肝靶向糖基化高分子键合药物载体的制备与生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖作为人体能量的载体和重要的生物信息分子在许多重要的生理过程中发挥着至关重要的作用,并且可以通过与蛋白质的特异性识别控制生物信息的传递。研究发现了乳糖(半乳糖)与只存在于哺乳动物肝细胞表面的乳糖(半乳糖)受体特异性的识别和结合的特性。利用该特性,制备含有乳糖(半乳糖)的聚合物给药载体,实现肝脏的主动靶向给药,越来越受到广泛的关注。
     脂肪族聚酯(如聚乳酸)以其良好的生物相容性、生物降解性、低免疫原性、可加工性和机械强度成为当今应用最广泛的生物医用材料之一,已经被用于药物控制释放体系的载体、手术缝合线和组织工程支架材料。尽管如此,聚乳酸在应用过程中仍然存在以下问题:1)由于与细胞缺少足够的相容性,植入体内后可能导致发炎及免疫反应;2)由于缺少官能团,很难进行化学修饰;3)亲水性差。
     针对这些问题,本文用亲水性极好、无毒、无免疫原性的聚乙二醇改善其亲水性和生物相容性;通过与氨基酸NCA单体或者功能化的碳酸脂六元环单体共聚,一方面改善材料的生物相容性、生物降解性和理化性质,另一方面,在聚合物链上引入了活性官能团,并通过这些官能团将乳糖分子以及抗癌药物分子引入到聚合物的体系中,通过纳米自组装技术制备肝靶向的高分子键合药,并深入的研究了该类型药物载体在生物学上的应用。具体研究内容如下:
     1.合成了带有巯基的乳糖糖苷和聚乳酸-聚半胱氨酸(PLLA-PLC),并利用巯基,将乳糖分子引入到聚合物的亲水段,得到了含糖聚合物PLLA-PLC/Lactose,通过核磁共振(1H NMR)、红外光谱(FT-IR)等手段对聚合物结构进行了表征。接触角实验证明了接枝乳糖后材料的亲水性得到了改善;体外细胞培养证明了聚合物具有良好的生物相容性;激光共聚焦显微镜(CLSM)和表面等离子体共振(SPR)技术证明了合成的含乳糖材料对蓖麻凝集素(RCA)具有特异性识别和结合的作用。纳米自组装技术制备了胶束,通过场发射扫描电子显微镜(ESEM)、动态光散射(DLS)、荧光光谱等方法测定了含糖聚合物胶束的表面形貌、粒径大小及分布、临界胶束浓度等各项性质。
     2.合成了带有叠氮基的乳糖和带有叁键的双亲性高分子PEG-PMPC-PLA,并通过“Click”反应将乳糖引入到聚合物的疏水段,得到含糖聚合物PEG-PMPC/Lactose-PLA,体外细胞培养技术证明了材料良好的生物相容性;合成含羟基的双嵌段共聚物PEG-P(LA-DHP),通过羟基将抗癌药物引入到聚合物的疏水段,得到键合药物高分子PEG-P(LA-DHP/Dox)。通过纳米自组装技术,将两种聚合物分子按一定比例混合,制备了含糖载药混合纳米胶束,通过ESEM、DLS等方法测定了含糖聚合物胶束的表面形貌、粒径大小及分布等;激光共聚焦显微镜观察了肝癌细胞对含糖胶束的特异性吞噬,证明了乳糖受体介导的内吞作用;MTT法考察了该靶向键合药物胶束的细胞毒性。
     3.合成了氨基化的双嵌段共聚物NH2-PEG-PLLA,并通过氨基将乳糖引入到聚合物的亲水端,考察了该含糖材料与蓖麻凝集素特异性结合的作用;通过聚合物PEG-P(LA-DHP)的羟基引入了荧光标记物/模式药物罗丹明B;考察了两种材料的生物相容性;将两种聚合物材料按照一定的比例混合,制备了多功能混合纳米胶束,通过ESEM、DLS、荧光光谱等方法测定了含糖聚合物胶束的表面形貌、粒径大小及分布、临界胶束浓度等;通过激光共聚焦显微镜及流式细胞术分别考察了肝癌细胞对含糖胶束的特异性吞噬作用;通过尾静脉注射的方式将胶束溶液分布到小鼠体内,给药不同时间后将小鼠处死,利用CRI活体成像系统和激光共聚焦显微镜等手段考察了含糖胶束在体内的分布情况(包括小鼠的离体器官、冰冻组织切片、组织匀浆液),结果表明该多功能混合胶束体系具有显著的肝靶向效应。
     4.应用上述2、3中含糖材料与键合药物高分子PEG-P(LA-DHP/Dox)制备了混合胶束,考察了载药胶束小鼠体内抗肿瘤活性,包括给药后瘤径(瘤体积)的变化、体重的变化等。
As the energy carrier and important biological information molecules, sugar plays a crucial role in many important physiological processes, and also controls the transmission of biological information through their specific recognition with the protein. It has been found that the lactose (galactose) has specific recognition and binding characteristic with lactose (galactose) receptor that exists on the surface of mammalian liver cells. By virtue of this property, drug delivery carriers containing lactose (galactose) to achieve active targeting have received more and more attention.
     Aliphatic polyester (such as polylactide), one of the most important biodegradable materials in biomedical application, has been widely used in carriers in drug delivery, sutures and temporary matrixes or scaffolds in tissue engineering due to its biodegradability, good biocompatibility, high mechanical properties and excellent shaping and molding properties. However, the following factors limit its applications: 1) their lack of adequate interactions with cells, leading to unexpected foreign body reactions in vivo; 2) the difficulty in their modification because they do not contain any reactive groups; 3) their low hydrophilicity. In this thesis, we attempt to improve the hydrophilicity and biocompatibility of polylactide by introducing poly(ethylene glycol), a molecule that is hydrophilic, nontoxic, biocompatible and nonimmunogenic. By introducing aliphatic carbonate monomers, the biocompatibility, physicochemical properties and biodegradability can be adjusted. What’s more, with this method many kinds of reactive groups can be introduced into the polymer for futher conjugation with drug and sugar molecules. Targeted nano-micelles were prepared by self-assembling these amphiphilic polymers. Their applications were investigated. Detailed studies are as follows:
     1. A novel block copolymer PLLA-PLC carrying pendant thiol groups was designed and synthesized. The lactose molecules were introduced into the hydrophilic segment (PLC) of the polymer, obtaining PLLA-PLC/Lactose. The polymers were characterized by 1H NMR and FT-IR. Contact angle results proved the improved hydrophilicity by lactose grafting; in vitro cell culture verified their good biocompatibility; laser scanning confocal microscope (CLSM) and surface plasmon resonance (SPR) technology demonstrated specific recognition and binding effect between lactose-containing polymer and ricin agglutinin (RCA). Environmental Scanning electron microscopy (ESEM), dynamic light scattering (DLS), and fluorescence spectroscopy were used to characterize the morphology, particle size and distribution, critical micelle concentration of the sugar-containing polymer micelles, respectively.
     2. Lactose was azidized and alkynyl containing amphiphilic block copolymer PEG-PMPC-PLA was prepared. Then lactose was introduced into the hydrophobic segment of PEG-PMPC-PLA via Cu(I) catalyzed alkynyl-azide cycloaddition reaction (click chemistry). In vitro cell culture verified their good biocompatibility. Hydroxyl carrying copolymer PEG-b-P(LA-co-DHP) was synthesized. The anticancer drug doxorubicin was conjugated to the P(LA-co-DHP) segment, obtaining PEG-P(LA-DHP/Dox). Mutifunctional micelles were prepared by co-assembling method. ESEM, DLS characterized the morphology, particle size and distribution of the nano-micelles. Laser confocal microscope confirmed lactose receptor-mediated endocytosis. MTT method indicated the cytotoxicity of Dox-conjugated micelles.
     3. On the one hand, block copolymers with lactose conjugated at the segment PEG, lactose-PEG-PLLA, was prepared. Its specific binding effect with RCA was demonstrated. On the other hand Rhodamine B labeled block copolymer was synthesized. Mutifunctionalized micelles were prepared by co-assembling the two copolymers. ESEM, DLS and fluorescence spectroscopy characterized the morphology, particle size and distribution of the nano-micelles. Laser confocal microscope confirmed lactose receptor-mediated endocytosis. The micelles were injected into mice via tail vein injection. At specific time intervals, the mice were sacrificed and the in vivo distribution of the micelles solution was investigated by CRI in vivo imaging systems and laser scanning confocal microscope. The results showed obvious liver targeting effect.
     4. The in vivo anti-tumor activity of lactose targeting, drug conjugated micelles PEG-P(LA-DHP/Dox) was investigated, including tumor diameter, body weight change and life cycle variation after drug administration.
引文
[1]Raghavan D. Characterization of biodegradable plastics[J]. Polym Plast Technol Eng, 1995, 34:31.
    [2]Kronenthal R L. Biodegradable polymers in medicine and surgery[J]. Polym Sci Technol, 1975, 8:120-137.
    [3]Wang S, Cai Q, Bei J. An important biodegradable polymer: Polylactone-family polymer[J]. Macromolecular symposia, 2003, 195(1):263-268.
    [4]Freed L E, Vunjak-Novakovic G, Biron R J, et al. Biodegradable Polymer Scaffolds for Tissue Engineering[J]. Nature Biotechnology, 1994, 12:689-693.
    [5]Vert M,Li S M,Spenlehauer G,et al. Bioresorbability and biocompatibility of aliphatic polyesters [J]. Journal of Materials Science:Materials in Medicine, 1992,3(6):432-446.
    [6]贝建中,屈雪,王身国.生物材料与细胞的相互作用[J].北京生物医学工程, 2005,24 (001):6470.
    [7]杨晓芳.生物材料生物相容性评价研究进展[J].生物医学工程学杂志,2001,18 (1):123-128.
    [8]Wang S G, Cui W J, Li G M.Novel ultrasound contrast agents-Biodegradable poly(lactic acid) microcapsules[J]. Science In China Series B (Chemistry), 2003, 46(4):371-378.
    [9]Allen C,Han J,Yu Y S,et al. Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone[J]. Journal of Controlled Release, 2000, 63(3):275-286.
    [10]Wang S, Cai Q, Bei J, et al. An Implantable Immunosuppressive Cyclosporine Drug Delivery System[J]. Key Engineering Materials, 2005, 288:125-128.
    [11] Kissel T., Brich Z., Bantle S., et al. Parenteral depot-systems on the basis of biodegradable polyesters[J]. Journal of Controlled Release. 1991, 16:27-42.
    [12]Carothers W H,Dorough G L,Natta F J. Studies of polymerization and ring formation.X.The reversible polymerization of six-membered cyclic esters[J]. Journal of the American Chemical Society, 1932, 54(2):761-772.
    [13]Kulkarni R K,Pani K C,Neuman C,et al. Polylactic acid for surgical implants[J]. AMA Arch Surg, 1966, 93(5):839-843.
    [14]刘志民,吴智华,牛艳华.生物降解性聚碳酸酯的研究进展[J].塑料工业,2004,32(003):22-25.
    [15]谢兴益,李洁华.脂肪族聚碳酸酯二醇的合成与表征[J].高分子材料科学与工程,2002,18(004):169-172.
    [16]Okada M. Chemical syntheses of biodegradable polymers[J]. Progress in Polymer Science,2002, 27(1):87-133.
    [17]Inoue S,Koinuma H,Tsuruta T. Copolymerization of Carbon Dioxide and Epoxide with Organometallic Compounds[J]. Makromol Chem, 1969,130:210.
    [18]Keul H,Bacher R,Hocker H. Anionic Ring-opening Polymerization of 2,2-dimethyltrime thylene Carbonate[J]. Makromol Chem, 1986, 187:2579-2589.
    [19]Pokharkar V,Sivaram S. Poly (alkylene carbonates by the carbonate interchange reaction of aliphatic diols with dimethyl carbonate: synthesis and characteri zation[J]. Polymer, 1995, 36 (25):4851-4854.
    [20]Soga K,Toshida Y,Hosoda S,et al. A Convenient Synthesis of a Polycarbonate[J]. Makromol Chem, 1977, 178:2747.
    [21]Rokicki G,Kuran W,Kieekiewicz J. Synthesis of a Polycarbonate By Reaction of Carbon- Dioxide,Dipotassium 4,4'-Isopropylidenediphenolate and Alpha,Omega Dihalo Compounds[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1982, 20 (4):967-976.
    [22]Rokicki G,Pawlicki J,Kuran W. A New Route to Carbonate Monomers for Synthesis of Polycarbonates[J]. Polymer Journal, 1982, 14(11):839-845.
    [23]Chen X, Shen Z, Zhang Y. New catalytic systems for the fixation of carbon dioxide. 1.Copoly merization of carbon dioxide and propylene oxide with new rare-earth catalysts-RE(P204)3–Al (i-Bu)3-R(OH)n[J]. Macromolecules, 1991, 24(19):5305-5308.
    [24] Shen Z, Chen X, Zhang Y. New catalytic systems for the fixation of carbon dioxide,2.Synthesis of high molecular weight epichlorohydrin/carbon dioxide copolymer with rare earth phosphonates/triisobutyl-aluminium systems [J]. Macromolecular Chemistry and Physics, 1994, 195(6):2003-2011.
    [25]Carothers W H, Natta F J V. Studies on Polymerization and Ring Formation.III. Glycol Esters of Carbonic Acid[J]. Journal of the American Chemical Society, 1930, 52(1):314-326.
    [26]Ariga T, Takata T, Endo T. Alkyl halide-initiated cationic polymerization of cyclic carbonate[J]. Journal of polymer science. Part A. Polymer chemistry, 1993, 31(2):581-584.
    [27]Schmidt P,Keul H,Hocker H. Copolymerization of 2,2-Dimethyltri methylene Carbonate and L,L-Lactide[J]. Macromolecules, 1996, 29(11):3674-3680.
    [28]Buchholz B.Analysis and characterization of resorbable dl-lactide-trimethylene carbonate copolyesters[J]. Journal of Materials Science: Materials in Medicine, 1993, 4(4):381-388.
    [29]Schappacher M, Fabre T, Mingotaud A F, et al. Study of a trimethylene carbonate-co-ε- caprolactone polymer Part 1:preparation of a new nerve guide through controlled random copolymerization using rare earth catalysts[J]. Biomaterials, 2001, 22(21):2849-2855.
    [30]Albertsson A C,Eklund M. Influence of molecular structure on the degradation mechanism of degradable polymers:In vitro degradation of poly (trimethylene carbonate),poly( trimethylenecarbonate-co-caprolactone ),and poly( adipic anhydride)[J]. Journal of Applied Polymer Science, 1995, 57(1):87-103.
    [31]Fabre T, Schappacher M, Bareille R, et al. Study of a trimethylene carbonate- co-ε-caprolactone polymer Part 2:in vitro cytocompatibility analysis and in vivo ED1 cell response of a new nerve guide[J]. Biomaterials, 2001, 22 (22):2951-2958.
    [32]Shirahama H, Kanetani A, Yasuda H. Synthesis and Biodegradability of Copolymers of Ethylene Carbonate with Lactones[J]. Polymer Journal, 2000, 32(3):280-286.
    [33]Shirahama H, Kanetani A, Yasuda H. Preparation and Biodegradation Behavior of Copolymers of Trimethylene Carbonate with Lactones[J]. Journal Japan oil Chemists Society, 1998, 47:1251-1260.
    [34]Lemmouchi Y, Schacht E, Kageruka P, et al. Biodegradable polyesters for controlled release of trypanocidal drugs: In vitro and in vivo studies[J]. Biomaterials, 1998, 19(20):1827-1837.
    [35]Shen Y, Chen X, Gross R A. Aliphatic Polycarbonates with Controlled Quantities of D-Xylofuranose in the Main Chain[J]. Macromolecules, 1999, 32(12):3891-3897.
    [36]Keul H,Hocker H,Leitz E,et al. Copolymers obtained by means of anionic ring-opening polymerization. Poly (2,2-dimethyltrimethylene carbonate tapered- c-caprolactone)[J]. Makromolekulare Chemie Macromolecular Chemistry and Physics, 1988, 189(10):2303-2321.
    [37]Zhu G, Ling J, Shen Z. Isothermal crystallization of random copolymers ofε-caprolactone with 2,2-dimethyltrimethylene carbonate[J]. Polymer, 2003, 44 (19):5827-5832.
    [38]Ling J,Zhu W P,Shen Z Q. Controlling ring-opening copolymerization of epsilon-caprolactone with trimethylene carbonate by scandium tris (2,6-di-tert -butyl -4-methylphenolate)[J]. Macromolecules, 2004, 37(3):758-763.
    [39]胡海梅,潘仕荣,温玉婷,等.聚-L-赖氨酸的合成与表征[J].中山大学学报:自然科学版,2006,45(001):64-68.
    [40]Couffin-Hoarau A C, Boustta M, Vert M. Enlarging the library of poly-(L-lysine citramide) polyelectrolytic drug carriers[J]. Journal of Polymer Science Part A Polymer Chemistry, 2001, 39(20):3475-3484.
    [41]Discher B M, Won Y Y, Ege D S, et al. Polymersomes: Tough Vesicles Made from Diblock Copolymers[J]. Science, 1999, 284(5417):1143.
    [42]Matsuzawa M, Kobayashi K, Sugioka K, et al. A Biocompatible Interface for the Geometrical Guidance of Central Neuronsin Vitro[J]. Journal of Colloid And Interface Science, 1998, 202 (2):213-221.
    [43]Krause A, Cowles E A, Gronowicz G. Integrin-mediated signaling in osteoblasts on titanium implant materials[J]. Journal of Biomedical Materials Research, 2000, 52 (4):738-747.
    [44]Deming T J. Methodologies for preparation of synthetic block copolypeptides: materials withfuture promise in drug delivery[J]. Advanced Drug Delivery Reviews, 2002,54(8):1145-1155.
    [45]Merrifield R B. Peptide synthesis on a solid polymer[J]. Fed Proc. 1962, 53:412.
    [46]Merrifield R B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide [J]. Journal of the American Chemical Society, 1963, 85(14):2149-2154.
    [47]Deng C,Tian H Y,Zhang P B,et al. Synthesis and Characterization of RGD Peptide Grafted Poly(ethylene glycol)-b-Poly(L-lactide)-b-Poly(L-glutamic acid) Triblock Copolymer[J]. Biomacromolecules, 2006, 7:590-596.
    [48]Deng C, Chen X S, Yu H J, et al. A biodegradable triblock copolymer poly(ethylene glycol)-b-poly(l-lactide)-b-poly(l-lysine):Synthesis,self-assembly,and RGD peptide modification [J]. Polymer, 2007, 48:139-149.
    [49]Deng C,Chen X S,Sun J,et al.RGD peptide grafted biodegradable amphiphilic triblock copolymer poly(glutamic acid)-b-poly(L-lactide)-b-poly(glutamic acid): Synthesis and self-assembly[J]. Journal of Polymer Science Part a Polymer Chemistry, 2007, 45(15):3218-3230.
    [50]Cappello J,Crissman J,Dorman M,et al. Genetic engineering of structural protein polymers[J]. Biotechnology Progress, 1990, 6(3):198-202.
    [51]Kohn J, Langer R. Polymerization reactions involving the side chains of. Alpha- L-amino acids[J]. Journal of the American Chemical Society, 1987, 109(3):817-820.
    [52]Nah J,Jeong Y,Cho C,et al. Drug-Delivery System Based on Core–Shell-Type Nanoparticles Composed of Poly (-benzyl-L-glutamate) and Poly (ethylene oxide)[J]. Journal of Applied Polymer Science, 2000, 75:1115-1126.
    [53]Bhadra D,Bhadra S,Jain N K. PEGylated-poly-l-lysine dendrimers for delivery of chloroquine phosphate[R]. International Conference on MEMS, NAN and Smart Systems, Alberta, Canada,2004.
    [54]Bhadra D,Bhadra S,Jain NK. PEGylated Peptide Dendrimeric Carriers for the Delivery of Antimalarial Drug Chloroquine Phosphate[J]. Pharmaceutical Research, 2006, 23(3):623-633.
    [55]Tosatti S,Paul S M D,Askendal A,VandeVondele S,et al. Peptide functionalized poly (l-lysine)-g-poly(ethylene glycol)on titanium:resistance to protein adsorption in full heparinized human blood plasma[J]. Biomaterials, 2003, 24 (27):4949-4958.
    [56]Edwards D A, Hanes J, Caponetti G, et al. Large Porous Particles for Pulmonary Drug Delivery[J]. Science, 1997, 276(5320):1868.
    [57]Barrera D A,Zylstra E,Lansbury P T,et al. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly (lactic acid-co-lysine) [J]. Journal of the American Chemical Society, 1993, 115(23):11010-11011.
    [58]Cook A D, Hrkach J S, Gao N N, et al. Characterization and development of RGD-peptide- modified poly (lacticacid-co-lysine) as an interactive,resorbable biomaterial[J]. Journal ofBiomedical Materials Research, 1997, 35:513-523.
    [59]Sun Jing, Chen Xue si, Lu Tiancheng, et al. Formation of Revisible Shell Cross-linked Micelles from Biodegradable Amphiphilic Diblock Copolymer Poly(L-cysteine)-block-Poly(L-lactide)[J]. Langmuir, 2008, 24(18):10099-10106.
    [60]黄汉生.日本生物降解性塑料开发近况[J].现代化工,1994,9: 38-43.
    [61]Pearce E M. Biodegradable polymers for sustained drug delivery Contemporary topic in Polymer[J]. Science, 1977, 2: 251-262.
    [62]Leenslag J W, Kroes M T, Pennings A J. Synthesis of high-macromolecular-weight p(L-latic acid) initiated with tin 2-ethylhexanoate[J]. Makromol Chem, 1987, 188: 1809-1814.
    [63]Postema A R,Luiten A H,Oostra H,et al. High-strength poly(L-lactide) fibers by a dry-spinning/hot-drawing process.II.Influence of the extrusion speed and winding speed on the dry-spinning process[J]. J Appl Poly Sci, 1990, 39: 1275-1288.
    [64]Benicewicz B C, Shalaby S W. In vitro and In vivo degradation of poly(L-lactide) brain multifilament yarns[J]. Polym Prepr, 1988, 1: 499-500.
    [65]Kulkarni R K,Moore E G,Hegyeli A F,et al. Biodegradable poly(lactic acid) polymers[J]. J Biomed Mater Rese, 1971, 5: 169-181.
    [66]Jeong B, Kim S W.Thermogelling biodegradable polymers with hydrophilic backbones PEG-g-PLGA[J]. Macromolecules, 2000, 33: 8317-8322.
    [67]Ashammakhi N, Rokkanen P. Absorbable polyglycolide devices in trauma and bone surgery[J]. Biomaterials,1997,18: 3-9.
    [68]Leenslag J W,Pennings A J,Bos R M,et al. Resorbable materials of poly(L-lactide). VI. Plates and screws for internal fracture fixation[J]. Biomaterials, 1987, 8: 70-73.
    [69]Agarwal C M, Athanasiou K A. Technique to control pH in vicinity of biodegrading PLA-PGA implants[J]. J Biomed Mater Rese, 1997, 38: 105-114.
    [70]Martin C, Winet H, Bao J Y, et al. Acidity near eroding polylactide- polyglycolide in vitro and in vivo in rabbit tibial bone chambers[J]. Biomaterials, 1996, 17(24): 2373-2380.
    [71]Athanasiou K A,Niederauer G G,Agarwal C M,et al. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers[J]. Biomaterials,1996,17: 93-102.
    [72]Leenslag J W,Pennings A J,Bos R M,et al. Resorbable materials of poly(L-lactide). VI. Plates and screws for internal fracture fixation[J]. Biomaterials, 1987, 8: 70-73.
    [73]Ignatius A A, Claes L E.In vitro biocompatibility of bioresorbable polymers: poly (D,L-lactide) and poly(L-lactide-co-glycolide)[J]. Biomaterials, 1996, 17: 831-839.
    [74]Pariente J L, Kim B S, Atala A, et al. In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells[J]. J Biomed Mater Rese, 2001, 55:33-39.
    [75]卓仁禧,祝磊,尹超,等.聚乳酸眼科植入材料的制备及其降解性能[J].应用化学,1997,14: 102-104.
    [76]Beck L R, Cowsar D R, Lewis D H, et al. A new long-acting microencapsule system for administration of progesterone[J]. Fertil Steril, 1979, 5: 545-551.
    [77]Zeng J,Xu X,Chen X,et al. Biodegradable electrospun fibers for drug delivery[J]. J Controlled Release, 2003, 89(4): 227-231.
    [78]Lasic D D. Recent developments in medical applications of liposomes: sterically stabilized liposomes in cancer therapy and gene delivery in vivo[J].Journal of Controlled Release,1997,48(2-3):203-222.
    [79]Lasic D D, Templeton N S. Liposomes in gene therapy[J]. Advanced Drug Delivery Reviews, 1996, 20(2-3):221-266.
    [80]Crystal R G. Transfer of genes to humans: Early lessons and obstacles to success[J]. Science, 1995, 270:404-410.
    [81]Garnett M. Gene-delivery systems using cationic polymers[J]. Crit Rev Ther Drug Carrier Syst, 1999, 16(2):147-207.
    [82]Wu G Y, Wu C H. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system[J]. J Biology Chem, 1987, 262:4429-4432.
    [83]Park T G, Jeong J H, Kim S W. Current status of polymeric gene delivery systems[J]. Advanced drug delivery reviews, 2006, 467–486.
    [84]Dekie L, Toncheva V, Dubruel P, et al. Poly-L-glutamic acid derivatives as vectors for gene therapy[J]. Journal of Controlled Release, 2000, 65(1-2):187-202.
    [85]Fischer D, Bieber T, Li YX, et al. A novel non- viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: Effect of molecular weight on transfection efficiency and cytotoxicity[J]. Pharmaceutical Research, 1999, 16 (8):1273-1279.
    [86]Gosselin M A, Guo W J, Lee R J. Efficient gene transfer using reversibly cross -linked low molecular weight polyethylenimine[J]. Bioconjugate Chemistry, 2001, 12(6):989-994.
    [87]Zinselmeyer B H, Mackay S P, Schatzlein A G, et al. The lower-generation polypropy lenimine dendrimers are effective gene-transfer agents[J]. Pharmaceutical Research,2002,19(7):960-967.
    [88]Duda A, Penczek S. Polylactide[poly(lactic acid)]: Synthesis,properties and applications[J]. Polimery, 2003, 48(1):16-27.
    [89]高建平,马朋高.组织工程与生物可降解高分子骨架[J].高分子通报,2000,62(004):89-95.
    [90]朱惠光,计剑.聚乳酸组织工程支架材料[J].功能高分子学报,2001,14(004):488-492.
    [91]Thull R. Surface functionalization of materials to initiate auto–biocom patib ilization invivo[J]. Materialwiss Werkst,2001, 32:949-952.
    [92]Lemos P A, Serruys P W, van Domburg R T, Unrestricted utilization of sirolimus -eluting stents compared with conventional bare stent implantation in the“real world”:the Rapamycin-Eluting Stent Evaluated At Rotterdam Cardiology Hospital (Research) Registry[J]. Circulation, 2004, 109(2):190-195.
    [93]Ping P, Wang W S, Chen X S, et al. Poly(ε-caprolactone) Polyurethane and its Shape-Memory Property[J]. Biomacromolecules, 2005, 6(2):587-592.
    [94]Sakiyama-Elbert S E, Hubbell J A. Functional Biomaterials:Design of Novel Biomaterials[J]. Annual Review of Materials Research, 2001, 31(1):183-201.
    [95]Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory's experience[J]. Acc Chem Res, 2000, 33(2):94-101.
    [96]LeBaron R G, Athanasiou K A. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials[J]. Tissue Eng, 2000, 6(2):85-103.
    [97]刘刚,胡蕴玉.骨组织工程材料的表面修饰和细胞粘附[J].国外医学:生物医学工程分册,2002,25(006):267-270.
    [98]Li J M,Menconi M J,Wheeler H B,et al. Precoating expanded polytetrafluoro ethylene grafts alters production of endothelial cell-derived thrombomodulators[J]. Journal of vascular surgery, 1992,15(6):1010-1017.
    [99]Miyata T, Conte M S,Trudell L A,et al. Delayed exposure to pulsatile shear stress improves retention of human saphenous vein endothelial cells on seeded ePTFE grafts[J]. The Journal of surgical research, 1991, 50(5):485-493.
    [100]Vohra R, Thomson G J, Carr H M, et al. Comparison of different vascular prostheses and matrices in relation to endothelial seeding[J]. Br J Surg, 1991, 78(4):417-420.
    [101]Elbert D L, Hubbell J A. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering[J]. Biomacromolecules, 2001, 2(2):430-441.
    [102]Fields G B, Lauer J L, Dori Y, et al. Protein-like molecular architecture: biomaterial applications for inducing cellular receptor binding and signal transduction[J]. Biopolymers,1998, 47(2):143-151.
    [103]Lhoest J B,Detrait E,van den Bosch de Aguilar P,et al. Fibronectin adsorption,conformation, and orientation on polystyrene substrates studied by radiolabeling,XPS, and ToF SIMS[J]. Journal of Biomedical Materials Research, 1998, 41(1):95-103.
    [104]Wahlgren M, Arnebrant T. Protein adsorption to solid surfaces[J]. Trends Biotechnol,1991,9 (6):201-208.
    [105]Kiaei D, Hoffman A S,Horbett T A,et al. Platelet and monoclonal antibody binding tofibrinogen adsorbed on glow-discharge-deposited polymers[J]. Journal of Biomedical Materials Research, 1995, 29(6):729-739.
    [106]Pierschbacher M D, Ruoslahti E. Cell attachment activity of bronectin can be duplicated by small synthetic fragments of the molecule[J]. Nature, 1984, 309: 30-33.
    [107] Yamaoka T., Tabata Y., Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice[J]. Journal of Pharmaceutical Sciences, 1994, 83: 601~606.
    [108]Guan H L,Xie Z G,Zhang P B,et al. Synthesis and Characterization of Biodegradable Amphiphilic Triblock copolymers containing L-glutamic acid units[J]. Biomacromolecules, 2005, 6:1954-1960.
    [109]Wang D, Feng X. Synthesis of poly(glycolic acid-co-L-aspartic acid) from a mophorling-2,5 -dione derivative[J]. Macromolecules, 1997, 30:5688-5692.
    [110]Feng Y,Knufermann J,Klee D,et al. Enzyme-catalyzed ring-opening poly merization of 3(S)-isopropylmorpholine-2,5-dione[J]. Macromol Rapid Commun, 1999, 21:88-90.
    [111]Shirahama H,Sanaka A,Yasuda H. Highly biodegradable copolymers composed of chiral depsipeptide and L-lactide units with favorable physical properties[J]. J Polym Sci, Part A: Polym Chem. 2002,40:302-316.
    [112]Feng Y,Klee D,Keul H,et al. Lipase-catalyzed ring-opening polymerization of morpholine- 2,5-dione derivatives[J]. Macromol Chem Phys, 2000, 201:2670-2675.
    [113]Barrera D A,Zylstra E,Lansbury P T,et al. Copolymerization and degradation of poly(lactic acid-co-lysine)[J]. Macromolecules, 1995, 28:425-432.
    [114]John G, Morita M. Biodegradable cross-linked microspheres from poly-(ε- caprolactone-co-glycolic acid-co-L-serine)based polydepsipeptides[J].Macromol Rapid Commun,1999,20:265-268.
    [115]John G, Morita M. Synthesis and Characterization of Photo-Cross-Linked Networks Based on L-Lactide/Serine Copolymers[J]. Macromolecules, 1999, 32:1853-1858.
    [116]Lou X,Detrembleur C,Jerome R. Novel Aliphatic Polyesters Based on Functional Cyclic (Di)Esters[J]. Macromol Rapid Commun, 2003, 24:161-172.
    [117]Al-Azemi T F, Bisht K S. Novel functional polycarbonate by lipase-catalyzed ring-opening polymerization of 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one[J]. Macromolecules, 1999, 32 (20):6536-6540.
    [118]Al-Azemi T F, Harmon J P, Bisht K S. Enzyme-Catalyzed Ring-Opening Copolymerization of 5-Methyl-5-Benzyloxycarbonyl-1,3-Dioxan-2-One (MBC) with Trimethylene Carbonate (TMC): Synthesis and Characterization[J]. Biomacro molecules, 2000, 1(3):493-500.
    [119]Al-Azemi T F, Bisht K S. One-step synthesis of polycarbonates bearing pendant carboxylgroups by lipase-catalyzed ring-opening polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry,2002,40(9):1267-1274.
    [120]Lee R S,Yang J M,Lin T F. Novel,Biodegradable,Functional Poly (ester- carbonate) s by Copolymerization of Trans-4-hydroxy-L-proline with Cyclic Carbonate Bearing a Pendent Carboxylic Group[J]. Journal of Polymer Science,Part A: Polymer Chemistry, 2004,42(10): 2303-2312.
    [121]Guan H, Xie Z, Tang Z, et al. Preparation of block copolymer of caprolactone and 2-methyl-2-carboxyl-propylene carbonate[J]. Polymer, 2005, 46(8):2817-2824.
    [122]Varki A, Cummings R, Esko J. Essentials of Glycobiology[M]. Cold Spring Harbour Laboratory, 2002, 2.
    [123]Roseman S. Reflections of Glycobiology[J].The journal of biological chemistry, 2001,276: 41527-41542.
    [124]Carolyn R, Bertozzi, Laura L Keissling. Chemical Glycobiology[J]. Science 2001, 291:2357-2363.
    [125]Bubb W A. NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity[J]. Concepts in Magnetic Resonance Part A, 2003, 19A:1-19.
    [126]Sun M, Lee C S. Enzyme array-amperometric detection in carbohydrate analysis[J]. Biotechnology and Bioengineering, 1998, 57: 545-551.
    [127]Schachter Harry. Molecular Basis of Glycoconjugate Disease[J]. Biochim Biophys Acta, 1999, 1455(2-3):61-62.
    [128]Cobb B A,Kasper D L.Coming of age: carbohydrates and immunity[J].European Journal of Immunology,2005,53:352-356.
    [129]Rudd PM,Elliott T,Cresswell P. Glycosylation and the Immune Sytem[J].Science 2001,291: 2370-2376.
    [130]Orntoft T F, Vestergaard E M. Clinical aspects of altered glycosylation of glycoproteins in cancer[J]. Electrophoresis, 1999, 20: 362-371.
    [131]Hirabayashi Y,Kasakura H,Matsumoto M. Specific expression of unusual GM2 ganglioside with Hanganutziu-Deicher antigen activity on human colon cancers[J]. J Cancer Res, 1987, 78: 251-260.
    [132]Marquina G,Waki H,Fernandez L E,et al.Ganliosides expressed in human breast cancer[J].Cancer Research,1996,56:5165-5171.
    [133]Dabelsteen Erik. Cell Surface Carbohydrate as Prognostic Markers in Human Carcinomas[J]. Journal of Pathology, 1996, 179: 358-369.
    [134]Kunz M. In Carbohydrates as Organic Raw Materials[M].Lichtenthaler F W ,Ed.,VCH, Wernheim,1991.127-153.
    [135]G Wulff, Schmid J, Venhoff T P. Carbohydrates as Organic Raw Materials[M]. Lichtenthaler, F W,Ed.,VCH: New York,1991.311.
    [136]Braun D, Bergmann M. Nachwachsende Rohstoffe: Polysaccharid- Forschun-g. edited in commission of BMFT: Forschungszentrum Julich,1993. 281.
    [137]Wulff G. Nachwachsende Rohstoffe-Perspektiven für die Chemie[M]. S.Warvel. G,Wulff, Eds.,VCH,Weinheim,1993. 367.
    [138]Kunz M. Carbohydrates as Organic Raw Materials II[M]. Descotes G,Ed. VCH, Weinheim, 1993.115.
    [139]Miyata T, Nakamae K. Polymers with pendent saccharides -‘Glycopolymers’[J]. Trends Polym Sci, 1997,5: 198-206.
    [140]熊向源,李子臣,杜福胜,等.新型含糖嵌段共聚物PEO-b-P(lys- ML)的合成及其在水中的聚集行为[J].高分子学报,2001,6:787-792.
    [141]Aoi K, Tsutsumiuchi K, Okada M. Glycopeptide synthesis by anα-amino acid N-carboxyanhydride(NCA) method: ring-opening polymerization of a sugar-substituded NCA[J]. Macromolecules, 1994, 27:875-877.
    [142]Schluter A D, Rabe J P. Dendronized Polymers: synthesis, characterization, assembly at interfaces,and manipulation[J]. Angew Chem Int Ed. 2000, 39:864-883.
    [143]Hahn K W,Klis W A,Stewart J M. Design and synthesis of a peptide having chymotrypsin–like esterase activity[J].Science,1990,248:1544-1547.
    [144]Zhang J, Moor J S, Xu Z, et al. Nanoarchitectures.1. controlled synthesis of phenylacetylene sequences[J]. J Am Chem Soc, 1992, 114:2273-2274.
    [145]Newkome G R,Young J K,Baker G R,et al. Cascade polymers.35.pH dependence of hydrodynamic radii of acid-terminated dendrimers[J]. Macromolecules, 1993, 26: 2394-2396.
    [146]Bosman A W, Janssen H M,Meijer E W. About dendrimers: structure,physical Properties,and applications[J]. Chem Rev, 1999,99:1665-1688.
    [147]Aoi K, Itoh K, Okada M. Globular carbohydrate macromolecules“Sugar Balls”. 1.synthesis of novel sugar-persubstituted poly (amido amine) dendrimers[J]. Macromolecules, 1995, 28(15): 5391-5393.
    [148]Roy R,Zanini D,Meunier S J,et al. Solid-phase synthesis of dendritic sialoside inhibitors of influenza A virus haemagglutinin[J]. J Chem Soc Chem Commun, 1993, 1869-1872.
    [149]Ashton P R,Boyd S E,Brown C L,et al. Synthesis of glycodendrimers by modification of poly(propylene imine) dendrimers[J]. Chem Eur J,1997,3:974-984.
    [150]Baigude H,Katsuraya K,Okuyama K,et al. Synthesis of sphere-type monodispersed oligosaccharide- polypeptide dendrimers[J]. Macromolecules, 2003, 36:7100-7106.
    [151]Ouchi T, Uchida T, Ohya Y. Synthesis of poly(L-lactide) with one terminal D-glucose residueand wettability of its film surface[J]. Macromolecular Bioscience, 2001, 1:371-375.
    [152]Ouchi T, Uchida T, Arimura H, et al. Synthesis of poly(L-lactide) end- Capped with lactose residue[J]. Biomacromolecules. 2003, 4:477-480.
    [153]Nagarajan R, Barry M, Ruckenstein E. Unusual selectivity in solubilization by block copolymer micelles. Langmuir. 1986, 2:210-215.
    [154]Hillmyer M A, Lipic P M, Hajduk D A, et al. Self-Assembly and Polymerization of Epoxy Resin-Amphiphilic Block Copolymer Nanocompo-sites[J]. J Am Chem Soc, 1987, 119:2749-2750.
    [155]Kwon G S, Kataoka K. Block copolymer micelles as long circulatingdrug vehicles[J]. Adv Drug Delivery Rev, 1995, 16:295-309.
    [156]Saptz J P, Koescher A, M?ller M. Gold nanoparticles in micellar poly (styrene) -b-poly(ethylene oxide)films-size and interparticle distance control in monoparti culate films[J]. Adv Mater, 1996, 8:337-340.
    [157]Zhang L, Yu K, Eisenberg A. Ion-induced morphological changes in“crew-cut”aggregates of amphiphilic block copolymers[J]. Science, 1996, 272: 1777-1779.
    [158]Jenekhe S A, Chen X L. Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes[J]. Science, 1998, 279: 1903-1907.
    [159] Harada A, Kataoka K. Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers[J]. Science, 1999, 283:65-67.
    [160]Harada A, Kataoka K. Novel Polyion Complex Micelles Entrapping Enzyme Molecules in the Core.2. Characterization of the Micelles Prepared at Nonstoichiometric Mixing Ratios[J]. Langmuir, 1999, 15:4208-4212.
    [161]Iijima M,Okada T,Nagasaki Y,et al. Core-Polymerized Reactive Micelles from Hetero telechelic Amphiphilic Block Copolymers[J]. Macromolecules, 1999, 32: 1140- 1146.
    [162]Znbarev E R, Pralle M U,Li L,et al. Conversion of Supramolecular Clusters to Macromolecular Objects[J]. Science, 1999, 283:523-526.
    [163]Won Y Y, Davis H T, Bates F S. Giant Wormlike Rubber Micelles[J]. Science, 1999, 283:960-963.
    [164]Emoto K, Nagasaki Y, Kataoka K. Coating of Surfaces with Stabilized Reactive Micelles from Poly(ethylene glycol)-Poly(DL-lactic acid) Block Copolymer[J]. Langmuir,1999,15:5212 -5218.
    [165]Kabanov A V,Cheknonin V P,Alakhov V Y,et al. The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles: Micelles as microcontainers for drug targeting[J]. FEBS Lett,1989,258:343-345.
    [166]Yokoyama M,Miyauchi M,Yamada N,et al. Characterization and anticancer activity of themicelle-forming polymeric anticancer drug adriamycin-conjugated poly (ethylene glycol)-poly (aspartic acid) block copolymer[J]. Cancer Res,1990,50: 1693-1700.
    [167]Yokoyama M,Miyauchi M,Yamada N,et al. Polymer micelles as novel drug carrier: Adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer [J]. J Controlled Release, 1990, 11:269-278.
    [168]Yokoyama M, Okano T, Sakurai Y, et al. The use of macromolecular carried targeted drug delivery system in cancer treatment[J]. Cancer Res, 1991, 51:3229.
    [169]Kwon G S, Yokoyama M, Okano T, et al. Biodistribution of micelle-forming polymer drug conjugates[J]. Pharm Res, 1993, 10:970-974.
    [170]Kwon G,Suwa S,Yokoyama M,et al. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly (ethylene oxide-aspartate) block copolymer-adriamycin conjugates[J]. J Controlled Release, 1994, 29:17-23.
    [171]Zhang X, Jackson J K, Burt H M. Development of amphiphilic diblock copolymers as micellar carries of taxol[J]. Int J Pharm. 1996, 132:195-206.
    [172]Kwon G, Naito M, Yokoyama M, et al. Block copolymer micelles for drug delivery: loading and release of doxorubicin[J]. J Controlled Release, 1997, 48:195-201
    [173]Cammas S, Kataoka K. Functional poly[(ethylene oxide)-co-(β-benzyl-L- aspartate)] polymeric micelles: block copolymer synthesis and micelles formation[J]. Macromol Chem Phys, 1995, 196:1899-1905.
    [174]Yamamoto Y,Nagasaki Y,Kato M,et al. Surface charge modulation of poly(ethylene glycol)–poly(D,L-lactide) block copolymer micelles: conjugation of charged peptides[J].Colloids Surf B: Biointerfaces,1999,16:135-146.
    [175]Yasugi K, Nakamura T, Nagasaki Y, et al. Sugar-installed polymer micelles: synthesis and micellization of poly(ethylene glycol)-poly(D,L-lactide) block copolymers having sugar groups at the PEG chain end[J]. Macromolecules, 1999, 32: 8024-8032.
    [176]Nagasaki Y, Yasugi K, Yamamoto Y, et al. Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules[J]. Biomacro molecules, 2001, 2(4):1067-1070.
    [177]Jule E, Nagasaki Y, Kataoka K. Lactose-installed poly(ethylene glycol)- poly (D,L -lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. a surface plasmon resonance study[J]. Bioconjugate Chem, 2003, 14 (1) :177-186.
    [178]Mi Fwu-Long, Wu Yong-Yi, Chiu Ya-Lin,et al. Synthesis of a Novel Glycoconjugated Chitosan and Preparation of Its Derived Nanoparticles for Targeting HepG2 Cells[J]. Biomacromolecules, 2007, 8:892-898.
    [179]Hsiang-Fa Lianga, Chiung-Tong Chenb, Sung-Ching Chena, et al. Paclitaxel- loaded poly(g-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer[J]. Biomaterials, 2006, 27: 2051–2059
    [180]Pierschbacher M D, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule[J]. Nature, 1984, 309 (5963):30-33.
    [181]Stile R A, Healy K E.Thermo-responsive peptide-modified hydrogels for tissue regeneration[J]. Biomacromolecules, 2001, 2(1):185-194.
    [182]Barrera D A,Zylstra E,Lansbury Jr PT,et al. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly (lactic acid-co-lysine)[J]. Journal of the American Chemical Society, 1993, 115(23):11010-11011.
    [183]Jo S,Engel P S,Mikos A G.Synthesis of poly (ethylene glycol)-tethered poly (propylene fumarate) and its modification with GRGD peptide[J]. Polymer, 2000, 41(21):7595-7604.
    [184]Jo S, Shin H, Mikos A G. Modification of oligo (poly (ethylene glycol) fumarate) macromer with a GRGD peptide for the preparation of functionalized polymer networks [J]. Biomacromolecules, 2001, 2(1):255-261.
    [185] Deng C, Chen X S, Yu H J,et al. A biodegradable triblock copolymer poly(ethylene glycol)-b-poly(l-lactide)-b-poly(l-lysine): Synthesis,self-assembly,and RGD peptide modification [J].Polymer,2007,48:139-149.
    [186]Deng C,Chen X S,Sun J,et al. RGD peptide grafted biodegradable amphiphilic triblock copolymer poly(glutamic acid)-b-poly(L-lactide)-b-poly(glutamic acid): Synthesis and self- assembly[J]. Journal of Polymer Science Part a-Polymer Chemistry, 2007, 45(15):3218-3230.
    [187]Gian Cesare Tron,Tpra Bplcgsa A G. Click chemistry reactions in medicinal chemistry: Applications of the 1,3-dipolar cycloaddition between azides and alkynes[J]. Medicinal Research Reviews, 2008, 28(2):278-308.
    [188]Shi Quan, Chen Xuesi, Lu Tiancheng, et al. The Immobilization of Proteins on Biodegradable Polymer Fibers via Click Chemistry[J]. Biomaterials, 2008, 29 (8):1118-1126.
    [189]Lu Tiancheng, Chen Xuesi, Shi Quan,et al. The immobilization of proteins on biodegradable fibers via biotin-streptavidin bridges[J]. Acta Biomaterialia, 2008, 4 (6):1770-1777.
    [190]Ringsdorf H. Structure and Properties of Pharmacologically Active Polymers[J]. J Polym Sci Symp, 1975, 51: 135-153.
    [191]Marra J, Vicent, Ruth Duncan. Polymer Conjugates: Nanosized Medicines for Treating Cancer[J]. Trends in Biotechnology, 2006, 24:39-47.
    [192]Haeda H, Wu J, Sawa T, et al. Tumoe vascular permeability and the EPR effect in macromolecular therapeutics: a review[J]. J Controlled Release, 2000, 65:271-284. Matsumura Y,Maeda H. A new concept for macromol-ecular therapeutics in cancer chemotherapy: Mechanismof tumoritropic accumulation of proteins and the antitumor agent SMANCS[J]. Cancer Res, 1986, 46:6387–6392.
    [193] Y. Matsumura, H. Maeda, A new concept for macromol-ecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS[J]. Cancer Reseach, 1986, 46:6387–6392.
    [194]Maeda Hiroshi,Fang Jun,Inutsuka Takao,et al. Vascular permeability enhancement in solid tumor: various factors,mechanisms involved and its implications[J]. International Immunopharmacology, 2003, 3:319–328.
    [195]??h?ováB, Strohalm J, PrausováJ. Cytostatic and immunomobilizing activities of polymer-bound drugs: experimental and first clinical data[J].Journal of Controlled Release,2003, 91:1.
    [196]Li C. Poly(l-glutamic acid)–anticancer drug conjugates[J].Advanced Drug Delivery Reviews,2002,54(5):695-713.
    [197]Zhu Z, Kralovec J, Ghose T, et al. Inhibition of Epstein-Barr-virus-transformed human chronic lymphocytic leukaemic B cells with monoclonal-antibody-Adriamycin (doxorubicin) conjugates [J]. Cancer Immunology Immunotherapy, 1995, 40(4):257-267.
    [198]Noguchi A,Takahashi T,Yamaguchi T,et al. Preparation and properties of the immunoconjugate composed of anti-human colon cancer monoclonal antibody and mitomycin C-dextran conjugate[J]. Bioconjugate Chemistry, 1992, 3(2):132-137.
    [199]Ulbrich K,Etrych T,Chytil P,et al. HPMA copolymers with pH-controlled release of doxorubicin In vitro cytotoxicity and in vivo antitumor activity[J]. Journal of Controlled Release, 2003,87(1-3):33-47.
    [200]Nasongkla N, Shuai X, Ai H, et al. cRGD-Functionalized Polymer Micelles for Targeted Doxorubicin Delivery[J]. Angew Chem Int Ed, 2004, 43:6323-6327.
    [201]Farokhzad O C,Cheng J,Teply B A,et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo[J]. Proceedings of the National Academy of Sciences, 2006, 103 (16):6315-6320.
    [202]Cheng J, Teply B A, Sherifi I, et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery[J]. Biomaterials, 2007, 28 (5):869-876.
    [203]Dhar S, Gu F X, Langer R, et al. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles[J]. Proceedings of the National Academy of Sciences of The United States of America, 2008, 105(45):17356-17361.
    [204]Pan J, Feng S S. Targeting and imaging cancer cells by Folate-decorated,quantum dots (QDs)-loaded nanoparticles of biodegradable polymers[J]. Biomaterials, 2009, 30 (6):1176-1183.
    [205]Bae Y,Fukushima S,Harada A,et al. Design of environment-sensitive supra molecular assembly for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change Angew[J]. Chem Int Ed, 2003, 42: 4640-4643.
    [1]Kimura Y,Matsuzaki Y,Yamane H,et al. Preparation of block copoly(ester-ether) comprising poly(L-lactide) and poly(oxypropylene) and degradation of its fibre in vitro and in vivo [J].Polymer,1989,30(7):1342-1349.
    [2]Hu D S G, Liu H J, Pan I L. Inhibition of bovine serum albumin adsorption by poly(ethylene glycol) soft segment in biodegradable poly(ethylene glycol) /poly (L-lactide) copolymers[J]. J Appl Polym Sci,1993,50(8):1391-1396.
    [3]Ronneberger B,Kao W J,Anderson J M,et al. In vivo biocompatibility study of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to central poly(oxyethylene) B blocks[J]. J Biomed Mater Res,1996,30(1):30-31.
    [4]Kissel T,Li Y X,Volland C,et al. Parenteral protein delivery systems using biodegradable polyesters of ABA block structure,containing hydrophobic poly (lactide-co-glycolide) A blocks and hydrophilic poly(ethylene oxide) B blocks[J]. J Controlled Release, 1996, 39:315-326.
    [5]瓦尔基A,等编著,张树政,等译.糖生物学基础[M].北京:科学出版社,2003.
    [6]孔繁祚编著.糖化学.北京:科学出版社,2005.
    [7]Bertozzi C R, Kiessling L L. Chemical glycobiology[J]. Science,2001,291(5512):2357-2364.
    [8]Ohya Y, Maruhashi S, Ouchi T. Graft Polymerization of L-Lactide on Pullulan through the Trimethylsilyl Protection Method and Degradation of the Graft Copolymers[J]. Macromolecules, 1998,31(14):4662-4665.
    [9]Ohya Y, Maruhashi S, Ouchi T. Preparation of poly(lactic acid)-grafted amylose through the trimethylsilyl protection method and its biodegradation[J]. Macromol Chem Phys, 1998, 199(9): 2017-2022.
    [10]Ydens I, Rutot D, Degee P, et al. Controlled Synthesis of Poly(ε-capro lactone)-Grafted Dextran Copolymers as Potential Environmentally Friendly Surfactants[J]. Macromolecules, 2000, 33(18): 6713-6721.
    [11]Ouchi T,Uchida T,Ohya Y. Synthesis of Poly(L-lactide) with One Terminal D- Glucose Residue and Wettability of Its Film Surface[J]. Macromo Biosci, 2001, 1(9):371-375.
    [12]Ouchi T,Uchida T,Arimura H,et al. Synthesis of Poly(L-lactide) End-Cappec with Lactose Residue[J]. Biomacromolecules, 2003, 4(3):477-480.
    [13]Cha J N,Stucky G D,Morse D E,et al. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides[J]. Nature, 1900, 403(6767):289-292.
    [14]Ouchi T, Seike H,Nozaki T,et al. Synthesis and characteristics of polydepsi peptide withpendant thiol groups[J]. J POLYM SCI PART A 1998, 36(8):1283-1290.
    [15]Sun K H, Sohn Y S, Jeong B. Thermogelling poly (ethylene oxide-b- propylene oxide -b-ethylene oxide) disulfide multiblock copolymer as a thiol-sensitive degradable polymer[J]. Biomacromolecules, 2006, 7(10):2871-2877.
    [16]Castellani O F, Martinez E N, Anon M C. Role of disulfide bonds upon the structural stability of an amaranth globulin[J]. J Agric Food Chem, 1999, 47(8):3001-3008.
    [17]Saito G, Swanson J A, Lee K D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities[J]. Advanced DrugDelivery Reviews, 2003,55(2):199-215.
    [18]Lee Y,Koo H,Jin G,et al. Poly (ethylene oxide sulfide): New Poly (ethylene glycol) Derivatives Degradable in Reductive Conditions[J]. Biomacromolecules, 2005, 6(1): 24-26.
    [19]Russo A. Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs[J]. Cancer Research 1986, 46(6): 2845-2848.
    [20]Konigsberg W. Reduction of disulfide bonds in proteins with dithiothreitol[J]. Methods Enzymol, 1972, 25(Part B):387-392.
    [21]Overman L E, Smoot J, Overman J D. The Reduction of Aryl Disulfides with Triphenylphosphine and Water[J]. Synthesis, 1974, 1974(1):59-60.
    [22]Kolano C,Helbing J,Bucher G,et al. Intramolecular Disulfide Bridges as a Phototrigger To Monitor the Dynamics of Small Cyclic Peptides[J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111(38):11297.
    [23]Wilson G. Effect of reductive lactosamination on hepatic uptake of bovine pancreatic ribonuclease-a dimer[J]. J Biol Chem, 1978, 253:2070–2072.
    [24]Stockert R J, Morell A G, Scheinbe I H. Mammalian hepatic lectin[J]. Science, 1974, 186:365–366.
    [25]Lundquist J J, Toone E J. The cluster glycoside effect[J]. Chem Rev, 2002, 102: 555-78.
    [26]Li C, Wallace S.Polymer-drug conjugates: Recent development in clinical oncology [J]. Advanced Drug Delivery Reviews, 2008, 60(8):886.
    [27]Hashida M,Takemura S,Nishikawa M,et al. Targeted delivery of plasmid DNA complexed with galactosylated poly(L-lysine)[J]. J Control Release, 1998, 53: 301 -310.
    [28]Kramer M,Stumbe J F,Turk H,et al. pH-responsive molecular nanocarriers based on dendritic core-shell architectures[J]. Angew Chem Int Ed Engl 2002, 41(22): 4252 -4256.
    [29]Kwon G S, Okano T. Polymeric micelles as new drug carriers[J]. Advanced Drug Delivery Reviews, 1996, 21(2):107-116.
    [30]Finne A, Andronova N, Albertsson A C. Well-organized phase-separated nano structuredsurfaces of hydrophilic/hydrophobic ABA triblock copolymers[J]. Bio macromolecules, 2003, 4(5):1451-1456.
    [31]Lei L, Gohy J F,Willet N,et al. Tuning of themorphology of core-shell-corona micelles in water. I. Transition from sphere to cylinder[J]. Macromolecules, 2004, 37(3):1089-1094.
    [32]Dubois M,Gilles KA,Hamilton JK,et al. Colorimetric method for determination of sugars and related substances[J]. Anal Chem,1956,28(3): 350-357.
    [33] Davis B G, Maughan M A T, Green M P, et al.Glycomethanethiosulfonates: powerful reagents for protein glycosylation[J]. Tetrahedron:Asymmetry, 2000, 11(1): 245-262.
    [34]Reynolds A J, Haines A H, Russell, D A. Gold Glyconanoparticles for Mimics and Measurement of Metal Ion-Mediated Carbohydrate?Carbohydrate Interactions[J]. Langmuir, 2006, 22(3), 1156-1163.
    [35]Li D P,Frey M W, Baeumerb A J. Availability of biotin incorporated in electrospun PLA fibers for streptavidin binding[J]. Polymer, 2007, 48(21):6340-6347.
    [36]Jule E, Nagasaki Y, Kataoka K. Surface plasmon resonance study on the interaction between lactose-installed poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles and lectins immobilized on a gold surface[J]. Langmuir, 2002,18(26):10334-10339.
    [37]Takae S, Akiyama Y, Otsuka H, et al. Ligand density effect on biorecognition by PEGylated gold nanoparticles: Regulated interaction of RCA(120) lectin with lactose installed to the distal end of tethered PEG strands on gold surface[J]. Biomacromolecules, 2005,6(2):818-824.
    [38]Bae W S, Urban MW. Lectin-recognizable colloidal dispersions stabilized by n-dodecyl beta-D-maltoside:Particle-particle and particle-surface interactions[J]. Biomacromolecules, 2006,7(4):1156-1161.
    [39]Nguyen B, Tanious F A, and Wilson W D. Biosensor-surface plasmon resonance: Quantitative analysis of small molecule-nucleic acid interactions[J]. Methods, 2007,42(2), 150-161.
    [40] Torreri P, Ceccarini M, Macioce P and Petrucci T C. Biomolecular interactions by Surface Plasmon Resonance technology[J]. Ann Ist Super Sanità, 2005, 41(4):437-441.
    [41] Yuk J S and Ha K S. Proteomic applications of surface plasmon resonance biosensors: analysis of protein arrays[J]. ExperimentalL and molecular medicine, 2005,37(1) 1-10.
    [42] Frutos A G, Weibel S C, and Corn R M. Near-Infrared Surface Plasmon Resonance Measurements of ultrathin Films. 2. Fourier Transform SPR Spectroscopy.Anal[J]. Chem,1999, 71(18), 3935-3940.
    [1]Ringsdorf H. Structure and Properties of Pharmacologically Active Polymers[J]. J Polym Sci Symp, 1975, 51:135-153.
    [2] María J Vincent, Ruth Duncan.Polymer conjugates: nanosized medicines for treating cancer[J]. Trends in Biotechnology, 2006, 24:39-47.
    [3]Zhang X F, Li Y X, Chen X S,et al. Synthesis and characterization of the paclitaxel /MPEG-PLA block copolymer conjugate[J].Biomaterials,2005,26:2121-2128
    [4]Xie Z G,Lu TC,Chen XS,et al.Triblock poly(lactic acid)-b-poly(ethylene glycol)- b-poly(lactic acid)/paclitaxel conjugates: Synthesis, micellization, and cytotoxicity[J].Journal of Applied Polymer Science,2007,105(4):2271-2279.
    [5]Maeda H,Wu J,Sawa T,et al.Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review[J].J Controlled Release,2000,65:271-284.
    [6]Pan X G,Wu G,Yang W L,et al. Synthesis of Cetuximab-Immunoliposomes via a Cholesterol-Based Membrane Anchor for Targeting of EGFR[J]. Bioconjugate Chem, 2007, 18(1):101-108.
    [7]Gao Z,Lukyanov A N,Chakilam A R,et al PEG-PE/phosphatidylcholine mixed immuno micelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing[J]. J Drug Targeting, 2003, 11(2):87-92.
    [8]Kim H R, Andrieux K, Gil S, et al. Translocation of poly(ethylene glycol-co- hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial[J]. Biomacro molecules 2007, 8(3):793-799.
    [9]Kim H R, Gil S, Andrieux K,et al. Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells[J]. Cellular Molecular Life Sci, 2007, 64(3):356-364.
    [10]Ulbrich K,ubr V,Strohalm J,et al.Polymeric drugs based on conjugates of synthetic and natural macromolecules I. Synthesis and physico-chemical characteri zation[J].Journal of Controlled Release,2000,64(1-3):63-79.
    [11]Boucek J,Mrkvan T,Hovorka O, et al. Anti-EGFR targeted polymeric conjugates and mechanism of their internalization[J].Tumor Biology,2007,28:84-84.
    [12]Boucek J, Mrkvan T, Hovorka O, et al.In vitro efficacy of HPMA based conjugates containing doxorubicin and anti-EGFR mAb[J]. Molecular Cancer Therapeutics, 2007, 6(12):3564-3565.
    [13]Braunova, Pechar M,Ulbrich K.Degradation behavior of poly(ethylene glycol) diblock and multiblock polymers with hydrolytically degradable ester linkages. Collection of Czechoslovak[J].Chemical Communications,2004,69(8):1643-1656.
    [14]Chytil P, Etrych T, Konak C,et al.Properties of HPMA copolymer-doxorubicin conjugates with pH-controlled activation: Effect of polymer chain modification[J]. Journal of Controlled Release, 2006, 115(1):26-36.
    [15]Yokoyama M, Kwon G S, Okano T.Influencing Factors On In-Vitro Micelle Stability of Adriamycin-Block Copolymer Conjugates[J]. Journal of Controlled Release, 1994, 28(1-3):59-65.
    [16]Kataoka K, Harada A, Nagasaki Y.Block copolymer micelles for drug delivery: design, characterization and biological significance[J].Advanced Drug Delivery Reviews,2001,47(1): 113-131.
    [17]Ino Y, Guan Y, Nishiyama N,et al. Novel polymeric micelle drug carrier systems for brain tumor therapy[J]. Neuro-Oncology, 2005, 7(3):387-388.
    [18]Bae Y, Nishiyama N, Fukushima S, et al.Preparation and biological characteri zation of polymeric micelle drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy[J]. Bioconjugate Chemistry, 2005, 16 (1): 122 -130.
    [19]Rostovtsev V V, Green L G,Fokin V V,et al.A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective Ligation of Azides and Terminal Alkynes[J]. Angew Chem Int Ed, 2002, 41:2596-2599.
    [20]Parrish B, Breitenkamp R B, Emrick T. PEG-and Peptide-Grafted Aliphatic Poly esters by Click Chemistry[J]. J Am Chem Soc, 2005, 127:7404-7410.
    [21]Liebert T, Hansch C, Heinze T.Click Chemistry with Polysaccharides[J]. Macromolecular Rapid Communications, 2006, 27:208-213.
    [22]Riva R,Schmeits P,Stoffelbach F,et al.Combination of ring-opening poly merization and "click" chemistry towards functionalization of aliphatic polyesters[J]. Chem Commun, 2005, 42:5334-5336.
    [23]Sun X L, Stabler C L, Cazalis C S, et al. Carbohydrate and Protein Immobilization onto Solid Surfaces by Sequential Diels-Alder and Azide-Alkyne Cycloadditions[J]. Bioconjugate Chem, 2006, 17:52-57.
    [24]Amvam-Zollo P H, Sina? P.Streptococcus pneumoniae type XIV polysaccharide: synthesis of a repeating branched tetrasaccharide with dioxa-type spacer-arms[J]. Carbohydr Res, 1986, 150: 199-212.
    [25]Szurmai Z, SzabóL, Lipták A. Acta Chim Hung,1989,126:259-269.
    [26]Sun X L, Grande D, Baskaran S, et al.Glycosaminoglycan Mimetic Biomaterials.4. Synthesisof Sulfated Lactose-Based Glycopolymers That Exhibit Anticoagulant Activity[J]. Biomacromolecules, 2002, 3:1065-1070.
    [27]Jule E,Nagasaki Y,Kataoka K.Surface plasmon resonance study on the interaction between lactose-installed poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles and lectins immobilized on a gold surface[J]. Langmuir,2002,18:10334- 10336.
    [28]Takae S, Akiyama Y, Otsuka H,et al. Ligand density effect on biorecognition by PEGylated gold nanoparticles: Regulated interaction of RCA(120) lectin with lactose installed to the distal end of tethered PEG strands on gold surface[J]. Biomacromolecules,2005,6:818-827.
    [29]Bae W S, Urban M W. Lectin-recognizable colloidal dispersions stabilized by n-dodecyl beta-D-maltoside: Particle-particle and particle-surface interactions [J]. Biomacromolecules,2006,7:1156-1166.
    [1]Scartozzi M, Galizia E, Verdecchia L,et al. Chemotherapy for advanced gastric cancer:Across the years for a standard of care[J].Expert Opin Pharmacotherapy, 2007,8(6):797-808.
    [2]Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance[J]. Adv Drug Delivery Rev,2001,47: 113-131.
    [3] Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J].Nature Biotechnol,2004,22:969-976.
    [4]Kang N,Perron M E,Prud’homme R E,et al.Stereocomplex block copolymer micelles: Core-shell nanostructures with enhanced stability[J].Nano letters,2005,5(2): 315- 319
    [5]Lee E S, Na K, Bae Y H.Super pH-Sensitive Multifunctional Polymeric Micelle [J].Nano Letter, 2005,5(2):325-329.
    [6]Lo C O,Lin K M,Huang C H, et al.Self-assembly of a Novel Micelle Structure form Graft and Diblock Copolymers: an Example for Determined the Limit on Polyions in Drug Delivery[J].Advanced Functional Materials,2006,16:2309-2316.
    [7]Kang N, Perron M E, Robert E.Stereocomplex Block Copolymer Micelles: Core?Shell Nano structures with Enhanced Stability[J].Nano letter,2005,5(2):315-319.
    [8]Shim D F K, Marques C, Cates M E.Diblock copolymers: comicellization and coadsorp tion[J].Macromolecules,1991,24(19):5309-5314.
    [9]Honda C, Nose T,Yamamoto K.Comicellization of binary mixtures of block copolymers with different block lengths in a selective solvent [J]. Polymer, 1996, 37 (10):1975-1984.
    [10]Borovinskii A L, Khokhlov A R.Micelle formation in the dilute solution mixtures of block-copolymers[J].Macromolecules,1998,31:1180.
    [11]Konak C, Helmstedt M.Comicellization of diblock and triblock copolymers in selective solvents[J].Macromolecules,2003,36:4603–4608.
    [12]Mingvanisg W, Chaibundit C, Boot C. Phys Chem Chem Phys, 2002, 4:778.
    [13]Liu T B, Nace V M, Chu B.Self-assembly of mixed amphiphilic triblock copolymers in aqueous solution[J].LANGMUIR,1999,15(9):3109-3117.
    [14]Bae Younsoo,Jang Woo-Dong,Nishiyama Nobuhiro,et al.Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery[J].Mol BioSyst,2005,1:242-250.
    [15]Nasongkla Norased, Bey Erik,Ren Jimin,et al. Multifunctional Polymeric Micelles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems[J].Nano letters,2006, 6(11):2427-2430.
    [16]Ashwell G, Harford J.Carbohydrate-specific receptor of the liver[J]. Annu Rev Biochem, 1982, 51:531-554.
    [17]Schwarz A L.The hepatic asialoglycoprotein receptor[J].CRC Crit Rev Biochem, 1984,16:207-233.
    [18]Schwartz A L,Fridovich S E,Lodish H F.Kinetics of internalization and recycling of the asialoglycoprotein receptor in a hepatoma cell line[J].J Biol Chem,1982, 257 (8):4230-4237.
    [19]Schwartz A L, Bolognesi A, Fridovich S E.Recycling of the asialoglycoprotein receptor and the effect of lysosomotropic amines in hepatoma cells[J]. J Cell Biol, 1984, 98(2):732-738.
    [20]Fallon R J, Schwartz A L.Receptor-mediated delivery of drugs to hepatocytes[J]. Advanced Drug Delivery Reviews, 1989, 4(1),49-63.
    [21]Huang Chun-Kai, Lo Chun-Liang, Chen Hung-Hao, et al. Multifunctional Micelles for Cancer Cell Targeting, Distribution Imaging, and Anticancer Drug Delivery[J]. Adv Funct Mater,2007, 17:2291–2297.
    [22]Yu K, Eisenberg A.Multiple morphologies in aqueous solutions of aggregates of polystyrene-block-poly (ethylene oxide) diblock copolymers[J]. Macromolecules 1996, 29(19):6359-6361.
    [23]Zhang L,Eisenberg A.Thermodynamic vs Kinetic Aspects in the Formation and Morphological Transitions of Crew-Cut Aggregates Produced by Self-Assembly of Polystyrene-b-poly (acrylic acid) Block Copolymers in Dilute Solution[J]. Macromolecules, 1999, 32(7):2239-2249.
    [24]Yu K,Bartels C,Eisenberg A.Trapping of Intermediate Structures of the Morphological Transition of Vesicles to Inverted Hexagonally Packed Rods in Dilute Solutions of PS-b-PEO[J]. Langmuir, 1999, 15(21):7157-7167.
    [25]Gros L, Ringsdorf H, Schupp H. Polymeric anti-tumor agents on a molecular and on a cellular-level[J]. Angew Chem Int Ed, 1981, 20:305-325.
    [26]Huang C K, Lo C L, Chen H H, et al. Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery[J]. Adv Funct Mater, 2007,17:2291–2297.
    [27]Moghimi S M,Porter C J H,Muir I S,et al. Non-phagocytic uptake of intravenously injected microspheres in rat spleen-influence of particlesize and hydrophilic coating[J]. Biochem Biophys Res Commun, 1991, 177:861-866.
    [28]Simoes S, Pires P, Duzgunes N, et al. Cationic liposomes as gene transfer vectors: barriers to successful application in gene therapy. Curr Opin Mol Ther, 1999, 1: 147-157.
    [29]Jule E, Nagasaki Y, Kataoka K. Lactose-installed poly(ethylene glycol)-poly(D, Llactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bedsimulating a cell surface. A surface plasmon resonance study[J]. Bioconjug Chem,2003,14: 177-186.
    [30] Kawaguchi K, et al. Arch Biochem Biophys, 1980, 205:388-395.
    [31] Connolly DT, et al. J Biol Chem, 1982, 257:939-945.
    [32] Lee RT, et al.Biochenistry, New synthetic cluster ligands for galactose/N-acetylgalactosamine-specific lectin of mammalian liver[J].1984, 23:4255-4261.
    [33] Maeda H, Wu J, Sawa T, Matsumura Y, Hori K, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review[J]. J Controlled Release 2000, 65: 271–284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700