are tested via numerical examples of combined identification for fractional viscoelastic parameters in cases of homogeneity and regionally inhomogeneity, and the effects of date noise are considered. The computing results demonstrate that the amount of computing expense is dramatically reduced as reasonable computing accuracy of inversion is maintained.
     This paper is hopefully to provide a valuable reference for improving computing efficiency of inverse/optimization fractional viscoelastic problems.
引文
[1]R. M. Christensen. Theory of Viscoelasticity Second Edition [M]. New York:Dover Publications,2003.
    [2]杨挺青,罗文波,徐平等.黏弹性理论与应用[M].北京:科学出版社,2004.
    [3]杨海天,赵潇.蚁群算法求解二维分数阶粘弹性参数反问题[C].郑州:中国力学学会,2009.
    [4]Koeller R C. Applications of fractional calculus to the theory of viscoelasticity [J]. Appl Mech,1984,51:299-307.
    [5]Enelund M, Josefson B L. Time-Domain Finite Element Analysis of Viscoelastic Structures with Fractional Derivatives Constitutive Relations[J]. AIAA Journal, 1997, Vol.35 (10):1630-1637.
    [6]李岩.分数阶微积分及其在粘弹性材料和控制理论中的应用[D].山东:山东大学,2008.
    [7]段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2005.
    [8]Queipo N V, Verde A, Pintos S, Haftka R T. Assessing the value of another cycle in Gaussian process surrogate-based optimization[J]. Structural and Multidisciplinary Optimization,2009,39(5):459-475.
    [9]穆雪峰.多学科设计优化代理模型技术的研究和应用[D].南京:南京航空航天大学,2004.
    [10]Podlubny I. Fractional Differential Equations[M]. New York:Academic Press,1999.
    [11]Rossikhin Y A, Shitikova M V. Analysis of damped vibrations of linear viscoelastic plates with danmping modeled with fractional derivatives [J]. Signal Processing, 2006,86(10):2703-2711.
    [12]Cortes F, Elejabarrieta M J. Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models [J]. International Journal for Numerical Methods in Engineering, 2007,69(10):2173-2195.
    [13]陈立群,程昌钧.分数导数型本构关系描述粘弹性梁的振动分析[J].力学季刊,2001,22(4):512-516.
    [14]张为民,张淳源,张平.考虑老化的混凝土粘弹性分数导数模型[J].应用力学学报,2004,21(1):1-5.
    [15]Galue L, Kalla S L, Al-Saqabi B N. Fractional extensions of the temperature field problems in oil strata [J]. Applied Mathematics and Computation,2007,186(1): 35-44.
    [16]同登科,石丽娜.多孔介质中粘弹性液体广义流动分析[J].水动力学研究与进展A,2004,19(6):695-701.
    [17]Li C, Chen G. Chaos in the fractional order Chen system and its control [J]. Chaos, Solitons and Fractals,2004,22(3):549-554.
    [18]Yin Y B, Zhu K Q. Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model [J]. Applied Mathematics and Computation,2006,173(1): 231-242.
    [19]El-Misiery A E M, Ahmed E. On a fractional model for earthquakes [J]. Applied Mathematics and Computation,2006,178(2):207-211.
    [20]Carcione J M, Cavallini F, Mainardi F, Hanyga A,张志中,安镇文,丁志峰.应用分数阶微分对地震波稳恒Q值的时间域模拟[J].世界地震译丛,2005,(1):51-58.
    [21]El-Sayed A M A, El-Misiery A E M, El-Saka H A A. On the fractional-order logistic equation [J]. Applied Mathematics Letters,2007,20(7):817-823.
    [22]Hanneken J W, Narahari A B B, Vaught D M, et al. A random walk simulation of fractional diffusion [J]. Journal of Molecular Liquids,2004,114(1-3):153-157.
    [23]West B J, Bologna M, Grigolini P. Physics of fractal operators [M]. New York: Springer-Werlag,2003.
    [24]Tseng C C. Design of variable and adaptive fractional order FIR differentiators [J]. Signal Processing.2006,86(10):2554-2566.
    [25]袁晓,张红雨,虞厥邦.分数导数与数字微分器设计[J].电子学报,2004,32(10):1658-1665.
    [26]王振滨,曹广益,曾庆山.分数阶PID控制器及其数字实现[J].上海交通大学学报,2004,38(4):517-520.
    [27]Momani S, Qaralleh R. Numerical approximations and Pade approximants for a fractional population growth model [J]. Applied Mathematical Modelling,2007, 31(9):1907-1914.
    [28]Jurjiu A, Friedrich C, Blumen A. Strange kinetics of polymeric networks modeled by finite fractals [J]. Chemical Physics,2002,284(1-2):221-231.
    [29]Chen W, Sun H, Zhang X, et al. Anomalous diffusion modeling by fractal and fractional derivatives [J]. Computers & Mathematics with Applications,2010,59(5): 1754-1758.
    [30]Adolfsson K, Enelund M, Larsson S. Adaptive discretization of fractional order viscoelasticity using sparse time history Adaptive discretization of fractional order viscoelasticity using sparse time history[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(42-44):4567-4590.
    [31]Schmidt A, Gaul L. Parameter identification and FE implementation of a viscoelastic constitutive equation using fractional derivatives [J]. Proceedings in Applied Mathematics and Mechanics,2002,1:153-154.
    [32]Hernandez-Jimenez A, Hernandez-Santiago J, Macias-Garcia A, et al. Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model [J]. Polymer Testing, 2002,21(3):325-331
    [33]Lewandowski R, Choryczewski B. Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers [J]. Computers and Structures,2010,88(1-2):1-17.
    [34]Soula M, Vinh T, Chevalier Y. Transient responses of polymers and elastomers deduced from harmonic responses [J]. Journal of Sound and Vibration,1997,205(2): 185-203.
    [35]Beda T, Chevalier Y. New method for identifying rheological parameter for fractional derivative modeling of viscoelastic behavior [J]. Mechanics of Time-Dependent Materials,2004,8(2):105-118.
    [36]Pritz T. Five-parameter fractional derivative model for polymeric damping materials [J]. Journal of Sound and Vibration,2003,265(5):935-952.
    [37]de Espindola J J,.da Silva Neto J M, Lopes E M 0. A generalized fractional derivative approach to viscoelastic material properties measurement [J]. Applied Mathematics and Computation,2005,164(2):493-506.
    [38]Kim S Y, Lee D H. Identification of fractional-derivative-model parameters of viscoelastic materials from measured FRFs [J]. Journal of Sound and Vibration,2009, 324(3-5):570-586.
    [39]Nestor V Q, Salvador P, Nestor R, Nemrod C, Juan C. Surrogate modeling-based optimization for the integration of static and dynamic data into a reservoir description[J]. Journal of Petroleum Science and Engineering,2002,35:167-181.
    [40]赵洪波,冯夏庭.位移反分析的进化支持向量机研究[J].岩石力学与工程学报,2003,22(10):1618-1622.
    [41]John C B, Wilkins A. Surrogate-Model Accelerated Random Search algorithm for global optimization with applications to inverse material identification[J]. Computer Methods in Applied Mechanics and Engineering,2007,196:4561-4576.
    [42]马建华,韩莉果.基于支持向量机的导热反问题研究[J].天津理工大学学报,2007,23(4):68-71.
    [43]谭飞,韩旭.基于代理模型的功能梯度梁的材料特性参数反求[J].复合材料学报,2008,25(5):175-180.
    [44]Wu, CM, Hsu N S, Lee T H. Identification of parameter structure for confined aquifer by combining Kriging and Bayesian approaches [J]. Journal of the Chinese Institute of Civil and Hydraulic Engineering,2008,20(1):45-56.
    [45]Fang S E, Perera R. A response surface methodology based damage identification technique[J]. Smart Materials and Structures,2009,18(065009).
    [46]Simpson T W, Mauery T M, Korte J J, Mistree F. Comparison of response surface and kriging models for multidisciplinary design optimization[C].7th Symposium on Multidisciplinary Analysis and Optimization,1998, AIAA-98-4755.
    [47]Costa J P, Pronzato L, Thierry E. A comparison between kriging and radial basis function networks for nonlinear prediction [R]. Turkey:International Workshop on Nonlinear Signal and Image Processing, NSIP'99, Paper number:155,1999.
    [48]Ruichen Jin;Wei Chen;Timothy W. Simpson. Comparative studies of metamodelling techniques under multiple modelling criteria [J]. Structural and Multidisciplinary Optimization,2001,23(1):1-13.
    [49]Simpson T W, Lin D K J, Chen W. Sampling strategies for computer experiments:design and analysis[J]. International Journal of Reliability and Safety,2001,2(3): 209-240.
    [50]Matherton. Principles of geo-statistics[J]. Economic Geology,1963,58:1246-1266.
    [51]谢延敏.基于Kriging模型和灰色关联分析的板料成形工艺稳健优化设计研究[D].上海:上海交通大学,2007.
    [52]高月华.基于kriging代理模型的优化设计方法及其在注塑成型中的应用[D].大连:大连理工大学.2009.
    [53]陈志民.基于Kriging模型的汽轮机基础可靠性动力优化方法(硕士论文)[D].大连:大连理工大学.2007.
    [54]张崎,李兴斯.基于Kriging模型的结构可靠性分析[J].计算力学学报,2006,23,2:175-179.
    [55]Martin J D, Simpson TW. A study on the use of kriging models to approximate deterministic computer models[C]. Chicago:Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2003.
    [56]王晓峰,席光.基于Kriging模型的翼型气动性能优化设计.航空学报,2005,26(5):545-549.
    [57]Sakata S, Ashida F, Zako M. Structural optimization using kriging approximation [J]. Computer Methods in Applied Mechanics and Engineering,2003,192:923-939.
    [58]Sakata S, Ashida F, Zako M. An efficient algorithm for kriging approximation and optimization with large scale sampling data [J]. Computer Methods in Applied Mechanics and Engineering,2004,193:385-404.
    [59]Booker A. J, Dennis J.E. A Rigorous Framework for Optimization of Expensive Functions by Surrogates [J]. Structural Optimization,1999,17(1):1-13.
    [60]肖立峰,张广泉,张以都.基于Kriging代理模型的结构形状优化方法[J].机械设计,2009,26(7):57-60.
    [61]Mashiro K, Kentaro T, Sinkyu J, Kazuomi Y. Multi-Objective Aerodynamic Optimization of Elements'Setting for High-Lift Airfoil Using Kriging Model [R]. Nevada:44th AIAA Aerospace Sciences Meeting and Exhibit,2006.
    [62]王晓峰,席光,王尚锦Kriging与响应面方法在气动优化设计中的应用[J].工程热物理学报,2005,26(3):423-425.
    [63]许瑞飞,宋文萍,韩忠华.改进Kriging模型在翼型气动优化设计中的应用研究[J].西北工业大学学报,2010,28(4):503-509.
    [64]Mashiro K, Kentaro T, Sinkyu J, Kazuomi Y. Multi-Objective Aerodynamic Optimization of Elements'Setting for High-Lift Airfoil Using Kriging Model [R]. Nevada:44th AIAA Aerospace Sciences Meeting and Exhibit,2006.
    [65]韩永志,高行山,李立州,岳珠峰.基于Kriging模型的涡轮叶片多学科设计优化[J].航空动力学报,2007,22(7):1055-1059.
    [66]Yang R J, Wang N, Tho C H, Bobineau J P, Wang B P. Metamodeling Development for Vehicle Frontal Impact Simulation [J]. Journal of Mechanical Design,2005,127: 1014-1020.
    [67]陈士诚,周昌玉,潘林峰.基于Kriging方法的压力容器开孔接管区结构强度可靠性分析[J].石油化工设备,2010,39(6):27-29.
    [68]张崎,李兴斯.基于Kriging模型的结构可靠性分析[J].计算力学学报,2006,23(2):175-179.
    [69]张崎.基于kriging方法的机构可靠性分析及优化设计[D].大连:大连理工大学,2005.
    [70]Macay M. D, Beckman R. J, Conover W. J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code [J]. TECHNOMETRICS,1979,21(2):239-245.
    [71]Murio D A. Implicit finite difference approximation for time fractional diffusion equations [J]. Computers and mathematics with applications,2008,56(4): 1138-1145.
    [72]Oldham K B, Zoski C G. The fractional calculus [M]. New York:Academic Press,1974.
    [73]Mainardi F, Gorenflo R. On Mittag-Leffler-type functions in fractional evolution processes [J]. Journal of Computational and Applied Mathematics,2000,118(1-2): 283-299.
    [74]Welch WJ, Buck RJ, Sack J. Predicting and computer experiments. Technometrics[J], 1992,34(1):15-25.
    [75]Lophaven S. N, Nielsen H. B, Sondergaard J. DACE-A Mat lab Kriging Toolbox, Technical Report IMM-TR-2002-12, Informatics and mathematical modelling [R]. Denmark: Technical University of Denmark,2002.
    [76]Bordas S, Natarajan S, Kerfriden P. et al., On the performance of strain smoothing for quadratic and enriched finite element approximations(XFEM/GFEM/PUFEN) [J]. Int.J. Numer. Meth. Engng 2011; 86:637-666.
    [77]Chan T H T, Law S S, Yung T H. An interpretive method for moving force identification [J]. Journal of Sound and Vibration.1999,219(3):503-524.
    [78]段海滨.蚁群算法原理及其应用:theory and applications [M]北京:科学出版社2005.
    [79]吕聪颖,于哲舟,周春光,王康平,庞巍.动态自适应蚁群算法在二次分配问题中的应用[J].吉林大学学报:理学版.2005,43(4):477-480.
    [80]范小宁,徐格宁,杨瑞刚.车辆配送路径优化的新型蚁群算法[J].计算机工程与应用.2011,47:232-234.
    [81]Dorigo M, Gambardella L M. Ant colony system:A cooperative learning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation. 1997,1(1):53-66.
    [82]高玮,冯夏庭.基于免疫连续蚁群算法的岩土工程反分析研究。岩石力学与工程学报,2005,24(23):4266-4271.
    [83]Abbaspour K C, Schulin R, van Genuchten M Th. Estimating unsaturated soil hydraulic parameters using ant colony optimization[J]. Advances in Water Resources.2001, 24(8):827-841.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700