合成气一步合成二甲醚的催化剂、反应机理及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成气一步合成二甲醚近年来受到广泛关注。本文对一步法合成二甲醚过程进行了研究,确定了催化剂的最佳组成及最佳操作条件,并对催化剂的寿命和失活原因进行了探讨,采用原位红外法研究了反应进程,提出了反应机理和反应动力学方程,并根据实验数据计算了动力学参数。
     论文的主要研究内容及结果如下:
     一、催化剂的制备方法。采用机械混合法和共沉淀沉积法分别制备了不同催化剂,考察了甲醇合成组分及甲醇脱水组分对反应的影响。确定甲醇合成组分为牌号XNC-98的铜-锌-铝催化剂,甲醇脱水组分为硅铝比40的(?)HZSM-5分子筛催化剂,复合催化剂的最佳配比为)KNC-98:HZSM-5=4:1((质量比)。考察了酸改性高岭土作为甲醇脱水组分的应用前景。为提高复合催化剂的耐磨性,还筛选了催化剂成型粘结剂,实验发现,采用胶粒大小为40-50nm的酸性硅溶胶和喷雾干燥法成型,可制得耐磨性较高的球形催化剂,并且,粘结剂量为15%时,催化剂的耐磨性最好。
     二、催化剂的寿命。在3MPa,240℃的条件下,分别考察了还原程序、原料气的H_2/CO比、甲醇合成与甲醇脱水催化剂间的协同效应、空速等因素对催化剂失活的影响,表明还原程序、协同效应对催化剂失活影响明显,而H_2/CO比、空速对失活的影响较小。对失活前后的催化剂进行了XRD、N_2吸附脱附、热重等分析,确认失活主要由于复合催化剂中甲醇合成组分中的Cu晶粒长大造成。催化剂表面有一定量的积碳,但不是失活主要原因。进一步研究表明,催化剂组分间的协同效应对Cu晶粒的长大及积碳都有很大影响。
     三、反应机理。采用XPS和XAES研究催化剂表面Cu的价态,发现在反应温度下,催化剂还原后表面铜全部为Cu0,表明催化剂的活性组分为Cu0。采用原位红外法对反应过程中催化剂表面的基团进行了研究,通过对比分析,推断出甲醇合成反应及逆水汽变换反应的机理如下。
     甲醇合成反应机理:(1)H2+2s(?)2Hs (2) Hs+ZnO(?)Zn-OH+s (3) Co+s(?)COs (4) Cos+Zn-OH(?)HCOO-Zn+s (5) COs+Os(?)CO2.s+s
     (6) CO2.S+Os(?)CO3.s+s
     (7) CO3.s+Hs(?)HCOO s+Os
     (8) HCOOs+ZnO(?)HCOO-Zn+Os
     (9) HCOO—Zn+2Hs(?)CH3O-Zn+Os+s
     (10) CH3O-Zn+Zn-OH+Os(?)圭CH3OH·ZnO+ZnO+s
     (11) CH3OH·ZnO(?)CH3OH+ZnO
     (12) Os+2Hs(?)H2Os+2s
     (13) H2Os(?)H2O+s逆水汽变换反应机理:
     (1) CO+s(?)COs
     (2) H2O+s(?)H2Os
     (3) H2Os+2s(?)2Hs+Os
     (4)2Hs(?)H2+2s
     (5) COs+Os(?)CO2.S+s
     (6) CO2(?)CO2+s
     其中活性位s代表Cu0。
     四、反应本征动力学模型。分别对甲醇合成、甲醇脱水及逆水汽变换反应进行研究,确定反应的控速步骤,在U形管固定床反应器中测定本征动力学数据,回归拟合了模型参数,得到如下反应动力学模型:甲醇合成:甲醇脱水:
     反应速率常数:k1=7.938×107exp(-6.2744×104/RT) k2=4.734×1012exp(-7.2983×104/RT) k3=1.210×1014exp(-8.5197×104/RT)
One step dimethyl ether (DME) synthesis from syngas has attracted more and more attention at present. Compared with the methonal synthesis process, the CO conversion is raised substantially in one step DME synthesis because of breaking of the thermodynamic limits. This paper mainly foucused on the process of one step DME synthesis from syngas. The optimal hybrid catalyst and the optimal operation conditions were selected and the stability of the catalyst was studied. The mechanism of the methanol synthesis reaction, methanol dehydration reaction and water-gas-shift reaction was elucidated. The kinetic equation of the reaction was established, and the kinetic parameters were calculated according to the experiment data.
     The main contents of the paper are as follows.
     Firstly, the catalysts of one step DME synthesis were studied. Different catalysts were prepared by physical mixing method and co-precipitation method, respectively. The reaction test is carried out in a fixed bed reactor. By analyzing the test data, XNC-98is chosen as the methanol synthesis component and HZSM-5whose Si/Al=40as methanol dehydration component for the hybrid catalyst. The optimal operation temperature is240℃, and the optimal ratio of two components is XNC-98/HZSM-5=4:1. Kaolin as methanol dehydration component is also studied. It was found that after dealt with the sulfuric acid, Kaolin can be used as the methanol dehydration component part of the hybrid catalyst. Silica sol is added as binder for the purpose of enhancing the attrition resitance of the catalyst. The spherical of the catalyst particles is improved by spray drying. Attrition test shows that the silica sol containing40-50nm colloidal particls is adapt to the binder.
     Secondly, stability of the hybrid catalyst is evaluated. Stability test is carried out at3MPa and240℃in a fixed bed reactor. Different conditions such as the reduction procedure, the ratio of H2and CO in raw gas, the synergistic effect between the methanol synthesis catalyst and methanol dehydration catalyst and space velocity are dealt with. The catalysts before and after deactivation are analyzed by XRD,N2-adsorption and TGA. Results show that the deactivation of the DME synthesis catalyst is mainly caused by the ageing of the methanol synthesis catalyst. Sintering of Cu particles is the main reason leads the catalyst to deactivate, and the process is deeply affected by reduction process and the synergistic effect. At the same time, coking may be another reason that has a little effect on the catalyst stability.
     Thirdly, mechanism of one step DME synthesis reaction was investigated. Results of XPS and XAES showed that after reduction at220℃,the copper on the catalyst surface is turned to Cu0instead of Cu+,so it can be deduced that the active center of the catalyst is Cu0. The reaction route of methanol synthesis and water-gas-shift is studied by in-situ FTIR,and the results are elaborated as follows when used CO2free syngas.
     For methanol synthesis reaction,the mechanism is given by:(1)H2+2s(?)2Hs (2) Hs+ZnO(?)Zn-OH+s (3) CO+s(?)COs (4) COs+Zn-OH(?)HCOO-Zn+s (5) COs+Os(?)CO2.s+s (6) CO2.s+Os(?)CO3.s+s (7) CO3.s+Hs(?)HCOO s+Os (8) HCOOs+ZnO(?)HCOO-Zn+Os (9) HCOO-Zn+2Hs(?)CH3O-Zn+Os+s (10) CH3O-Zn+Zn-OH+Os(?)CH3OH·ZnO+ZnO+s (11) CH3OH·ZnO(?)CH3OH+ZnO (12) Os+2Hs(?)H2Os+2s (13) H2Os(?)H2O+s
     For water-gas-shift reaction,the mechanism is given as follows:(1) CO+s(?)COs (2) H2O+s(?)H2Os (3) H2Os+2s(?)2Hs+Os (4)2Hs(?)H2+2s (5) COs+Os(?)CO2.s+s (6) CO2.s(?)CO2+s
     Finally, intrinsic kinetic model is built. Studied on the methanol synthesis, methanol dehydration and water-gas-shift reaction, the intrinsic kinetic equations are achieved. The kinetic data are colected in a U type fixed bed reactor and the simplex method was used to scan the models and correlate the kinetic parameters. The equations are showed as follows.
     Methanol synthesis reaction
     Methanol dehydration reaction
     Water-gas-shift reaction k1=7.938×107exp(-6.2744×104/RT) k2=4.734×1012exp(-7.2983×104/RT) k3=1.210×1014exp(-8.5197×104/RT)
引文
[1]吴承康,徐建中,金红光.能源科学发展战略研究.世界科技研究与发展,2000,22(4):1-6
    [2]安军信.清洁燃料二甲醚的生产技术和发展前景.石化技术与应用,2001,19(6):389-392
    [3]赵俊贤.二甲醚生产技术现状机发展趋势.化学工业,2008,26(6):26-30
    [4]李伟,张希良.国内二甲醚研究述评.煤炭转化,2007,30(3):89-94
    [5]肖文德,鲁文质.一种合成气直接合成二甲醚的方法.中国专利公开号:CN1332141
    [6]李翔宇,陈樑,李志锋等.二甲醚制备方法的研究进展.化工时刊,2002,(10):11-14.
    [7]李奇.复合酸法脱水催化生产二甲醚:中国,1322704A.2001
    [8]汤洪,李淑芳等.甲醇气相催化脱水制二甲醚新技术.甲醇与甲醛,2006,(3):20-24.
    [9]崔世纯.甲醇气相催化脱水制二甲醚工艺.石油化工,1999,28(1):43-45.
    [10]蔡飞鹏,林乐腾等.二甲醚合成技术研究概况.生物质化学工程,2006,40(5):37-42.
    [11]李仲来.二甲醚生产技术进展综述.小氮肥设计技术.2003,24(3):2-9.
    [12]费金华,王一兆.二甲醚的生产工艺及其特点.小氮肥设计技术,2003,24(1):57-59.
    [13]Han Y Z,Fujimoto K,Tshikada. Dimethyl ether synthesis from syngas in slurry phase. 1995 International chemical congress of pacific Basin Societies Science&Technology Environmental Symoposium,1995,21 (2):61-64.
    [14]刘广建,李政等.几种二甲醚合成工艺的技术经济分析.动力工程,2006,26(5):729,739-741
    [15]Takashi Ogawa, Norio Inoue, Tutomu Shikada, Yotaro Ohno. Direct Dimethyl Ether Synthesis. Journal of Natural Gas Chemistry 2003,12(4):219-227.
    [16]黎汉生,任飞等.浆态床一步法二甲醚产业化技术开发研究进展.化工进展,2004,23(9):921-924.
    [17]杜明仙,李永旺等.CO+H2合成甲醇、二甲醚过程及其动力学研究:(II)动力学研究.煤炭转化,1993,16(4):68-75.
    [18]郭俊旺,牛玉琴.浆态床合成气制二甲醚的宏观动力学研究.天然气加工,2000,25(1):4-7
    [19]郭俊旺,牛玉琴.浆态床合成气制二甲醚双功能催化剂的性能:脱水组分对催化剂性能影响的研究.燃料化学学报,1998,26(4):321-324
    [20]滕丽华,鲁文质等.合成二甲醚过程中的多功能催化协同效应.华东理工大学学报,2004,30(4):365-369
    [21]赵彦巧,陈吉祥等.二氧化碳加氢直接合成二甲醚催化剂的研究.天然气化工,2006,31(3):5-8
    [22]王继元,曾崇余.Al2O3含量对Cu-ZnO-Al2O3-SiO2催化剂性能的影响.石油化工高等学校学报,2006,19(2):41-46
    [23]G.R. Moradi'S. Nosrati, F. Yaripor. Effect of the hybrid catalysts preparation method upon direct synthesis of dimethyl ether from synthesis gas. Catalysis Communications, 2007,8:598-606
    [24]刘志坚,廖建军等.二氧化碳加氢合成二甲醚CuO-ZnO-Al2O3/HZSM-5型催化剂的研究.工业催化,2002,10(2):46-49
    [25]杨明霞,费金华等.共沉淀浸渍法制备由合成气直接合成二甲醚的Cu-Mn催化剂.燃料化学学报,2004,32(2):210-214
    [26]白崎高保,藤堂尚之[日].流化催化剂催化剂制造,石油工业出版社,北京,1981:273-305
    [27]Wei D, Goodwin J G, Oukaci R, et al. Attrition resistance of cobalt Fischer-Tropsch catalysts for slurry bubble column reactor use. Applied Catalysis A:General,2001,210(1,2): 137-150
    [28]Wei D G, Zhang Y L, Goodwin J G The Effect of Pretreatment on the Attrition Resistance of Spray-Dried Alumina. Applied Catalysis A:General,2000,201:129-138.
    [29]Singleton Alan H, Oukaci Rachid, Goodwin James G Alumina-supported cobalt-titania attrition-resistant Fischer-Tropsch catalysts especially for slurry reactors. US 1999-316562 21 May 1999.
    [30]Bukur D B, Mukesh D, Patel S A. Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis. Ind Eng Chem Res,1990,29(2):194-204.
    [31]Bukur D B, Lang X, Mukesh D. Binder/support effects on the activity and selectivity of iron catalysts in the Fischer-Tropsch synthesis. Ind.Eng.Chem.Res.1990,29(8):1588-1599
    [32]Dry M E. In Catalysis-Science and Technology; Anderson J R,Boudart M.Eds.; Springer-Verlag:New York,1981:p 160.
    [33]朱洪法.喷雾成型.催化剂成型.中国石化出版社,北京,1992,136-166.
    [34]王晓兰,刘智刚.喷雾干燥粉料粒度分布的影响因素探讨.佛山陶瓷,2001,11(7):16-18.
    [35]阎红,王维,王喜忠.喷雾干燥用雾化器尺寸的估算.化工设备与防腐蚀,2001,(2):14-20.
    [36]林振汉,吴亮,林刚等.用喷雾干燥法制备PSZ-3Y粉末颗粒的形貌研究.稀有金属,2003,27(1):144-147.
    [37]许根慧,张福芝,陈洪钫.正丁烷氧化制顺酐流化床催化剂的喷雾成型.化学工业与工程,1992,10(1):1-6
    [38]Pham H N, Datye A K.The Synthesis of Resistant Slurry Phase iron Fisher-Tropsch Catalysts. Catalysis Today,2000,58:233-240.
    [39]Jothimurugesan K, Goodwin G G, Gangwal S K, et.al. Development of Fe Fischer-Tropsch Catalysts for Slurry Bubble Column Reactors. Catalysis Today,2000,58: 335-344
    [40]Jothimurugesan K, Spivey J J, Gangwal S K,et.al. In Natural Gas Conversion V. Studies in Surface Science and Catalysis; Parmaliana A, et al, Eds; Elsevier Science:New York,1998; Vol.119,p215.
    [41]Zhao R, Goodwin J G, Jothimurugesan K. Spray-Dried Iron Fischer-Tropsch Catalysts.1.Effect of Structure on the Attrition Resistance of the Catalysts in the Calcined State. Ind Eng Chem Res,2001,40:1065-1075.
    [42]Bergna H E. In Characterization and Catalyst Development:an interactive approach; Bradley S A, Gattuso M J, Bertolacini R J, Eds; American Chemical Society:Washington DC,1989; 55
    [43]Elliott C H J. Process for preparing a petroleum cracking catalyst. US, US3867308. 1975.
    [44]Wachter, William A, Nguyen, et al. Mesoporous FCC catalyst formulated with gibbsite and rare earth oxide. US, US 6022471.2000
    [45]Varma, R. L, Jothimurugesan, K, Bakhshi, N N et al. Direct Conversion of Synthesis Gas to Aromatic Hydrocarbons:Variation of Product Distribution with Time-on-Stream. Can J Chem Eng,1986,64(1):141-148
    [46]曹发海,房鼎业.甲醇合成铜基催化剂中毒失活评述.中氮肥.1993.5,1-5
    [47]M.V.Twigg, M.S.Spencer. Deactivation of supported copper metal catalysts for hydrogenation reactions. Applied Catalysis A:General.212 (2001),161-174.
    [48]M.S.Spencer. The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction. Topics in Catalysis.8 (1999) 259-266.
    [49]应卫勇,房鼎业,朱炳辰.甲醇合成铜基催化剂硫化氢中毒研究(I)硫化氢中毒本征失活动力学.化工学报.43(1992)2:133-138.
    [50]应卫勇,房鼎业,朱炳辰.甲醇合成铜基催化剂硫化氢中毒研究(II)表面中毒催化剂效率因子.化工学报.43(1992)2:139-147
    [51]陈文锋,朱伟.电子能谱仪在失活工业催化剂分析中的应用.化学工业与工程技术.16(1995)3:31-36
    [52]王存文,丁百全,朱炳辰,房鼎业.三相床甲醇合成过程的铜基催化剂失活.武汉化工学院学报.23(2001)3:1-4.
    [53]孙锦宜.工业催化剂的失活与再生,化学工业出版社,2006,225-227.
    [54]安炜,牛玉琴,陈正华.低碳醇合成中异丁醇形成机理及提高其收率的途径.燃料化学学报.22(1994)1:63-69.
    [55]左宜赞,安欣,韩明汉,王金福,王德峥,金涌.残存钠对铜基甲醇合成催化剂活性与稳定性的影响.催化学报,30(2009)2:1266-1270.
    [56]M.V.Twigg, M.S.Spencer. Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis. Topics in Catalysis. 22(2003)191-203.
    [57]Tohji K, Udagawa Y, Mizushima T, Ueno A. The Structure of the Cu/ZnO Catalyst by an in-Situ EXAFS Study. J. Phys. Chem.89(1985),5671-5676.
    [58]M.C. Carroll, B. Skrotzki, M. Kurtz, M. Muhler, G. Eggeler. Growth of copper particles in a Cu/ZnO methanol catalyst. Scripta Materialia 49 (2003) 527-532
    [59]刘宏伟,聂兆广,刘殿华,应卫勇,房鼎业.三相淤浆床中合成气直接合成二甲醚双功能混合催化剂的失活研究.华东理工学报(自然科学版),32(2006)4:365-369,380
    [60]王东升,谭猗生,韩怡卓,椿范立.浆态床合成二甲醚复合催化剂失活原因探索.燃料化学学报,36(2008)2:176-180
    [61]James T. Sun, Ian S. Metcalfe, Mortaza Sahibzada. Deactivation of Cu/ZnO/Al2O3 Methanol Synthesis Catalyst by Sintering. Ind. Eng. Chem. Res.1999,38,3868-3872
    [62]岑亚青,李小年,刘化章.酸-碱交替沉淀法制备铜基甲醇合成催化剂.催化学报,27(2006)3:210-216
    [63]J.R.Jensen, T.Johannessen, S. Wedel, H. Livbjerg. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis. Journal of Catalysis,2003,218:67-77
    [64]王继元,曾崇余,吴昌子.Si02改性的Cu-ZnO/HZSM-5催化剂及合成二甲醚性能.燃料化学学报,34(2006)2:195-199
    [65]左宜赞,张强,安欣,韩明汉,王铁锋,王金福,金涌.浆态床中Cu/ZnO/Al2O3 /ZrO2+γ-Al2O3双功能催化剂一步法合成二甲醚.燃料化学学报,38(2010)1:102-107
    [66]X.D. Peng, B.A. Toseland and R.P. Underwood, A novel mechanism of catalyst deactivation in liquid phase synthesis Gas-to-DME reactions, Studies in Surface Science and Catalysis,111(1997)175-182
    [67]马强,黄伟,樊金串,赵杰,任杰.完全液相法制备的Cu-Zn-Si-Al浆状催化剂一步法合成二甲醚的失活研究.23(2009)6:499-505
    [68]Andres T. Aguayo, Javier Erena, Irene Sierra, Martin Olazar, Javier Bilbao. Deactivation and regeneration of hybrid catalysts in the single-step synthesis of dimethyl ether from syngas and CO2, Catalysis Today 106 (2005) 265-270
    [69]Guang-xin Jia, Hong-bin Ma, Yi-sheng Tan, and Yi-zhuo Han. Effect of Particle Size on the Hybrid Catalyst Activity for Slurry Phase Dimethyl Ether Synthesis. Ind. Eng. Chem. Res. 44(2005)2011-2015
    [70]Flavia S. R. Barbosa, Vanusa S. O. Ruiz, Jose L. F. Monteiro, Roberto R. de Avillez, Luiz E. P. Borges, Lucia G. Appel. The Deactivation Modes of Cu/ZnO/Al2O3 and HZSM-5 Physical Mixture in the One-Step DME Synthesis. Catal Lett (2008) 126:173-178
    [71]Han, Y. Z, Fujimoto, K, Shikata. T. Dimethyl ether synthesis from syngas in slurry phase. Proceedings-Annual International Pittsburgh Coal Conference (1997),14th
    [72]Lee J s, Lee K H,Lee S Y, et al. A comparative study of methanol synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 catalyst. J. Catal,1993,144:414-424.
    [73]Klier K, Chatikavanij V, Herman R G, et al. Catalytic synthesis of methanol from carbon monoxide/hydrogen IV:The efects of carbon dioxide. J. Catal,1982,74(2):343-360.
    [74]Keim W.C化学中的催化.黄仲涛,译.北京,化学工业出版社,1989:89-91.
    [75]Agny R M, Takoudis C G. Synthesis of methanol from carbon monoxide and hydrogen over a copper-zinc oxide-alumina catalyst. Ind Eng Chem Prod Res Dev,1985,24:50-55.
    [76]Saussey J, Lavalley J C. An in situ FT-IR Study of Adsorbed Species on a Cu-ZnAl2O4 Methanol Catalyst under 1 MPa Pressure and at 525 K:Effect of the H2/CO/CO2 Feed Stream Composition. J Mol Catal,1989,50:343-353
    [77]Fujita S I, Usui M, Ito H, et al. Mechanisms of Methanol Synthesis from Carbon Dioxide and from Carbon Monoxide at Atmospheric Pressure over Cu/ZnO. J Catal,1995,157: 403-413
    [78]夏丕通.合成甲醇反应机理的研究现状.合成化学,1994,2(1):18-26.
    [79]Vedage G A, Htehai R, Herman R G, et al. Water Promotionand Identification of Interm ediates in Methanol Syn thesis.8th International Congress on Catalysis. Berlin:Weinheim, Fed Rep Ger,1985.
    [80]Chinchen GC, Denny P J, ParkerD J, etal. Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts:Use of C-labelled reactants. Appl Catal,1987,30:333-338.
    [81]Denise B, Sneeden R P. Hydrocondensation of carbon dioxide IV. J Mol Catal,1982, 17(2/3):359-366.
    [82]Amenomiya Y, Tagawa T. Infrared Study of Methanol Synthesis from CO2+H2 on Supported Copper-Zinc Oxide Catalysts. In:Verlag Chemie eds. Proceedings,8th International Congress on Catalysis, Berlin:Weinheim, Fed Rep Ger,1985.2:11557-11567
    [83]Ramaroson E, Kieffer R, Kiennemann A. Reactions of Carbon Monoxide-Hydrogen and Carbon Dioxide-Hydrogen on Copper-Zinc Catalysts Promoted by Metal Oxides of Groups III and IV. Appl Catal,1982,4(3):281-286
    [84]Sun Q, Liu C W, Pan W, et al. In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al2O3 catalyst. Appl Catal A, General,1998,171:301-308.
    [85]Neophytides S G, Marchi A J, Froment G F. Methanol Synthesis by Means of Diffuse Reflectance Infrared Fourier Transform and Temperature-Programmed Reaction Spectroscopy. Appl Catal A,1992,86:45-64
    [86]Joo O S, Jung K D, Han S H, et al. Migration and reduction of formate to form methanol on Cu/ZnO catalysts. Appl Catal A:General,1996,135(2):273-286.
    [87]Ruiqin Y, Yilu F, Yi Z, et al. In situ drift study of low temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter. J Catal, 2004,228(1):23-35.
    [88]Evans J W, Cant N W, Trimm D L, et al. Hydrogenolysis of ethyl formate over copper-based catalysts. Appl Catal,1983,6(3):355-362.
    [89]Yang R Q, Zhang Y, Iwama Y, et al. Mechanistic study of a new low-temperature methanol synthesis on Cu/MgO catalysts. Appl Catal A:General,2005,288(1/2):126-133.
    [90]Yang R Q, Zhang Y, Tsubaki N. Dual catalysis mechanism of alcohol solvent and Cu catalyst for a new methanol synthesis method. Catal Com,2005,6(4):275-279.
    [91]Knozinger H, Scheglila A, Watson A M. The dehydration of alcohols over alumina VII. The ether formation from the deuterated methanols CH3 OH, CD3 OH, CH3 OD and CD3OD. J Phy Chem,1968,72(8):2770-2774.
    [92]Tain J R, PiUai C N. Catalytic dehydration of alcohols over alumina mechanism of ether formation. J Catal,1967,9(4):322-330.
    [93]王守国,王元鸿,等H4SiW2O40-La2O3/γ-Al2O3催化甲醇脱水制备二甲醚.分子科学学报,2001,17(2):99-104.
    [94]解峰,黎汉生,等.甲醇在活性A1203催化剂表面的吸附与脱水反应.催化学报,2004,25(5):403-408.
    [95]Pines H, Steingaszner P. Hydrogenolysis I. Nickel-kiesel-guhr catalyst for the conversion of alcohols to ether and hydrocarbons. J Catal,1968,10(1):60-68.
    [96]Xu M T, Lunsford J H, Goodman D W, et al. Synthesis of dimethyl ether(DME) from methanol over solid acid catalysts. Applied Catalysis A:General,1997,149(2):289-301.
    [97]杜爱萍,许磊,等SAPO-34和SPO-44分子筛上吸附甲醇的TPSR-MS研究.催化学报,2004,25(8):619-623.
    [98]Blaszkowski S R。Santen R A. Theoretical study of the mechanism of surface methoxy and dimethyl ether formation from methanol catalyzed by zeolite protons. J Phys Chem B,1997,101(13):2292-2305.
    [99]Highfield J G, Mo fat J B. Elucidation of the mechanism of dehydration of methanol over 12-tungstophosphoric acid using infrared photoaeousfie spectroscopy. J. Catal,1985, 95(1):108-119.
    [100]刘志坚,廖建军,等.甲醇脱水生成二甲醚的沸石催化剂.石油化工,1999,28(4):236-240.
    [101]栾友顺,徐恒泳等.一步合成二甲醚催化剂烧结失活和原位再生的研究.燃料化学学报.2008,36(1):70-73
    [102]陈程雯,杨振威等.高岭土催化甲醇脱水制二甲醚的研究.厦门大学学报(自然科学版).2004,43(5):661-664
    [103]郑净植,毛丽秋等.改性高岭土催化甲醇脱水制二甲醚.湖南化工.2000,30(1):9-10,42
    [104]王继元,曾崇余Cu-ZnO/HZSM-5催化剂的制备、表征及催化性能.天然气化工.2006,29(4):38-42
    [105]Kunpeng Sun, Weiwei Lu, Xianlun Xu, et al. Direct synthesis of DME over bifunctional catalyst:surface properties and catalytic performance. Appl Catal A:Gen,2003,252:243-249
    [106]赵彦巧,陈吉祥,张继炎.C02加氢直接合成二甲醚催化剂的研究-沉淀方法对复合催化剂性能的影响.化学反应工程与工艺.2006,22(3):230-234
    [107]葛庆杰,黄友梅,李双娣.合成气直接制取二甲醚催化剂的制备因素及其应用.石油化工,1997,26(9):593-597
    [108]李增喜,冯玉龙,王日杰.合成二甲醚铜基/1HZSM-5催化剂的研究.催化学报,1998,19(4):367-370
    [109]P. Porta, S.D. Rossi, M. Ferraris, M.L. Jacono, G. Minelli, G. Moretti, Structural characterization of malachite-like coprecipitated precursors of binary CuO-ZnO catalysts. J. Catal.1988,2(109):367-377.
    [110]G.C. Chinchen, PJ. Denny, J.R. Jennings, M.S. Spencer, K.C. Waugh, Synthesis of methanol. Part 1. Catalysts and kinetics. Appl. Catal.1988,36(1-2):1-65.
    [111]M. Saito, J. Wu, K. Tomoda, I. Takahara, K. Murata, Effects of ZnO Contained in Supported Cu-Based Catalysts on Their Activities for Several Reactions Catal. Lett.2002, (83):1-4.
    [112]Pham. H. N., Viergutz, A., Gormley. R. J., Datye. A. K. Improving the attrition resistance of slurry phase heterogeneous catalysts. Powder Technol.2000, (110):196-203.
    [113]Elliott C H J. Process for preparing a petroleum cracking catalyst. US, US 3867308.1975.
    [114]Contractor, Rashmikant Maganlal; Letts, William Joseph. Process for manufacture and use of improved attrition resistant catalyst. WO 2000018507
    [115]冯元琦.甲醇生产操作问答.化学工业出版社,北京:2000.5
    [116]余金华,祁国安,薛守标.影响甲醇合成催化剂寿命的主要因素及对策.化学工业与工程技术,1999,20(3)24-27
    [117]R. Hughes, Deactivation of Catalysts, Academic Press, New York,1994.
    [118]Tohji K, Udagawa Y, Mizushima T, Ueno A. The Structure of the Cu/ZnO Catalyst by an in-Situ EXAFS Study. J. Phys. Chem.89(1985),5671-5676.
    [119]Dongsheng Wang, Yizhuo Han, Yisheng Tan, Noritatsu Tsubaki. Effect of H2O on Cu-based catalyst in one-step slurry phase dimethyl ether synthesis. Fuel Processing Technology 90 (2009) 446-451
    [120]Sunggyu Lee and Abhay Sardesai. Liquid phase methanol and dimethyl ether synthesis from syngas. Topics in Catalysis.32(2005) 197-207
    [121]M. Gogate, A Novel Single-step Dimethyl Ether Synthesis Process from Syngas, Ph. D. Dissertation, University of Akron,1992.
    [122]张濂,许志美,袁向前.化学反应工程原理,华东理工大学出版社,2004.
    [123]李志红,黄伟,左志军,宋雅君,谢克昌.用XPS研究不同方法制备的CuZnAl 一步法二甲醚合成催化剂.催化学报,2009,30(2)171-177
    [124]Wei-Lin Dai, Qi Sun, Jing-Fa Deng, Dong Wu, Yu-Han Sun. XPS studies of Cu/ZnO/Al2O3 ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2+H2. Applied Surface Science.177(2001)172-179
    [125]刘志坚.二氧化碳加氢合成二甲醚及其催化剂研究.石油化工科学研究院博士生毕业论文,1999,170-173.
    [126]Gao Lizhen, Li Jitao, Peter CT Au. Mechanistic studies on CO/CO2 hydrogenation to methanol over Cu-Zn-Al and Cu-Zn-Al-Li catalysts. J.Natu gas chemy,2001,10(2):110-146
    [127]Edwards J F, Schrader G L. In Situ Fourier Transform Infrared Study of Methanol Synthesis on Mixed Metal Oxide Catalysts. J Catal,1985,94:175-186
    [128]Parris G E, Klier K. The Specific Copper Surface Areas in Copper/Zinc Oxide Methanol Synthesis Catalysts by Oxygen and Carbon Monoxide Chemisorption:Evidence for Irreversible Carbon Monoxide Chemisorption Induced by the Interaction of the Catalyst Components. J Catal,1986,97(2):374-384
    [129]Peltier F L, Chaumette P, Saussey J, et al. In-situ FT-IR and Kinetic Study of Methanol Synthesis from CO2/H2 over ZnAl2O4 and Cu-ZnAl2O4 Catalysts. J Mol Catal A.1998, 132:91-100
    [130]Duprez D,Barbier J,Hamida Z F et al. Characterization of Copper-Zinc Catalysts by Hydrogen Thermodesorption. Correlation with Activity in Methanol Synthesis. Appl. Catal. 1984,12(2):219-225
    [131]Martin K A, Zabransky R F. Conversion of Methanol to Dimethyl Ether over ZSM-5 by DRIFT Spectroscopy.1991,45(1):68-72.
    [132]Bandiera J, Naccache C. Kinetics of methanol dehydration on dealuminated H-mordenite:Model with acid and basic active centres. Appl Catal,1991,69:139-148.
    [133]Kupelkova L, Novakova J, Nedomova K. Reactivity of surface species on zeolites in methanol conversion J Catal.1990,124(2):441-450
    [134]Dewaele O, Geers V L,Froment G F,et al.The conversion of methanol to olefins:a transient kinetic study.Chem Eng Sci.1999,54:4385-4395
    [135]Lu w Z,Teng L H,Xiao W D. Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor. Chem Eng Sci,2004,59:5455-5464
    [136]W.Wang, M.Seiler, M.hunger.J.phys.Chem.B.2001,105,12553
    [137]Rinaldo S S, Robert P M. A Mechanistic Study of the Methanol Dehydration Reaction on y-Alumina Catalyst. J Phys Chem,1993,97:6425-6435
    [138]Graaf G H, Stamhuis E J, Beenachers A A C M. Kinetics of Low-Pressure Methanol Synthesis. Chem Eng Sci,1988,43(12):3185-3195
    [139]Vanden Bussche K M, Froment G F. A Steady-State Kinetic Model for Methanol Synthesis and the Water Gas Shift Reaction on a Commercial Cu/ZnO/Al2O3 Catalyst. J Catal, 1996,161:1-10
    [140]吴文柄,陈梁,吴晓伟.用C301/P-γ-Al2O3催化剂合成二甲醚的动力学研究.应用化工.2008,37(12):1436-1439
    [141]张海涛,曹发海,刘殿华,房鼎业.合成气直接合成二甲醚与甲醇的热力学分析.华东理工大学学报.2001,27(2):198-201
    [142]粟塔山.最优化计算原理与算法程序设计.国防科技大学出版社,2001,90-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700