饮酒、HO-1基因启动子微卫星多态性与食管鳞癌易感性的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是全世界食管癌发病率最高的国家,年平均死亡率为14.59/10万,占全部恶性肿瘤发病率和死亡率的第四位。我国食管癌的病理与欧美不同,以鳞癌为主,占97.6%。食管癌的发生发展是一个涉及多因素、多阶段、多基因变异积累及相互作用的复杂过程,与长期吸烟、饮酒、亚硝胺类和霉菌摄入、膳食中缺乏维生素及微量元素、热损伤等因素有关,而饮酒是食管鳞癌(ESCC)发病的主要危险因素。尽管饮酒所带来的一系列医学问题已经引起全世界的普遍关注,但饮酒行为与食管癌易感性间的相互关系至今还未能引起足够重视。流行病学资料表明,慢性酒精消耗是上消化道癌(口腔癌,口咽癌,下咽癌,喉癌,食管癌)的强烈致癌因素。我国是酒类生产和消费大国,嗜酒者占一般人群14.3%。饮酒已经成为公关或社交中必不可少的一种手段。酒精的致癌效应涉及到多项机制:乙醇的局部作用、增加的乙醛结果、活性氧族(ROS)的增加、前致癌物质的活化等。慢性饮酒诱导氧化应激后ROS明显增加,而血红素加氧酶-1(HO-1)是主要的抗氧化酶,在组织和细胞的氧化应激和炎症反应中起到重要的调节作用。很多恶性肿瘤中HO-1呈高表达水平,同时伴随抗凋亡的能力提高、促进肿瘤的血管生成、导致肿瘤的转移和扩散、对治疗的敏感性降低等。然而这些变化与食管癌的关系如何,国内外鲜有研究,特别是HO-1在食管鳞癌中的表达及其与其他一些重要蛋白的共同关系(如EGFR, VEGF等),再者氧化应激后HO-1的表达水平如何,是否与饮酒后易感食管癌有关联,如何关联,都需进一步开展大样本的流行病学研究证实。
     此外,疾病关联的遗传研究发现,遗传可变性能影响HO-1对外源性应急的反应,个体不同的应激反应能力导致HO-1反应有很大的个体差异。深入研究个体的HO-1基因型不仅可以阐明其与疾病发生的相关性,还可为其临床应用的可行性提供理论上的依据。HO-1基因5’端启动子区域(GT)n重复多态性和T(-413)A SNP被认为是潜在的功能性多态性位点,对应激因素诱导的HO-1反应具有调节作用,从而可能在疾病的发生过程中起重要作用。那么饮酒与抗氧化酶HO-1的基因多态性有怎样的关系?HO-1启动子(GT)n重复序列多态性与食管鳞癌易感的关系?HO-1(GT)n双核甘酸多态性和HO-1 SNP的关系?目前国内外还未见阐明。本课题初步探讨了中国男性饮酒、HO-1基因(GT)n重复序列多态性与食管鳞癌易感性的关系,以期为其预防和临床治疗提供科学依据。
     目的:描述新诊断ESCC病人的流行病学特点,了解ESCC与饮酒、吸烟、膳食营养、体力活动、遗传等因素的关系,阐明不同的饮酒方式(饮酒量、饮酒类型、饮酒年限等)与ESCC发生的危险性。
     方法:采用病例-对照研究方法,以问卷调查表的形式调查新诊断ESCC病人283例和正常对照组538例饮酒、吸烟等各项指标。多元回归方法估计比值比(OR)及95%可信区间(95%CI)。
     结果:ESCC组中平均年龄、中度饮酒、重度饮酒、吸烟人群比例均高于对照组人群,P<0.001。所有类型的酒类品种都使ESCC的风险增加。轻度、中度、重度饮酒患ESCC的风险逐渐升高,OR分别为1.48、4.03、7.14。中度、重度饮啤酒者患ESCC的风险是增加的,ORs分别为4.19和8.83(P=0.000)。饮白酒的轻度、中度、重度组患ESCC的风险是逐步升高的,OR分别为2.33、3.96、6.29(P值分别为0.007、0.000、0.000)。饮酒年限超过40年的患食管鳞癌的风险是最高的,OR=6.31(P=0.000)。停止饮酒年限低于5年比仍然饮酒者发生食管鳞癌的风险增加,OR=3.27(P<0.001)。
     结论:ESCC的危险性与饮酒是强烈相关的。嗜酒特别是白酒,证实是有害的。戒酒后对身体也没有保护作用。
     目的:从第一部分病例对照研究的病例组中选取143例,检测食管鳞癌组织中血红素加氧酶-1(HO-1)、乏氧诱导因子-1α(HIF-1α)、表皮生长因子受体(EGFR)和血管内皮生长因子165b(VEGF165b)的表达并探讨这四种蛋白与饮酒、临床病理特征的关系及它们在食管鳞癌发生发展中的作用。
     方法:应用免化SP法检测HO-1、HIF-1α、EGFR和VEGF165b的表达。
     结果:食管鳞癌组织中HO-1、HIF-1α、EGFR和VEGF165b的阳性表达率分别为40.6%、43.4%、58%和13.3%;饮酒程度与HO-1阳性表达率呈负相关性(P=0.001),与HIF-1α和EGFR阳性表达率呈正相关性,与VEGF165b表达无相关性。HO-1阳性表达率与组织学分级呈正相关性(P=0.001),但与临床分期、纵隔淋巴结的转移没有明显的相关关系(P>0.05)。HIF-1α阳性表达率与分期、纵隔淋巴结转移及组织学分级呈正相关性(P<0.05)。EGFR阳性表达率与分期、纵隔淋巴结转移呈正相关性(P<0.05),但与分化程度没有相关性(P>0.05)。VEGF165b与分期、纵隔淋巴结转移及肿瘤分化程度无相关性(P>0.05)。HO-1阳性表达率与HIF-1α、EGFR阳性表达率呈正相关关系(P值均<0.001),与VEGF165b阳性表达率没有明显的相关性(P=0.206)。HIF-1α与EGFR呈正相关关系(P=0.040),与VEGF165b呈负相关关系(P=0.035)。EGFR与VEGF165b没有相关性(P=O.131)。
     结论:HO-1、HIF-1α、EGFR和VEGF165b可能与ESCC的发生发展相关;饮酒可能影响ESCC中HO-1、HIF-1α、EGFR的表达;HO-1、HIF-1α、EGFR及VEGF165b相互间存在相关性。HO-1、VEGF165b可能成为治疗的新靶点。
     目的:以第二部分的143例ESCC病人为研究对象,调查分析中国男性食管鳞癌患者饮酒状况;初步评价食管鳞癌个体HO-1表达水平与饮酒的关系;进一步探讨HO-1基因启动子区域两处多态性:(GT)n和T(-413)ASNP与饮酒者发生食管鳞癌的相关性,并对两处基因多态性的功能相关性进行初步探讨。
     方法:病例对照研究方法调查143例食管鳞癌患者及264例正常对照者。采用流式细胞仪检测食管鳞癌组和对照组个体外周血单核细胞(peripheral blood mononuclear cells, PBMCs) HO-1表达水平;提取外周血细胞DNA,采用遗传分析仪RT-PCR法对HO-1(GT)n微卫星多态性进行片段分析,采用TaqMan探针法行HO-1T(-413)ASNP基因分型;用Hardy-Weinberg遗传平衡吻合度检验方法对各基因型进行遗传平衡检验;用连锁不平衡分析软件(linkage disequilibrium analysis, LD A)对两处多态性位点进行连锁分析,并用PHASE2.0软件构建单体型;校正年龄、吸烟等因素后,分别评价这两处多态性位点以及单体型与饮酒者发生食管鳞癌的关联;并结合PBMCs胞内HO-1表达水平探讨这两处多态性位点的功能相关性
     结果:
     (1) PBMCs HO-1表达水平:ESCC病人PBMCs胞内HO-1表达水平较正常对照组明显增高(56.8±12.05 MFIvs 35.4±22.70 MFI), P<0.05。
     (2)病例组和对照组的特征比较:ESCC组的年龄较对照组偏高(61.27±10.42岁vs58.05±10.00岁), ESCC组饮酒的频度和饮酒量都比对照组明显增多,P<0.001。
     (3)饮酒、HO-1(GT)n微卫星多态性与食管鳞癌发生的关联研究:所有的研究人群中(GT)n重复次数中23次和30次为主要的等位基因片段;ESCC组比对照组有高“L”等位基因(55.6%vs 43.7%),低“S”等位基因频率(44.4%vs56.3%), OR=1.610, 95%CI 1.21-2.15,P=0.001; ESCC组比对照组有高的携带“L”的等位基因型(S/L+L/L型)(79.7%vs 65.9%),其患ESCC的风险高,OR=2.03,95%CI 1.26-3.29,P=0.004,调整年龄、吸烟、饮酒状况后的OR为2.21(95%CI 1.30-3.78,P=0.004)。调整年龄和吸烟状态后,按照HO-1基因启动子区域(GT)n等位基因型分析了男性饮酒的五种状态(从不饮酒、曾经饮酒、轻度饮酒、中度饮酒、重度饮酒)与ESCC发病风险的关系:比较ESCC组和对照组,中度、重度饮酒组携带“L”等位基因的基因型(S/L和L/L型)比携带S/S基因型患ESCC的风险比轻度饮酒组/从不饮酒组/曾经饮酒组明显增高(中度饮酒组的OR=3.53[95%CI 1.28-9.73, P=0.015],重度饮酒组的OR=3.24[95%CI 1.14-9.23, P=0.028],轻度饮酒组的OR=1.11[95%CI 0.42-2.94,P=0.827],从不饮酒组的OR=1.15[95%CI 0.15-8.60, P=0.892],曾经饮酒组的OR=NC)。
     (4) T(-413)ASNP与ESCC发生的关联研究:ESCC组和对照组人群T(-413)A SNP位点各等位基因和各等位基因型的分布无显著性差异;校正年龄、吸烟等因素后的回归分析显示,携带T/A及A/A基因型相对携带T/T基因型人群发生ESCC的危险性未见显著性差异。
     (5)连锁不平衡分析及单体型构建:HO-1 (GT)n微卫星多态性与T(-413)A SNP位点的D’值为0.71,表示两多态性位点存在较强的连锁程度;构建的4种单体型(ST、LT、SA和LA)中,ST和LA是主要的单体型;校正年龄、吸烟后,与ST单体型相比,LT单体型与食管鳞癌的发病相关,OR值为1.75(95%CI 1.17-2.93,P=0.006)。
     (6)功能学评价:校正年龄、吸烟因素后,ESCC组和对照组人群PBMCs胞内HO-1表达水平随着(GT)n-L等位基因数目的增多而降低,L/L携带者PBMCs HO-1表达水平最低;在ESCC组,L/L基因型携带者比S/S基因型携带者HO-1表达水平显著降低(41.27±7.48MFIvs75.65±8.32MFI), P=0.015。T(-413)ASNP位点的不同基因型对ESCC人群中PBMCs HO-1表达水平没有明显的影响,T/T、T/A和A/A三种基因型携带者中PBMCs HO-1表达水平在ESCC组和对照组中均无显著性差异,P值分别为0.557和0.538。在轻度和中度饮酒组,L/L基因型PBMCs胞内HO-1表达比S/S基因型PBMCs胞内HO-1表达显著降低是有统计学意义的,P值分别为0.011和0.026,但这一趋势在重度饮酒组没有差异。
     结论:
     (1) HO-1(GT)n微卫星多态性位点是通过调节个体的HO-1表达水平与中国汉族男性饮酒者易感ESCC相关联:长(GT)n片段(L≥25次)携带者HO-1表达水平比短(GT)n片段(S<25次)携带者HO-1表达水平降低,其患ESCC的风险性增加。
     (2)重度、中度饮酒者比轻度、不饮酒者长(GT)n片段(L≥25次)携带者HO-1表达水平比短(GT)n片段(S<25次)携带者HO-1表达水平更降低,其患食管鳞癌的风险性可能增高。
     (3)(GT)n微卫星多态性与T(-413)ASNP位点具有相互连锁的关系,连锁后的单体型TL与ESCC发病风险相关。
     (4)HO-1基因启动子区域(GT)n微卫星多态性位点在调节HO-1功能方面可能起主导的作用。
     (5)(GT)n微卫星多态性可以作为ESCC的新型遗传标记,为ESCC的临床预防和治疗提供了理论上的指导作用。
Objective:To describe the epidemiology of the newly diagnosed cases of esophagus squamous carcinoma (ESCC) and explore the correlation between ESCC and alcohol drinking and other potential carcinogen.
     Methods:A case-control study was conducted with 283 newly diagnosed cases and 538 normal controls by questionnaires.
     Results:Average age, proportion of moderate drinkers, heavy drinkers and smokers in the ESCC cases were higher than the controls (P<0.001). All types of alcohol consumption increase the risk of ESCC. The risk of ESCC increased gradually with light, moderate and heavy drinkers, OR=1.48,4.03,7.14. The risk of ESCC at the moderate and heavy beer drinkers increased, OR=4.19 and 8.83 (P=0.000). The risk of developing ESCC increased gradually with the light、moderate and heavy white spirit drinkers, OR=2.33,3.96,6.29 (P=0.007,0.000,0.000). The individuals who had drunk for more than 40 years were at the highest risk of ESCC, OR=6.31 (P=0.000). Compared with the drinkers who still drunk, the drinkers who had given up drinking for less than 5 years were at a higher risk of ESCC, OR=3.27 (P<0.001).
     Conclusions:Alcohol drinking plays an important role in risk of ESCC. Alcohol drinking, especially drinking white spirit has harmful effect on developing ESCC, but drinking a little beer doesn't. Giving up drinking doesn't protect the body from developing ESCC. Keywords:esophageal carcinoma; epidemiologic study; alcohol drinking; danger factor
     Objective:The aim of this work was to detect expression of HO-1, HIF-1α, EGFR and VEGF165b in esophagus squamous carcinoma (ESCC) tissues, and then discuss their correlations with alcohol drinking and clinical pathological features in development of ESCC.
     Methods:Immunohistochemistry SP method was used to detect the expression of HO-1, HIF-1α, EGFR and VEGF165b in 143 ESCC tissues.
     Results:Positive expression rates of HO-1, HIF-1α, EGFR and VEGF165b in ESCC tissues were 40.6%,43.4%,58%and 13.3%respectively; Extend of drinking showed negative correlation with expression rate of HO-1 (P=0.001), and positive with expression rate of HIF-1αand EGFR. Expression rate of HO-1 was positive correlation with the histological grade (P=0.001), but no correlation with the clinical stage and mediastinal lymph node metastasis (P>0.05). Positive HIF-1αexpression was correlation with clinical stage、mediastinal lymph node metastasis and differentiation of tumor (P<0.05). Positive expression of EGFR showed correlation with clinical stage and mediastinal lymph node metastasis (P<0.05), but no correlation with the differentiation of tumor (P>0.05). The expression rate of VEGF165b showed no correlation with clinical stage、mediastinal lymph node metastasis and differentiation of tumor (P>0.05). The expression rate of HO-1 showed positive correlation with the expression rates of HIF-1α、EGFR (P<0.001), but no correlation with VEGF165b (P=0.206). HIF-1αexpression rate showed positive correlation with EGFR (P=0.040), and negative correlation with VEGF165b(P=0.035). There was no correlation between EGFR and VEGF165b (P=0.274).
     Conclusions:The expression of HO-1, HIF-1α, EGFR and VEGF165b play an important role in the occurrence and developement of ESCC. Alcohol drinking is a significant risk factor of ESCC and has great effort on the developing ESCC by influencing the expression of HO-1, HIF-1α, EGFR. The expression of HO-1 shows correlation with HIF-1αEGFR and VEGF165b.HO-1 and VEGF165b may be a potential therapy target.
     Objective:To evaluate correlation between alcohol drinking and expression of HO-1, and correlation between alcohol drinking and HO-1 gene promoter polymorphism along with risk of esophageal squamous cell carcinoma(ESCC) on Chinese males and study junction of (GT)n and T(-413)ASNP.
     Methods:Case-control study was performed in 143 ESCC patients and 264 cancer-free controls. Intracellular HO-1 expression in PBMCs was detected by flow cytometry. Genomic DNA was extracted from venous blood samples, HO-1(GT)n microsatellite polymorphism was examined by PCR-based genotyping and DNA sequencing. HO-1 T(-413)A SNP was detected by TaqMan probes method. Hardy-Weinberg equilibrium indicated an absence of discrepancies between genotype and allele frequencies. Linkage disequilibrium (LD) between these two polymorphisms was evaluated by linkage disequilibrium analysis program (LDA) and the haplotypes were built using PHASE2.0 program. The correlation between the polymorphism sites and haplotype with the risk of ESCC of the Chinese male alcohol drinkers were valued after adjusted and the functional correlation between the two polymorphisms was discussed with the expression of PBMCs HO-1.
     Results:
     (1) Compared with the controls, HO-1 expression in PBMCs in the ESCC was higher (56.8±12.05 MFI vs 35.4±22.70 MFI, P<0.05).
     (2) Age, Frequency and consumption of alcohol drinking showed a significant difference between the cases and the controls. P<0.001.
     (3) Distribution of the numbers of (GT)n repearts was bimodal, with two main peak located at 23 and 30 GT repeats. The cases carried a high L (55.6%vs 43.7%) and a low S (44.4% vs 56.3%) allele frequencies compared with the controls. The cases which carried a higher "S/L+L/L" (79.7%vs 65.9%) allele frequency were at a high risk of developing ESCC, OR=2.03 (95%CI 1.26-3.29, P=0.004), adjusted OR=2.21 (95%CI 1.30-3.78, P=0.004). After adjusting for age and smoking status, we estimated the risk for esophageal cancer in five drinking categories (never/rare, ex-drinkers, light, moderate, and heavy) by HO-1 (GT)n genotype. When subjects were analyzed according to alcohol consumption, the adjusted ORs for S/L and L/L compared with S/S were higher for heavy and moderate drinkers (in heavy drinkers, OR=3.24,95%CI 1.14-9.23, P=0.028; and in moderate drinker, OR=3.53,95%CI 1.28-9.73,P=0.015) than light/never/ex-drinkers (OR 1.11,95%CI 0.42-2.94, P=0.827/OR 1.15,95%CI 0.15-8.60,P=0.892/ORNC).
     (4) The T(-413)A SNP alleles and their distribution between cases and controls had no significant difference; The risk of developing ESCC between the T/A and A/A carriers and the T/T carriers had no significant difference after adjusted.
     (5) The D'value between HO-1(GT)n microsatellite polymorphism and T(-413)A SNP was 0.71, which showed a strong linkage. Compared with the ST haplotype, the LT haplotype was associated with the developing of ESCC after adjusted, OR=1.75 (95%CI 1.17-2.93, P=0.006).
     (6) The expression of PBMCs HO-1 in the cases and controls decreased with the increasing of the numbers of (GT)n-L allele after adjusted. The HO-1 expression in PBMCs of L/L carrier was the lowest. The HO-1 expression in PBMCs of the L/L carriers in the cases was manifestly lower than the S/S carriers(41.27±7.48 MFI vs 75.65±8.32 MFI), P=0.015. There was no significant difference between HO-1 expression in PBMCs in the cases and the T(-413)A SNP genotypes. The expression of PBMCs HO-1 of the T/T、T/A and A/A carriers in the cases and controls had no significant difference, P=0.557 and 0.538. The expression of PBMCs HO-1 of the L/L carriers in the light and moderate drinking groups was obviously lower than the S/S carriers, P=0.011 and 0.026, but it was not found in the heavy drinking groups.
     Conclusions:
     (1) The HO-1(GT)n microsatellite polymorphism is related to the developing ESCC of the Chinese male alcohol drinkers by regulating the expression of HO-1:the expression of HO-1 of L allele carriers is lower than S allele and has a higher risk of developing ESCC.
     (2). HO-1 expression in PBMCs with L(GT)n in heavy and moderate drinkers is obviously lower than with S(GT)n in light drinkers and non-drinkers, and the former may have a higher risk of developing ESCC.
     (3) There is a linkage between HO-1(GT)n microsatellite polymorphism and T(-413)A SNP; LT haplotype was associated with the developing of ESCC.
     (4) HO-1(GT)n microsatellite polymorphism may play an important role in regulating function of HO-1.
     (5) HO-1(GT)n microsatellite polymorphism serves as a novel genetic marker of ESCC, which could have guided significance for ESCC clinical prevention and treatment.
引文
1. Parkin DM, Bray F, Ferlay J, Pisani P. Global Cancer Statistics,2002. CA Cancer J Clin.2005,55:74-108.
    2. Li H, Yao SC. Surgical treatment for carcinoma of the oesophogus in Chinese language publications. Br.J.Surg.1997,84(6):855-857.
    3. 于世英.临床肿瘤学.科学出版社出版.2006.186
    4. 饶克勤,李连弟。中国恶性肿瘤危险因素研究[M].北京:中国协和医科大学出版社,2003.235-248.
    5. Seitz, H. K., Poschl, G. and Simanowski, U. A. Alcohol and Cancer. In Recent Developments in Alcoholism:The Consequencesof Alcoholism, Galanter, M., ed., 1998. pp.67-96. Plenum Press, New York, London
    6. Seitz, H. K., Stickel, F. and Homann, N. Pathogenetic mechanisms of upper aerodigestive tract cancer in alcoholics. International Journal of Cancer,2004,108: 483-487.
    7. Tuyns, A. J. Oesophageal cancer in non-smoking drinkers and in non-drinking smokers. Inter. Journal of Cancer.1983,32:443-444.
    8. Bofetta, P. and Garfinkel, L. Alcohol drinking and mortality among men enrolled in an American Cancer Society prospective study. Epidemiology.1990,1:342-348.
    9. Thun, M. J., Peto, R., Lopez, A. D., Monaco, J. H., Henley, S. J., Heath, C. W. Jr and Doll, R. Alcohol consumption and mortality among middle aged elderly US adults. New England Journal of Medicine.1997,337:1705-1714.
    10.张钦凤,高艳霞,吴多文,薛亚卓.食管癌发病影响因素Meta分析[J].中国肿瘤.2004,13(5):277-279.
    11. Seitz, H. K., Matsuzaki, S., Yokoyama, A., Homann, N., Vakevainen, S. and Wang, X. D. Alcohol and Cancer. Alcoholism Clinical and Experimental Research.2001,25: 137-143.
    12. Seitz, H. K. and Oneta, C. M. Gastrointestinal alcohol dehydrogenases. Nutritional Review.1998,56:52-60.
    13. Poschl G. and Seitz H. K.. Alcohol and cancer. Alcohol & Alcoholism Vol.2004, 39(3):155-165.
    14. Maines MD.Heme oxygenase:function,multiplicity,regulatory mechanisms,and clinical application.FASEB J.1988,2:2557-2568.
    15. Yamada N,Yamaya M,Okinaga S,Lie R,Suzuki T,Nakayama K,Takeda A,Yamaguchi T,Itoyama Y,Sekizawa K,Sasaki H.Protective effects of heme Oxygenase-1 against oxidant-induced injury in the cultured human tracheal epithelium.Am J Respir Cell Mol Biol.1999,21:428-435
    16. Shibahara S.The heme oxygenase dilemma in cellular homeostasis:new insights for the feedback regulation of heme catabolism.Tohoku J Exp Med.2003,200:167-186
    17. Otterbein LE;Kolls JK;Mantell LL;Cook JL;Alam J;Choi AMK.Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. J Clin Invest.1999,103:1047-1054.
    18. Tulis,D.A.;Durante,W.,Peyton,K.J.;Ecans,A.J.;Schafer,A.I.Heme oxygenase-1 attenu-ates vascular remodeling following balloon injury in rat carotid arteries. Atheroscl-erosis.2001,155:113-122.
    19. Duckers,H.J.;Boehm,M.;TrueA.L.;Yet,S.F.;San,H.;Pak,J.L.;ClintonWebb,R.;Lee, M.E.;Nabel,G.J.;Nabel,E.G.Heme oxygenase-1 protects against vascular constriction andproliferation.Nat.Med.,2001,7:693-698
    20. Ishikawa,K.;Sugawara,D.;Wang,X.;Suzuki,K.;Itabe,H.;Maruyama,Y.;Lusis,A.J. heme oxygenase-1 inhibits atherosclerotic lesion formation in LDL-receptor knockout mice.Circ.Res.2001,88:506-512.
    21. Maines MD, Abrahamson PA. Expression of heme oxygenase-1 (HSP32) in human prostate:normal, hyperplastic, and tumor tissue distribution. Urology 1996; 47:727- 33.
    22. Goodman AI, Choudhury M, da Silva JL, Schwartzman ML,Abraham NG. Overexpression of the heme oxygenase gene in renal cell carcinoma. Proc Soc Exp Biol Med 1997; 214:54-61.
    23. Liu ZM,Chen GG,Ng EK,Leung WK,Sung JJ.Chung SC.Upregulation of heme oxygenase-1 and p21 confers resistance to apoptosis in human gastric cancer cells.oncogene.2004;23:503-513.
    24. Exner M, Minar E, Wagner O, Schillinger M:The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic Biol Med 2004; 37:1097-1104.
    25. Kikuchi, A., Yamaya, M., Suzuki,S,et al. Association of susceptibility to the development of lung adenocarcinoma with the heme oxygenase-1 gene promoter polymorphism. Hum Genet.2005,116:354-360.
    26. Chang KW, Lee TC, Yeh WI, Chung MY, Liu CJ, Chi LY, Lin SC. Polymorphism in heme oxygenase-1 (HO-1) promoter is related to the risk of oral squamous cell carcinoma occurring on male areca chewers. Br J Cancer.2004,91:1551-1555.
    27. Lo SS,Lin SC,Wu CW,Chen JH,Yeh WI,Chung MY,Lui WY.Heme oxygenase-1 gene promoter polymorphism is associated with risk of gastric adenocarcinoma and lymphovascular tumor invasion.Annals of surgical oncology.2007,14(8):2250-2256
    28. Rueda B, Oliver J, Robledo G, Lopez-Nevot MA, Balsa A, Pascual-Salcedo D, et al. HO-1 promoter polymorphism associated with rheumatoid arthritis. Arthritis Rheum. 2007,56:3953-3958.
    29. Ono K, Mannami T, Iwai N. Association of a promoter variant of the haem oxygenase-1 gene with hypertension in women. J Hypertens 2003,21:1497-1503.
    30. Ono K, Goto Y, Takagi S, Baba S, Tago N, Nonogi H, et al. A promoter variant of the heme oxygenase-1 gene may reduce the incidence of ischemic heart disease in Japanese. Atherosclerosis 2004; 173:313-317.
    31. Buis CI, van der Steege G, Visser DS, Nolte IM, Hepkema BG, Nijsten M, et al. Heme oxygenase-1 genotype of the donor is associated with graft survival after liver transplantation. Am J Transplant 2007; 8:377-385.
    32. Kollarova H, Machova L, Horakova D,Janoutova G, Janout V. Epidemiology of esophageal cancer-an overview article[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub.2007,151(1):17-20.
    33.林东昕。中国食管癌分子流行病学研究.中华流行病学杂志.2003,24(10):939-943.
    34. Day NE, Munoz N. Esophagus. In Cancer epidemiology and prevention. Edited by: Schottenfeld D, Fraumeni J.New York:Oxford University; 1996:681-706.
    35. Nyren O, Adami H. Esophageal Cancer. In textbook of Cancer Epidemiology. Edited by:Adami HO, Hunter D. Oxford:Oxford University;2002:137-161.
    36. Enzinger P, Mayer R. Esophageal Cancer. N Engl Med.2003,349(23):2241-2252.
    37. Castellasgue X, Munoz N, De Stefani E, Victora C, Castelletto R, Rolo P, Quintana M. Independent and joint effects of tobacco smoking and alcohol drinking on the risk of esophageal cancer in men and women. Int J Cancer.1999,82(5):657-664.
    38.鲁晓岚,陶明,罗金燕,耿燕,赵红莉,赵平.饮酒与肝病流行病学调查[J].中华肝脏病杂志,2002,10:467-468.
    39.谭晓云,李宁燕,郭源,宋慧中.社区居民生活方式相关疾病及相关因素调查分析[J].中国临床保健杂志.2008,11(1):13-15.
    40. Jain M, Howe GR, Rohan T. Dietary assessment in epidemiology:comparison of a food frequency and a diet history questionnaire with a 7-day food record. Am J Epidemiol 1996; 143:953-956.
    41. 中国医学科学院.食物成分表(全国代表值)[M].北京:人民卫生出版社.1991:120-122.
    42. Yokoyama, A., Kato, H., Yokoyama, T., Tsujinaka, T., Muto, M., Omori, T.,Haneda, T., Kumagai, Y., Igaki, H., Yokoyama, M., Watanabe, H., Fukuda, H.,and Yoshimizu, H. Genetic polymorphisms of alcohol and aldehyde dehydrogenases and glutathione S-transferase M1 and drinking, smoking, and diet in Japanese men with esophageal squamous cell carcinoma. Carcinogenesis (Lond.).2002,23:1851-1859.
    43. Wu L, Lu C, Kuo F, Tsai S, Lee K, Kuo W, Cheng Y, Kao E, Yang M, Ko Y. Interaction between cigarette, alcohol and betel nut use on esophageal cancer risk in Taiwan. Eur Clin Invest.2006,36(4):236-241.
    44. Lee C, Lee J, Wu D, Hsu H, Kao E, Huang H, Wang T, Huang M, Wu M. Independent and combined effects of alcohol intake, tobacco smoking and betel quid chewing on the risk of esophageal cancer in Taiwan. Int J Cancer.2005,113(3):475-482.
    45.王俊,高玉堂,王学励,刘恩菊,张玉兰,袁剑敏.上海市男性饮酒与死亡关系的前瞻性研究.中国公共卫生[J].2005,21(3):299-302.
    46. Launoy G, Milan C, Faivre J, Pienkowski P, Milan C, Gignoux M. Alcohol, tobacco and oesphageal cancer:effects of th duration of consumption, mean intake and vurrent and former consumption. Br J Cancer.1997,75(9):1389-1396.
    47. La Vecchia C, Negri E. The role of alcohol in oesphageal cancer in non-smokers, and of tobacco in non-drinkers. Int Cancer.1989,43(5):784-785.
    48. Cheng K, Duffy S, Day N, Lam T, Chung S, Badrinath P. Stopping drinking and risk of oesophageal cancer. BMJ,1995,310(6987):1094-1097.
    49. Zambon P, Talamini R, La Vecchia C, Dal Maso L, Negri E, Tognazzo S, Simonato L, Franceschi S. Smoking, type of alcoholic beverage and squamous-cell oesophageal cancer in northern Italy. Int J Cancer.2000,86(1):144-149.
    50. Rolon P, Castellsague X, Benz M, Munoz N. Hot and cold mate drinking and esophageal cancer in Paraguay. Cancer Epidemiol Biomarkers Prev.1995,4(6):595-605.
    51. Brown L, Silverman D, Pottern L, Schoenberg J, Greenberg R, Swanson G, Liff J, Schwartz A, Hayes R, Blot W. Adenocarcinoma of the esophagus and esophagogastric junction in white men in the United States:alcohol, tobacco, and socioeconomic factors. Cancer Causes Control.1994,5(4):333-340.
    52. Vaughan T, Davis S, Kristal A, Thomas D. Obesity, alcohol and tobacco as risk factors for cancers of the esophagus and gastric cardia:adenocarcinoma versus squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev.1995,4(2):85-92.
    53. Gammon M, Schoenberg J, Ahsan H, Risch H, Vaughan T, Chow W, Rotterdam H, West A, Dubrow R, Stanford J, Mayne ST, Farrow DC, Niwa S, Blot WJ, Fraumeni JF. Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst.1997,89(17):1277-1284.
    54. Lagergren J, Bergstrom R, Lindgren A, Nyren O. The role of tobacco,snuff and alcohol use in the aetiology of cancer of the oesophagus and gastric cardia. Int J Cancer.2000,85(3):340-346.
    55. La Vecchia C, Franceschi S, Favero A, Talamini R, Negri E. Alcohol intake and cancer of the upper digestive tract. Pattern of risk in Italy is different from that in Denmark. BMJ.1999,318(7193):1289-1290.
    56. Blot W. Alcohol and cancer. Cancer Res.1992,52(7 suppl):2119s-2123s.
    57. Huang W, Winn D, Brown L, Gridley G, Bravo-Otero E, Diehl S, Fraumeni JJ, Hayes R. Alcohol concentration and risk of oral cancer in Pureto Rico. Am J Epidemiol. 2003,157(10):881-887.
    58. Harris E. Association of oral cancers with alcohol consumption:exploring mechanisms. J Natl Cancer Inst.1997,89(22):1656-1657.
    59. Blot W, Mclaughlin J, Fraumeni JF. Esophageal Cancer. In Cancer Epidemiology and Prevention Edited by:Schottenfeld D, Fraumeni J. New York:Oxford University Press. 2006:697-706.
    60. German J, Walzem R. The health benefits of wine. Annu Rev Nutr.2000,20:561-593.
    61. Chen K, Maines MD. Nitric oxide induces HO-1 via mitogen activited protein kinases ERK and P38.[J]. Cell Mol Biol.2000,46(3):609-615.
    62. Wagner M, Cadetg P, Ruf R, et al. Heme oxygenase-1 attenuates ischemia/reperfusion induced apoptosis and improves survival in rat renal allografts[J]. Kidney Int.2003,63: 1564-1573.
    63. Amon M, Menger MD, Vollmar B. Heme oxygenase and nitric oxide synthase mediate cooling-associated protection against TNF-alpha-induced microciraculatory dysfunction and apoptotic cell death[J]. FASEB J.2003,17:175-185.
    64. Tsuji M. H., Yanagawa T., Iwasa S., et al. Heme oxygenase-1 expression in oral squamous cell carcinoma as involved in lymphnode metastasis[J]. Cancer Lett.1999,138(1):53-59.
    65. 田德安,周晓黎。实验性肝硬化大鼠小肠血红素氧合酶的表达。世界华人消化杂志.[J]2004,12(2):351-354.
    66. Doi K, Akaike T, Fujii S, et al. Induction of heme oxygenase-1, nitric oxide and ischaemia in experimental solid tumors and implications for tumour growth[J]. Br J Cancer,1999,80:1945-1954.
    67. Was H, Cichon T, Smolarczyk R, Rudnicka D, Stopa M, Chevalier C, Leger JJ, Lackowska B, Grochot A, Bojkowska K, Ratajska A, Kieda C, Szala S, Dulak J, Jozkowicz A. Overexpression of heme oxygenase-1 in murine melanoma:increased proliferation and viability of tumor cells, decreased survival of mice. Am J Pathol. 2006; 169:2181-2198.
    68. Chen GG, Liu ZM, Vlantis AC, Tse GM, Leung BC, Van Hasselt CA. Heme oxygenase-1 protects against apoptosis by tumor necrosis factor-alpha and cycloheximide in papillary thyroid carcinoma cells. J Cell Biochem.2004,92:1246-1256.
    69. Fang J, Sawa T, Akaike T, Greish K, Maeda H. Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer.2004,109:1-8.
    70.马兆生,周士福,金琳芳,等。HIF-1α和Glut-1在乳腺癌中的表达及其与血管生成的关系[J].肿瘤防治研究,2008,35(8):569-571.
    71. Tamas P,Solti Z,Bauer P,et al. Mechanism of epidermal growth factor regulation of Vav2,a guanine nucleotide exchange factor for Rac[J]. J Biol Chem,2003,278 (2):5163-5171.
    72. Woolard J, Wang W.Y., Bevan H.S.,et al.VEGF165b, an Inhibitory Vascular Endothelial Growth Factor Splice Variant:Mechanism of Action, In vivo Effect On Angiogenesis and Endogenous Protein Expression[J].Cancer Res,2004,164(11): 7822-7835.
    73. Vareyra H, Rennel E S, Anthony R D, et al. Anti-angiogenic VEGF-A isoforms are endogenous to normal colon and can inhibit colorectal carcinoma growth in vivo[J]. Color-ectal Dis,2006,8 (Supp 12):53.
    74. Glass C A,Harper SJ,Bates D O.The anti-angiogenic VEGF isoform VEGF165b transiently increase hydraulic conductivity,probably through VEGF receptor 1 in vivo[J].Physiol,2006,572(1):243-257.
    75. Li Qi Fang, Dai Ai-Guo. Hypoxia inducible factor-1 alpha correlates the expression of heme oxygenase 1 gene in pulmonary arteries of rat with hypoxia-induced pulmonary hypertension[J]. Acta Biochimica et Biophysica Sinica.2004,36(2):133-140.
    76. Straume O, Akslen LA. Importance of vascular phenotype by basic fibroblast growth factor, and influence of the angiogenic factors basic fibroblast growth factor/fibroblast growth factor receptor-1 and ephrin-Al/EphA2 on melanoma progression. Am J Pathol.2002; 160:1009-1019.
    77. Casanova ML, Larcher F, Casanova B, et al. A critical role for ras-mediated, epidermal growth factor receptor-dependent angiogenesis in mouse skin carcinogen-esis[J]. Cancer Res,2002,62(12):3402-3407
    78. Swinson DE, Obyrne KJ. Interactions between hypoxia and epidermal growth factor receptor in non-small-cell lung cancer. Clin Lung Cancer.2006,7(4):250-256.
    79. Goon PK, Lip GY, Boos CJ, et al. Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer[J]. Neoplasia.2006,8:79-88.
    80. Hirai K, Sasahira T, Ohmori H, et al. Inhibition of heme oxygenase-1 by zinc protoporphyrin Ⅸ reduces tumor growth of LL/2 lung cancer in C57BL mice[J]. Int J Cancer.2007,120:500-505.
    81. Szabo IL., Kawanaka H, Jones M K., et al. Activation of hypoxia inducible factor-1 a in gastric mucosa in response to ethanol injury A trigger for angiogenesis[J]. Life Sciences2001.69:3035-3044.
    82. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409:860-921.
    83. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG,et al. The sequence of the human genome. Science 2001; 291:1304-1351.
    84. Chen YH, Lin SJ, Lin MW, Tsai HL, Kuo SS, Chen JW, et al. Microsatellite polymorphism in promoter of heme oxygenase gene is associated with susceptibility to coronary artery disease in type 2 diabetic patients. Hum Genet 2002; 111:1-8.
    85. Yamada N, Yamaya M, Okinaga S, Nakayama K, Shibahara S, Sasaki H. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet 2000; 66:187-195.
    86. Brydun A, Watari Y, Yamamoto Y, Okuhara K, Teragawa H, Kono F, et al. Reduced expression of heme oxygenase-1 in patients with coronary atherosclerosis. Hypertens Res 2007; 30:341-348.
    87. Hirai H, Kubo H, Yamaya M, Nakayama K, Numasaki M, Kobayashi S, et al. Microsatellite polymorphism in heme oxygenase-1 gene promoter is associated with susceptibility to oxidant-induced apoptosis in lymphoblastoid cell lines. Blood 2003; 102:1619-1624.
    88. Ding K, Zhou K, He F, Shen Y. LDA-a java-based linkage disequilibrium analyzer. Bioinformatics 2003; 19:2147-2148.
    89. Stephens M, Donnelly P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003; 73: 1162-1169.
    90. Kaneda H.;Ohno M.;Taguchi J.;et al.Heme oxygenase-1 gene promoter polymorphism is associated with coronary artery disease in Japanese patients with coronary risk factors.Arterioscler Thromb Vasc Biol.2002,22:1680-1685
    91. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 1999; 22:231-238.
    92. Layke JC, Lopez PP. Esophageal cancer:a review and update. Am Fam Physician. 2006,73(12):2187-2194
    93. Wang Y, Guo W, He Y, Chen ZF, Wen DQ et al. Association of MTHFR C677T and SHMT(1) C1420T with susceptibility to ESCC and GCA in a high incident region of Northern China. Cancer Causes Control.2007,18:143-152.
    1. Maines MD. The heme oxygenase system:a regulator of second messenger gases. Annu Rev Pharmacol Toxicol.1997;37:517-554.
    2. Graham BL, Mink JT, Cotton DJ. Dynamic measurements of CO diffusing capacity using discrete samples of alveolar gas. J Appl Physiol.1983;54:73-79.
    3. Snyder SH, Baranano DE. Heme oxygenase:a font with multiple messengers. Neuropsychopharmacology.2001;25:294-298.
    4. Maines MD. Heme oxygenase:function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J.1988;2:2557-2568.
    5. McCoubrey WK, Huang TJ, Maines MD. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem. 1997;247:725-732.
    6. Hayashi S, Omata Y, Sakamoto H, Higashimoto Y, Hara T, Sagara Y, Noguchi M. Characterization of rat heme oxygenase-3 gene:implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene.2004;336:241-250.
    7.任彩玲,张钧.血红素氧合酶-1在心血管及运动中的作用.中国康复医学杂志,2005;20(1):76-78
    8. Gonzalez-Michaca L, Farrugia G, Croatt AJ, Alam J, Nath KA. Heme:a determinant of life and death in renal tubular epithelial cells. Am J Physiol Renal Physiol. 2004;286:F370-F377.
    9. Goodman AI, Choudhury M, da Silva JL, Schwartzman ML,Abraham NG. Overexpression of the heme oxygenase gene in renal cell carcinoma. Proc Soc Exp Biol Med 1997; 214:54-61.
    10. Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikezaki K, Fukui M, Iwaki T, Kuwano M. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res.1999;5:1107-1113.
    11. Pae HO, Oh GS, Choi BM, Chae SC, Chung HT. Differential expression of heme oxygenase-1 in CD25-and CD25+subsets of human CD4+T cells. Biochem Biophys Res Commun.2003;306:701-705.
    12.王耀宏,赵金恒.血红素加氧酶的研究进展.环境与职业医学.2003;20:239-242
    13.Alam J,Cook JL.Transcriptional regulation of the heine oxygenase-1 gene via the stress response element pathway. Curr Pharm Res,2003;9:2499-2511.
    14. Elbirt KK, Bonkovsky H L. Heme oxygenase-1:Recent advances in understanding its regulation and role. Proc Assoc Am Physicians.1999;111(5):438-447.
    15.陈琰,刘素刚,关菘.血红素氧合酶1的结构和基因调控的研究进展[J].中国老年杂志.2004;24(1):75-76.
    16. Motterlini R, Foresti R, Bassi R, et al. Endothelial heme oxygenase-1 induction by hypoxia:modulation by inducible nitric-oxide synthase and S-nitrosothiols. J Biol Chem.2000;275:13613-13620.
    17. Shibahara S, Nakayama M, Kitamuro T, et al. Repression of heme oxygenase-1 expression as a defense strategy in humans. Exp Biol Med.2003;228:472-473.
    18. Morse D, Choi AM. Heme oxygenase-1:the "emerging molecule" has arrived. Am J Respir Cell Mol Biol.2002;27(1):8-16.
    19. Otterbein LE, Soares MP, Yamashita K, et al. Heme oxygenase-1:unleashing the protective properties of heme. Trends Immunol.2003:24(8):449-455
    20. Turkseven S, Kuger A, Mingene CJ, et al. Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes. Am J Physiol Heart Circ Pbysiol.2005;289(2):H701-H707.
    21. Wang X, Wang Y, Kim HP, et al. Carbon monoxide protects against hyperoxia-induced endothelial cell apoptosis by inhibiting reactive oxygen species formation. J Biol Chem.2007;282(3):1718-1726.
    22. Bronard S, Berbera P, Tobiasch E, et al. Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-κB to protect endothelial cells from tumor necrosis factor-a-mediated apoptosis. J Biol Chem,2002;277(20): 17950-17961.
    23. Schacter BA, Kurz P. Alterations in hepatic and splenic microsomal electron transport system components, drug metabolism, heme oxygenase activity, and cytochrome P-450 turnover in Murphy-Sturm lymphosarcoma-bearing rats. Cancer Res. 1982;42:3557-3564.
    24. Goodman AI, Choudhury M, Schwartzman ML,et al. Overexpression of the heme oxygenase gene in renal cell carcinoma. Proc Soc Exp Biol Med.1997;214:54-61.
    25. Doi K, Akaike T, Fujii S, et al. Induction of haem oxygenase-1, nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer.1999;80:1945-1954.
    26. Deininger MH, Meyermann R, Trautmann K,et al. Heme oxygenase (HO)-1 expressing macrophages/microglial cells accumulate during oligodendroglioma progression. Brain Res.2000;882:1-8.
    27. Torisu-Itakura H, Furue M, Kuwano M, et al. Co-expression of thymidine phosphorylase and heme oxygenase-1 in macrophages in human malignant vertical growth melanomas. Jpn J Cancer Res.2000;91:906-910.
    28. Maines MD, Abrahamsson PA. Expression of heme oxygenase-1 (HSP32) in human prostate:normal, hyperplastic, and tumor tissue distribution. Urology.1996;47:727-733.
    29. McAllister SC, Hansen SG, Ruhl RA,et al. Kaposi sarcoma-associated herpesvirus (KSHV) induces heme oxygenase-1 expression and activity in KSHV-infected endothelial cells. Blood.2004; 103:3465-3473.
    30. Mayerhofer M, Florian S, Krauth MT, et al. Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res. 2004;64:3148-3154.
    31. Marinissen MJ, Tanos T, Bolos M, et al. Inhibition of heme oxygenase-1 interferes with the transforming activity of the Kaposi sarcoma herpesvirus encoded G protein-coupled receptor. J Biol Chem.2006;281:11332-11346.
    32. Berberat PO, Dambrauskas Z, Gulbinas A,et al..Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res.2005; 11:3790-3798.
    33. Kocanova S, Buytaert E, Matroule JY,et al. Induction of heme-oxygenase 1 requires the p38(MAPK) and PI3K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy. Apoptosis.2007;12:731-741.
    34. Nowis D, Legat M, Grzela T,et al. Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene.2006;25:3365-3374.
    35. Deininger MH, Meyermann R, Trautmann K, et al. Heme oxygenase (HO)-1 expressing macrophages/microglial cells accumulate during oligodendroglioma progression. Brain Res.2000;8,82:1-8.
    36. Doi K, Akaike T, Fujii S, et al. Inuction of haem oxygenase-1, nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer.1999;80:1945-1954.
    37. Guyton K.Z, Kensler T.W. Oxidative mechanisms in carcinogenesis. Br. Med. Bull.1993;49:523-544.
    38. Feig D.I, Reid T.M, Loeb L.A. Reactive oxygen species in tumorigenesis, Cancer Res. 1994:54; 1890-1894.
    39. Genter M B,Burman D M,Viayakumar S, et al. Genomic analysis of alachlor-induced oncogenesis in rat olfactory mucosa. Physiol Genomics.2002;12:35245
    40. Caballero F,Meiss R, Gmeneza, et al. Immunohistochemical analysis of heme oxygenase-1 in preneoplastic and neoplastic lesions during chemical hepatocarcino-genesis. Int J Exp Pathol,2004,85:213-222
    41. Gong P, Hu B, Cederbaum AI. Diallyl sulfide induces heme oxygenase-1 through MAPK pathway. Arch Biochem Biophys.2004;432:252-260.
    42. Berberat PO, Dambrauskas Z, Gulbinas A, et al. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res.2005;11:3790-3798.
    43. Hirai K, Sasahira T, Ohmori H, et al. Inhibition of heme oxygenase-1 by zinc protoporphyrin Ⅸ reduces tumor growth of LL/2 lung cancer in C57BL mice. Int J Cancer.2007;120:500-505.
    44. Marinissen MJ, Tanos T, Bolos M, et al. Inhibition of heme oxygenase-1 interferes with the transforming activity of the Kaposi sarcoma herpesvirus encoded G protein-coupled receptor. J Biol Chem.2006;281:11332-11346.
    45. Was H, Cichon T, Smolarczyk R, et al. Overexpression of heme oxygenase-1 in murine melanoma:increased proliferation and viability of tumor cells, decreased survival of mice. Am J Pathol.2006; 169:2181-2198.
    46. Ball KL. p21:Structure and functions associated with cyclin-CDK binding. Prog Cell Cycle Res.1997;3:125-134.
    47. Karjalainen JM, Eskelinen MJ, Kellokoski JK, et al etc. p21(WAF1/CIP1) expression in stage Ⅰ cutaneous malignant melanoma:its relationship with p53, cell proliferation and survival. Br J Cancer.1999;79:895-902.
    48. Was H, Cichon T, Smolarczyk R, et al. Overexpression of heme oxygenase-1 in murine melanoma:increased proliferation and viability of tumor cells, decreased survival of mice. Am J Pathol.2006;169:2181-2198.
    49. Straume O, Akslen LA. Importance of vascular phenotype by basic fibroblast growth factor, and influence of the angiogenic factors basic fibroblast growth factor/fibroblast growth factor receptor-1 and ephrin-A1/EphA2 on melanoma progression. Am J Pathol.
    50. Hill M, Pereira V, Chauveau C, et al. Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation:mutual cross inhibition with indoleamine 2,3-dioxygenase. FASEB J.2005;19:1957-1968.
    51. Li Volti G, Sacerdoti D, Sangras B, et al. Carbon monoxide signaling in promoting angiogenesis in human microvessel endothelial cells. Antioxid Redox Signal. 2005;7:704-710.
    52. Iwasa H, Han J, Ishikawa F. Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells.2003;8:131-144.
    53. Kim HP, Wang X, Nakao A, et al. Caveolin-1 expression by means of p38beta mitogen-activated protein kinase mediates the antiproliferative effect of carbon monoxide. Proc Natl Acad Sci USA.2005; 102:11319-11324.
    54. Ollinger R, Bilban M, Erat A, et al. Bilirubin:a natural inhibitor of vascular smooth muscle cell proliferation. Circulation. 2005; 112:1030-1039.
    55. Iwasa H, Han J, Ishikawa F. Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells.2003;8:131-144.
    56. Cisowski J, Loboda A, Jozkowicz A, et al. Role of heme oxygenase-1 in hydrogen peroxide-induced VEGF synthesis:effect of HO-1 knockout. Biochem Biophys Res Commun.2005;326:670-676.
    57. Jozkowicz A, Huk I, Nigisch A, et al. Heme oxygenase and angiogenic activity of endothelial cells:stimulation by carbon monoxide and inhibition by tin protoporphyrin-IX. Antioxid Redox Signal.2003;5:155-162.
    58. Duckers HJ, Boehm M, True AL, et al. Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med.2001;7:693-698.
    59. Jazwa A, Loboda A, Golda S, et al. Effect of heme and heme oxygenase-1 on vascular endothelial growth factor synthesis and angiogenic potency of human keratinocytes. Free Radic Biol Med.2006;40:1250-1263.
    60. Cha HJ, Jeong MJ, Kleinman HK. Role of thymosin beta4 in tumor metastasis and angiogenesis. J Natl Cancer Inst.2003;95:1674-1680.
    61. Sosne G, Chan CC, Thai K, et al. Thymosin beta 4 promotes corneal wound healing and modulates inflammatory mediators in vivo. Exp Eye Res.2001;72:605-608.
    62. Simpson MA. Concurrent expression of hyaluronan biosynthetic and processing enzymes promotes growth and vascularization of prostate tumors in mice. Am J Pathol.2006; 169:247-257.
    63. Aghi M, Cohen KS, Klein RJ, et al. Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenviroment influences their differentiated phenotypes. Cancer Res.2006;66:9054-9064.
    64. Deshane J, Chen S, Caballero S, et al. Stromal cell-derived factor-1 promotes angiogenesis via a heme oxygenase-1 dependent mechanism. J Exp Med. 2007;204:605-618.
    65. Sunamura M, Duda DG, Ghattas MH, et al. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer. Angiogenesis.2003;6:15-24.
    66. Vigneswaran N, Wu J, Sacks P, et al. Microarray gene expression profiling of cell lines from primary and metastatic tongue squamous cell carcinoma:possible insights from emerging technology. J Oral Pathol Med.2005;34:77-86.
    67. Was H, Cichon T, Smolarczyk R, et al. Overexpression of heme oxygenase-1 in murine melanoma:increased proliferation and viability of tumor cells, decreased survival of mice. Am J Pathol.2006;169:2181-2198.
    68. Kobayashi T, Okada F, Fujii N, et al. Hosokawa M. Thymosin-beta4 regulates motility and metastasis of malignant mouse fibrosarcoma cells. Am J Pathol. 2002;160:869-876.
    69. Wang WS, Chen PM, Hsiao HL, et al. Overexpression of the thymosin beta-4 gene is associated with increased invasion of SW480 colon carcinoma cells and the distant metastasis of human colorectal carcinoma. Oncogene.2004;23:6666-6671.
    70. Franzmann EJ, Schroeder GL, Goodwin WJ, et al. Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors. Int J Cancer. 2003;106:438-445.
    71. Lokeshwar VB, Rubinowicz D, Schroeder GL, et al. Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer. J Biol Chem.2001;276:11922-11932.
    72. Lokeshwar VB, Young MJ, Goudarzi GI, et al. dentification of bladder tumor-derived hyaluronidase:its similarity to HYAL1. Cancer Res.1999;59:4464-4470.
    73. Ishikawa T, Yoshida N, Higashihara H, et al. Different effects of constitutive nitric oxide synthase and heme oxygenase on pulmonary or liver metastasis of colon cancer in mice. Clin Exp Metastasis.2003;20:445-450.
    74. Ferris C, Jaffrey S, Sawa A, et al. Haem oxygenase-1 prevents cell death by regulating cellular iron[J]. Nal cell Biol,1999;1:152-157.
    75. Nguaggiato P, Gonzalez-michaca L, Croatta J, et al. Cellular overexpression of heme oxygenase-1 up-regulates p21 and confers resistance to apoptosis[J].Kidney Int,2001;60:2181-2191.
    76. Okamoto I, Krogler J, Endler G, et al. A microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with risk for melanoma. Int J Cancer. 2006;119:1312-1315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700