铁路捣固车设备状态与作业质量在线监测方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抄平起拔道捣固车(简称捣固车),是铁路线路的新线施工、旧线大中修清筛作业和运营线路维修作业的必备装备,能对轨道进行自动抄平起、拨道、道碴捣固作业,使轨道线路达到线路设计标准和线路维护要求,确保列车的安全运行。由于我国铁路列车的提速、重载和高密度运行,我国既有的捣固车已不能完全满足现代铁路线路维护的要求。现有08-32型捣固车是目前铁路线路大修、维修作业的主力车型,铁道部广州铁路集团公司提出了对其进行技术改进的要求,在现有08-32型捣固车上增加设备状态与作业质量在线监测系统,提高现有08-32型捣固车线路作业性能和设备维护水平。捣固车设备状态与作业质量在线监测系统,对设备运行状态实时监测,掌握设备运转状况,对其故障实时告警、早期诊断并处理;对作业质量信息实时采集处理,采用精确作业新方法,提高作业效率和作业精度。本文以捣固车设备状态与作业质量在线监测系统的设计与开发为主线,对设备状态在线监测方法、线路作业新方法、多功能混合I/O模块和远程监控系统通信服务器等关键技术进行了深入研究。
     (1)根据项目的研究目的、内容及要求,总结了捣固车在线监测系统的研究现状及发展趋势,给出了项目实施方案和技术路线,确定了研究的重点和攻克的难点。
     (2)针对捣固车设备状态在线监测方法及技术实现的问题,分析了捣固车的结构与运行工况,确定了在线监测系统的监测点,建立了捣固车在线监测系统模型和监测数据库,提出了监测系统故障告警与故障诊断算法,实现了设备故障实时告警、故障诊断和远程实时控制。
     (3)针对捣固车线路作业新方法与技术实现问题,建立了作业圆形竖曲线的数学模型,采用激光长弦精确测量竖曲线,消除残余偏差,实现竖曲线精确起道作业;建立了精测精捣新方法的模型,捣固车采集精测数据,采用最小二乘法拟合曲线,重新设计目标曲线线型,为精确捣固提供线路理论参数,实现数字化精确起拨道控制。
     (4)通过分析捣固车在线监测系统对I/O模块的需求,设计实现了一种多种形态的多功能混合I/O模块。该模块具有模拟量输入、模拟量输出、开关量输入、开关量输出、脉冲计数量输入等多种功能,I/O端口可软件配置为上述五功能之一。采用该模块,可减少采集设备成本、提高系统可靠性和缩减安装空间。
     (5)针对捣固车远程监控系统通信服务器的设计与要求,设计了一种非阻塞NIO模式的通信服务器。建立了铁路捣固车远程监控系统的时延模型,对车载终端与远程服务器通信的GPRS链路部分进行了时延性分析,给出了优化GPRS寸延和恢复GPRS中断数据的措施;设计了服务器与车载终端、服务器与监控客户端的实时并发通信协议。
     (6)分别在实验室和现场恶劣环境下对捣固车在线监测系统进行了运行实测,完成对GPRS通信功能、通信性能和数据采集的测试。实测结果表明本系统工作正常,达到系统设计目的和性能指标。
     本文提出的捣固车设备状态和作业质量在线监测方法,有效解决了铁路线路捣固车常规作业过程中作业效率低、作业质量差和设备维护困难等技术难题,显著地提高了现有捣固车线路作业技术水准和装备信息化程度,为设计开发其它大型工程机械在线监测系统提供了重要理论依据和技术实现途径。本课题设计开发的捣固车设备状态与作业质量在线监测系统已于2009年11月通过了广州铁路集团公司的科技成果鉴定,认为该系统技术先进、设计合理、运行可靠,在整体技术和应用理论上达到国内领先水平。
Hydraulic tamping machine (abbreviated as tamping machine) is an essential equipment for constructions of new railways, major or medium overhauls and ballast screenings of old railways, and maintenance of railways in use. It is able to automatically lift and line railway and tamp railway ballast, which enables railways to meet railway design standards as well as railway maintenance requirements for the sake of security. Especially with the development of implement of increasing speed, over-loading and high-density, the existing tamping machine can not fully meet the requirements of the maintenance of railways. The08-32tamping machine is the main force vehicle of maintenance, Guangzhou Railway ask for the technical improvement in increasing the on-line monitoring system of device condition and operation quality of08-32tamping machine to improve operating performance and equipment maintenance level.Via the real-time monitoring of device operation, the on-line monitoring system of device condition and operation quality of tamping machine can tell whether the device is running well and can alarm as soon as the failure is detected. Thus, attendant early diagnosis is made and correspondent repair follows. It can glean and process the operation quality information, and efficiency as well as accuracy should be improved through the employment of a accurate new method. The system can greatly ameliorate the performance of existing tamping machine s and escalate the device maintenance level to satisfy the requirement of acceleration of trains. In this paper, on the basis of the design and development of on-line monitoring system of device condition and operation quality of tamping machine, in-depth research is made on such key technologies as method of on-line monitoring of device condition, new method of railway work, multi-functional mixed I/O module and communication server based on remote monitoring system.
     1. The project implementation plan and technology roadmap are put forward in this paper according to research purposes, contents and requirements, and then points out the key and difficult points, summarizes the present research and developmental trends of the on-line monitoring system of s tamping machine.
     2. The structure and operating conditions of tamping machine concerned with the on-line monitoring method and the technology issues of tamping machine are analysed. A measuring point of the on-line monitoring system, an on-line monitoring system model and a monitoring database are established. Hence, real-time alarm of device failure, fault diagnosis and remote real-time control are realized.
     3. The mathematical model of round vertical curve is established in response to the new method of railway work and technology issues. The laser chord is adopted to accurately measure the vertical curve and remove the residual deviation to achieve accurate track-lifting. In the line difficult to operate, minimum mean square error fitting curve is used, and then the shape of target curve is re-designed for providing theoretical parameters for accurate tamping to achieve the digital precise track lifting and lining control.
     4. A multi-functional mixed I/O module is designed and realized via the analysis of the requirement of the I/O module from the on-line monitoring system of tamping machine, The module has multiple functions such as analog input, analog output, digital input, digital output, counting statistic input, etc.. I/O ports can be configured to one of the five functions by the means of software. Using the module can reduce the cost of device acquisition, improve the system reliability and reduce the installation space
     5. A non-blocking NIO mode of communication server is designed for server design and development issues of the remote monitoring system of tamping machine. A delay model of remote monitoring system is established; delay analyses of vehicle terminal and the GPRS link of remote server communication are made; measurements concerning how to optimize delay and recover interrupted data of GPRS are put forward; real-time concurrent communication protocols between server and vehicle terminal, server and monitoring client are designed. Results of performance and load pressure tests indicate that the communication server designed and developed by us can meet the need of real time and concurrence of the remote monitoring system of tamping machine.
     6.The GPRS communication function, communication performance and data acquisition performance are all tested both in the laboratory and the field under the harsh circumstance, and results show that the system works properly and fully meets the system design requirements and performance indicators.
     The method of monitoring device condition and operation quality of tamping wagon proposed in this paper effectively resolves technological problems such as low efficiency, poor operation quality, hard maintenance etc.. The informationization level and technical level of existing tamping wagon are escalated, which provides important theoretical basis and paves the way for the design and development of on-line monitoring system for large-scale construction machinery. The system of on-line monitoring on operation quality and equipment status of tamping has passed the technological achievement identification. The results indicate that the technique is advanced, and the design is reasonable and runs reliably. Both systemic technology and applied theory have reached the leading domestic level.
引文
[1]郝志军.模块化与我国轨道运输装备的技术创新[J].北京交通大学学报:社会科学版,2006,(1):14-17.
    [2]Bin Ning,Tao Tang.Ziyou Gao etal. Intelligent Railway Systems in China[J].IEEE Intelligent Systems,2006,21(5):80-83.
    [3]贾利民,蒋秋华.铁路智能运输系统的本质特征研究[J].中国铁道科学,2002,23(5):18-22.
    [4]Peng Yongzhao, Lang Maoxiang, Liu Jiangtao. Reducing Energy Consumption in China's Railway Freight Transportation [J]. Information Engineering (ICIE), 2010,3(6):384-351.
    [5]Ping Li,Li MinJia,A-Xin Nie. Study on railway intelligent transportation system architecture[C]. Intelligent Transportation Systems.2003,2:1478-1481.
    [6]庄凌昀,谢维达.车载计算机的研究与设计[J].城市轨道交通研究,2010,13(3):56-59.
    [7]Huifen Li, Feng Liu, Yaxin Hou. Railway Hazardous Articles Monitoring System Based on Wireless Sensor Network[J]. Information Engineering and Computer Science (ICIECS),2010,(16):1-4.
    [8]傅程华,李尚福.高速公路模拟监控系统的改造[J].中国交通信息化,2010.(9):91-92
    [9]Matsumoto.M. The revolution of railway system by using advanced information technology[C]. Autonomous Decentralized Systems,2000:74-80.
    [10]王令朝.铁路线路维护检测技术应用综述[J].铁道技术监督,2010,38(1):16-20
    [11]Zoeteman A.Esveld C. State of the art in railway maintenance management planning systems and their application in Europe[C]. Systems Man and Cybernetics,2004(5): 4165-4170.
    [12]Mazzeo P L.Nitti M Stella E, Ancona N.Distante A. An automatic inspection system for the hexagonal headed bolts detection in railway maintenance [J]. Intelligent Transportation Systems,2004(3):417-422.
    [13]De Ruvo G,De Ruvo P,Marino F etal.A FPGA-based architecture for automatic hexagonal bolts detection in railway maintenance [J]. Computer Architecture for Machine Perception,2005(6):219-224.
    [14]胡增荣.铁路养护用捣固车[J].科技经济市场,2010.(6):25.
    [15]Kangwon Lee.Youngwoo Kim.Jinhee Jang. A study of integrated chassis control algorithm with brake control and suspension control systems for vehicle stability and handling performance[C]. ICCAS-SICE,2009:4053-4057.
    [16]Mahalungkar S,Ingram M. Online and manual (offline) vibration monitoring of equipment for reliability centered maintenance[C]. Cement Industry Technical Conference,2004:245-261.
    [17]Hongdong Fan,Changhua Hu,Maoyin Chen etal. Cooperative Predictive Maintenance of Repairable Systems With Dependent Failure Modes and Resource Constraint[C]. Reliability, IEEE Transactions on,2011:144-157.
    [18]Hu Guoxiang,Li Jie. Development on preventive maintenance management system for expressway asphalt pavements[J]. Mechanic Automation and Control Engineering (MACE),2010(3):942-945.
    [19]Yang S K. A condition-based failure-prediction and processing-scheme for preventive maintenance[C].Reliability, IEEE Transactions on.2003:373-383.
    [20]Bastos P, Lopes R, Pires L, Pedrosa T.Maintenance behaviour-based prediction system using data mining[J]. Industrial Engineering and Engineering Management, 2009(5):2487-2491.
    [21]Bansal D,Evans D J,Jones B. A Real-Time Predictive Maintenance System for Machine Systems-An Alternative to Expensive Motion Sensing Technology[C].Sensors for Industry Conference,2005:39-44.
    [22]Cao Yang, Gu Xiao-ming.Jin Qi. Infrared technology in the fault diagnosis of substation equipment[J]. Electricity Distribution,2008:1-6.
    [23]Wang Jian.Li Jie,You Xiangyang etal. Engineering Equipment Integrated Fault Diagnosis System Based on Component Technology[J]. Measuring Technology and Mechatronics Automation,2009(9):630-633.
    [24]Yunfeng Liu,Dong Miao,Yunhui Peng,Fei Meng. Remote Fault Diagnosis Based on Virtual Instrument Technology[C]. Computer Supported Cooperative Work in Design.2006:1-5.
    [25]Jiangwei Chu,Lili Zhang.Pengfei Cui. Study on Integration Diagnosis System for Automobile Faults and Its Key Technologies[J]. Computational Intelligence and Industrial Application,2008(5):630-633.
    [26]Lifeng Liu.Caixin Sun.Quan Zhou etal. A novel electrical equipment on-line monitoring system based on geographic information system [J]. Electrical Insulating Materials.2001:205-208.
    [27]Xinbo Huang.Wei Liu.Yun Zhang. Design of field sampling unit of an on-line monitoring system of dielectric loss in capacitive high-voltage apparatus[J]. Electronic Measurement & lnstruments.2009:1660-1666.
    [28]Kunlin Zhou.Gang Rong. Improving monitoring performance of on-line process based on PCA method[C]. Control and Decision Conference (CCDC),2010:4144-4148.
    [29]Hao Tang.Jianbin Fan,Guangning Wu etal. The design of circuit in on-line monitoring system for traction transformer insulation[J]. Condition Monitoring and Diagnosis,2008:869-872.
    [30]Yachuan Yao,Yi Yao,Hong Song. The Remote Monitoring System Based on the OPC Technology[J]. Intelligent Systems and Applications,2009:1-3.
    [31]Zhang Lihong.Sun Lei,Lu Weina. A Temperature Monitoring System of Power Cable Joints Based on the Combining of CAN Wired Transmission and ZigBee Wireless Network[J]. Information Engineering and Computer Science (ICIECS),2010:1-4.
    [32]Wendou An, Caixin Sun, Quan Zhou etal. GIS based multilevel intelligent fault diagnosis system on electric power equipment [C]. Electrical Insulation,2004:398-401.
    [33]Huang Jianzhao,Xie Jian,Li Feng etal. Design and implementation of fault diagnosis expert system for weapon equipment[J]. Computer Application and System Modeling (ICCASM),2010(6):6712-6718.
    [34]Liang Xiaolin,Zhao Yanxia,Zhou Zenghui. Research on application of fuzzy fault tree analysis in the electronic equipment fault diagnosis[C]. Computer and Automation Engineering (ICCAE),2010:65-67.
    [35]Yang Wenyu,Liu Jian,Wang Jianyuan etal. The Application of GSM and GPRS Technology in Monitoring System for HVDC System Earth Pole [J]. Power System Technology,2006:1-5.
    [36]Zhao Liangshui,Wang Ai'hong,Xu Jianyuan. Remote Monitor and Control System for Wreath Net Cabinet Based on GPRS Technology [J]. Power System Technology.2006:1-6.
    [37]Tan Baohua. Road Surface Temperature Monitor System Realization Based on Rich Internet Application Model and GPRS Technology [J]. Intelligent Systems and Applications (ISA),2010:1-4.
    [38]沈苑,陈晓荣,施展.基于GPRS技术的远程数据采集与分析系统[J].上海理工大学学报,2007,29(3):281-284.
    [39]Qiulan Wu.Yong Liang.Yongxiang Sun etal.Application of GPRS technology in water quality monitoring system[C]. World Automation Congress (WAC),2010:7-11.
    [40]Xenakis C, Apostolopoulou D, Panou A etal. A Qualitative Risk Analysis for the GPRS Technology[J]. Embedded and Ubiquitous Computing.2008:61-68.
    [41]应立军,周书武,亓琳等.08-32捣固车电气系统在线监测与故障诊断系统[J].交通运输工程学报,2004.4(4):34-36.
    [42]朱建新,赵延明:徐慧余等.基于Profibus-DP总线的工程车辆检测监控系统[J].自动化与仪表,2004,19(1):35-37.
    [43]陈立功,周军全.电力机车运行状态实时监测系统设计[J].电子元器件应,2008,10(3):86-88.
    [44]许小伟,盛俊,吕明等.内燃机车状态监测系统设计[J].中国铁路,2010(1):73-76.
    [45]刘铁军.捣固车自动起拨道作业方法探讨[J].铁道建筑,2009(1):96-97.
    [46]闫进学.一种能够简便测量和计算曲线拨道量的方法[J].铁道建筑,2005(11):82-83.
    [47]高新平.竖曲线的养护方法探讨[J].铁道建筑,2000,(12):27-30.
    [48]言建文.08-32捣固车四点法前偏移修正方法的探讨[J].铁路大型养路机械论文集,2003(3):98-101.
    [49]许锦明,郝世明.对山区重载货运线路竖曲线的探讨[J].科技情报开发与经济,2010,20(26):214-215.
    [50]王开云,周维俊,翟婉明等.基于动力学理论对高中速客运专线和高低速客货共线铁路平纵面合理匹配的研究[J].铁道标准设计,2005(7):1-3.
    [51]畅建民.提高D08-32型捣固车系统精度的措施[J].铁道建筑.2009(9):109-111.
    [52]李光林,张新奎,朱利民.提速200 km/h线路长波长不平顺的养护维修技术[J].铁道建筑,2007(4):201-202.
    [53]Mohamad I, Ali M, Ismail M. Availability, reliability and accuracy of GPS signal in Bandar Baru Bangi for the determination of vehicle position and speed[J]. Space Science and Communication,2009:224-229.
    [54]Hayashi M, Tanaka T. High accuracy positioning of two-wheeled vehicle at high speed traveling using GPS[C]. ICCAS-SICE.2009:3956-3960.
    [55]Kukshya V, Krishnan H,Kellum C. Performance Evaluation of a System for Estimating Relative Positions of Vehicles During GPS Outages[C]. Intelligent Vehicles Symposium 2006 IEEE.2006:394-399.
    [56]Imamura M,Kobayashi K,Watanabe K. Real time positioning by fusing differential-GPS and local vehicle sensors[C]. SICE 2003 Annual Conference,2003:778-781 Vol.1.
    [57]韩志青,唐定全.抄平起拨道捣固车[M].北京:中国铁道出版社,2004,.46-53.
    [58]Turan A.Bogosyan S.Gokasan M. Development of a Client-Server Communication Method for Matlab/Simulink Based Remote Robotics Experiments[C]. Industrial Electronics,2006:3201-3206.
    [59]Carrera E N,Bianchini R. A clustered server based on user-level communication[C]. Parallel and Distributed Systems IEEE Transactions on,2005:385-395.
    [60]Nolte T,Nolin M,Hansson H A. Real-time server-based communication with CAN[C]. Industrial Informatics IEEE Transactions on,2005:192-201.
    [61]刘宝友,方攸同,魏金祥等.状态维修机械设备的可靠性和检测更换策略[J].机械工程学报.2006,42(3):30-34.
    [62]许立学.设备管理中的机械故障诊断技术与状态监测维修[J].中山大学学报(自然科学版),2005,44(z1):185-188.
    [63]王宏睿,王志龙,祝金国.制药设备维修管理系统的研究与开发[J].机械设计与制造,2009,(7):249-251.
    [64]KlausJanschek, Annerose Braune.Application of industrial Can bus technology for leo-satellites[J]. Acta Astronautica,2000.46(2/6):313-317.
    [65]Andrija Volkanovski.Marko Cepin.Borut Mavko.Application Of The Fault Tree Analysis For Assessment Of Power System Reliability[J].Reliability Engineering & System Safety.2009,94(6):1116-1127.
    [66]Jen-Hung Chen.Industrial power system analysis with database access[J]. IEEE Transactions on Industry Applications.2000,36(5):1198-1205.
    [67]安叶.提高D08.32型捣固车测量作业精度的研究[J].铁道建筑2007(8):100-102.
    [68]陆亦群,高春雷,王发灯.提高既有捣固车作业精度的研究[J].中国铁路,2006(12):45-47.
    [69]徐光华.捣固车作业质量的探讨[J].铁道建筑2007(5):77-78.
    [70]王开云,翟婉明,刘建新.线路不平顺波长对提速列车横向舒适性影响[J].交通运输工程学报2007.7(01):1-5.
    [71]刘刚.捣固车起道抄平原理分析[J].铁道建筑,2009(1):78-80.
    [72]辛维克.我国客运专线铁路工程测量技术的发展与展望[J].铁道工程学报,2008(z1):88-93.
    [73]汤国华.DWL-48连续式捣稳车激光抄平系统应用探讨[J].上海铁道科技,2009(3):8-9.
    [74]易师武.08-32型捣固车曲线作业荒拨的分析与探讨[J].上海铁道科技,2004(3):47-48.
    [75]邓昌大.计算圆曲线正矢公式的推导与应用[J].铁道运营技术,2006,12(1):6-7.
    [76]向俊,曹庆元.轨道三角坑对列车脱轨安全性的影响分析[J].长沙铁道学院学报,2001,19(1):4-8.
    [77]王发灯,高春雷.两维激光跟踪系统在捣固车中的应用[J].铁道建筑2009(1):86-88.
    [78]高春雷.王发灯.利用激光准直技术检测线路的长波不平顺[J].铁道建筑2009(1):81-85.
    [79]CHENG Jun-ping,WANG Jie-xian.Conic fitting in engineering surveying[J]. Geotechnieal Investigationand Surveying,2003(S):59-61.
    [80]Lavery J E.Shape-preserving.muhiscale fitting of univariate data by cubic L1 smoothing splines[J]. Computer Aided Ge-ometric Design,2000,17(7):715-727.
    [81]Liao Ping,Yu Shouyi.A calculating method of circle radius using genetic algorithms[J].Acta Metrologica Sinica,2001,22(2):87-89.
    [82]Andre Gueziec, Gabriel Taubin, Francis Lazarus etal.Cutting and stitching converting sets of polygons to manifold surfaces[J]. IEEE ransactions on Visualization and Computer Graphics.2001,7 (2):136-151.
    [83]Liu Haixiang, Zhang Caiming, Liang Xiuxia. Fitting conic to scattered data in a plane [J].Journal of Computer Aided Design&Computer Graphics,2004,16(11): 1594-1598.
    [84]张继龙,甄蜀春,曹鹏等.实验数据的曲线拟合方法及其应用[J].测试技术学报,2003,17(3):67-59.
    [85]涂嘉文,徐守时,谭勇.基于最小均方误差的圆弧分段曲线拟合方法[J].计算机应用,2001,21(3):48-50.
    [86]龙述尧,刘凯远.胡德安.移动最小二乘近似函数中样条权函数的研究[J].湖南大学学报,2003,30(6):10-13.
    [87]王保成,韩峰.基于坐标测量的既有曲线整正计算优化方法研究[J].兰州交通大学学报,2008,27(1):11-13.
    [88]何恩祥,陆亚军.既有铁路曲线半径选择的目标函数及优化方法研究[x].铁道学报,1990(3):92-96.
    [89]宁明哲,唐进峰,潘自立.既有线提速时缓和曲线长度的最优化算法[J].山西建筑,2003,29(2):178-179.
    [90]孙亮清,张晓燕.一种混合型I0服务器在船舶电力监控中的应用[J].上海船舶运输科学研究所学报,2010,33(2):110-114.
    [91]马艳歌,贾凯,徐方.基于DSP的CANopen通讯协议的实现[J].微计算机信息,2006,22(2):146-148.
    [92]Mike Mitchell.Make a DAC with a microcontroller's PWM timer [J]. Electrical Design News,2002:110.
    [93]Grigorescu, S.-D.,Iliescu, C. Sigma-Delta modulation and PWM performs high-resolution DAC for DC applications[C]. Institute of Electric and Electronic Engineer.1996:45-46.
    [94]Bill Travis. Combine two 8-bit outputs to make one 16-bit DAC [J]. Electrical Design News.2004:85-86.
    [95]Tim Wesctt.25 Sigma-Delta Techniques Extend DAC Resolution [J].Embedded Systems Programming,2004,7:15-18.
    [96]W.Stephen Woodward. Fast-settling synchronous-PWM-DAC filter has almost no ripple [J]. Electrical Design News,2008,9:35-38.
    [97]Craven, P. Digital and analogue considerations for 24-bit performance from a PWM DAC [C]. Institute of Electric and Electronic Engineer,1993:1-5.
    [98]龙善丽,茆邦琴,吴建辉等.∑△DAC中插值滤波器的设计[J].电路与系统学报,2006,11(1):20-23.
    [99]刘爽,贾传荧,陈鹏.基于C/S结构的车辆监控系统设计与实现[J].计算机工程与设计.2005,26(12):3320-3321.
    [100]秦忠林,黄本雄,易丽娅等.车载监控系统中通信服务器的设计和实现[J].计算机工程与应用.2002,38(20):174-175.
    [101]Xavier Lagrange.GSM网络与GPRS[M]顾肇基译.北京:电子工业出版社2002:222-227.
    [102]倪建军.利用GSM短消息业务实现GPS车辆监控[J].电子技术与应用20002,26(7):53-54.
    [103]Lars Ekeroth, Per-Martin Hedstroem, GPRS support nodes.[J]. Ericsson review.2000,77(3):269.
    [104]朱畅华,裴昌幸,李建东等GPRS数据业务性能分析[J].电子学报.2004,,32(5):837-838.
    [105]Cristian Demetrescu, LLC-MAC Analysis of the General Packet Radio Service in GSM.[J].Bell Labs Technical Journal.1999,4(3):37-39.
    [106]3GPP TS 04.60 V7.9.0 General Packet Radio Service (GPRS) Mobile Station (MS)-Base Station System (BSS) interface Radio Link Control/Medium Access Control (RLC/MAC) protocol.
    [107]冯林,彭尉,滕弘飞.车辆监控系统中通信服务器性能优化设计与实现[J].计算机工程与应用.2005,41(6):199-200.
    [108]刘爽.史国友,张远强.基于TCP/IP协议和多线程的通信软件的设计与实现[J].计算机工程与设计.2010,31(7)1417-1418.
    [109]L.Arvanitis.GSW09-5 Vehicle Monitoring System Using GPS/GSM/GIS for Sma-11 City.Asia Pacific Conference on Communications.2000.(6):470-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700