高表面活性磷灰石材料应用于吸附草酸和硝基苯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷灰石是分布极广的钙磷酸盐矿物,同时也是脊椎动物的骨、牙等硬组织的主要无机组分。由于具有特殊的晶体化学特点,天然磷灰石可以作为一种环境功能矿物材料用于处理含重金属和氟的废水。而人工合成的纳米羟基磷灰石(n-HAp)粉体具有较高的表面活性和良好的吸附性能,作为一种新型的、环境友好和高效的吸附剂,被广泛地应用于生物蛋白质的吸附与分离、色谱柱、基因和药物载体、含重金属污染土壤和废水的吸附分离等领域。
     明胶化学成分与胶原相似、具有良好的物理化学性质,供应充足、价格便宜。很多学者利用明胶代替胶原来合成仿生骨。明胶作为一种蛋白质,含有大量的羟基,羰基,亚胺基等官能团,明胶与羟基磷灰石(HAp)复合可以有效地增强HAp与聚合物界面的化学键。从而,可以大大改善HAp的表面性质。
     磷灰石是骨骼的主要无机成分。骨骼中的磷灰石结晶程度差,并且以碳磷灰石形态存在,导致它比磷矿石中的磷灰石更易溶解。因此有人建议可以将骨粉作为一种潜在的合适的磷源用来固定重金属。而且作为一种修复材料它的溶解性很好、利用率高、价格便宜。但将这几种材料应用于吸附分离有机物的研究还罕见报道。
     本文试图将n-HAp用于吸附分离水中草酸,消除反相液相色谱测定过程中硝酸的干扰;将n-HAp及其复合材料用于吸附水中硝基苯,对其去除硝基苯性能进行研究,分析其对硝基苯的吸附规律。具体研究内容及结果如下:
     (1)以廉价的配合物前躯体热分解法制备了n-HAp,利用X射线衍射(XRD)和红外光谱(IR)对其结构进行了表征。结果表明,该方法制备的n-HAp为纯相态物质、粒度均匀。
     (2)将n-HAp用于吸附分离草酸和硝酸。结果表明,硝酸根离子对RP-HPLC测定草酸的干扰可以通过n-HAp固相萃取而消除。草酸在初始pH 2.5,反应时间60min条件下被n-HAp完全吸附。然后用0.1mol/L(NH4)2HPO4溶液将吸附在n-HAp表面的草酸洗脱下来。草酸的回收率94.8%—99.3%。同时,通过分析FT-IR和XRD的试验结果,n-HAp吸附草酸的机理也得到证实,草酸根与钙离子生成沉淀,从而达到吸附草酸的目的。
     (3)采用共沉淀法合成HAp-GEL复合物。利用X射线衍射(XRD)、透射电镜(TEM)和红外光谱(IR)对其结构进行了表征。
     (4)将n-HAp、HAp-GEL复合物、骨粉应用于吸附硝基苯。结果表明:硝基苯的吸附速率很快。吸附等温线可以用Langmuir和Freundlich方程很好地表现,但Freundlich方程更适合。硝基苯的吸附量随着温度升高、pH增加、离子强度提高、Pb的浓度的增加,或者腐殖酸的浓度的增加而降低。另外,有机溶剂甲醇和丙酮存在也导致硝基苯吸附的降低。以甲醇为洗脱剂可以很好地回收三种吸附剂。热力学参数显示硝基苯的吸附过程是一个自发的、放热的物理过程。吸附过程可能主要因为疏水作用。
     (5)三种材料吸附硝基苯的能力依次为:HAp-GEL>骨粉>n-HAp.
Apatite is the most widespread calcium phosphate mineral, and is also the main inorganic component of vertebrate bones, teeth and other hard tissue. Due to the particular crystal-chemical characteristics, mineral apatites can be used as excellent environmental function materials for the treatment of heavy-metal and F-in wastewater. However, the synthetic nano-hydroxyapatite (n-HAp) possesses excellent surface activity and high adsorption ability. As a new and environment friendly adsorbent, n-HAp has been widely used as carriers for drugs and genes, adsorbents for chromatography to separate proteins, and removal of heavy metal ions to recover the contaminated soils, wastewater, etc.
     Gelatin and collagen are both in very similar chemical composition. Gelatin shows well-defined physical and chemical properties, and it is adequate supply and very cheap, many researchers have used gelatin instead of collagen to synthesize biomimetic bone. Gelatin as a protein, containing a large number of hydroxyl, carbonyl, imino functional groups, such as, HAp/gelatin composite can be effectively enhanced HAp interface chemical bond with the polymer. Thus, it can greatly improve the surface properties of HAp.
     A form of apatite is the principal mineral constituent of bone. Apatite in bone is poorly crystalline and carbonated and its carbonate content makes it more soluble than rock apatite. It suggested that bone meal might prove to be a potentially suitable source of phosphate for metal fixation due to its intermediate solubility; it would also provide a cost-effective remediation material. But studies of the adsorption of organic pollution in water by these material rarely reported.
     This paper attempts to use solid-phase extraction with n-HAp for solving interference from nitrate ions on oxalic acid in reversed-phase high performance liquid chromatography (RP-HPLC); use n-HAp and its composites to removal of nitrobenzene from aqueous solution. Specific studies are as follows:
     (1) Nano-sized HAp was synthesized by the thermal decomposition of complex precursors. XRD, IR were used to characterize the n-HAp. Results showed that the smples were pure HAp. The n-HAp was sphere-like and weakly aggregated.
     (2) The interference from nitrate ions on oxalic acid in RP-HPLC is avoided by solid-phase extraction with nanosized hydroxyapatite. Nitrate ions are eliminated as they cannot be adsorbed by hydroxyapatite, by contrast, oxalic acid can be adsorbed completely within 60 minutes at initial pH 2.5, and then the oxalic acid retained is eluted from nanosized hydroxyapatite with 0.1 mol/L (NH4)2HPO4. Recoveries for oxalic acid are from 94.8%to 99.3%. Meanwhile, the adsorption mechanism of oxalic acid on nanosized hydroxyapatite is proved to be the coordination between oxalate and calcium, by the results of FT-IR and XRD analyses.
     (3) The HAp-GEL composite was prepared by precipitation method. XRD, TEM, IR were used to characterize the HAp-GEL composite.
     (4) The potential of the application of n-HAp, HAp-GEL composite, bone meal as adsorbents to remove nitrobenzene from waters was evaluated. Results show that nitrobenzene adsorption was found to be rapid. The adsorption isotherms were well described by the Langmuir and the Freundlich models, but the latter being found to provide the better fit with the experimental data. All parameters that might influence the adsorption process were assessed:the amount of nitrobenzene adsorbed decreased with an increase of pH, temperature, ionic strength, lead, or HA. The desorption process showed a reversibility of nitrobenzene adsorption onto adsorbents. The presence of organic solvent, resulted in a decrease in nitrobenzene adsorption. The recovering experiment indicates that the spent adsorbents could be satisfactorily regenerated by solvent regeneration. The thermodynamic parameters suggests that the adsorption of nitrobenzene onto adsorbents was physisorption, spontaneous and exothermic in nature. Therefore, the adsorption might be primarily brought about by hydrophobic interaction between nitrobenzene and adsorbents surface.
     (5) Adsorption capacity of nitrobenzene on the three materials followed by: HAp-GEL> bone meal> n-HAp.
引文
[1]Fan S L, and Sun S J. Thermodynamics and mechanism studies for adsorption of phenols from aqueous solution onto activated carbon. Acta Chimica Sinica,1995,53:526-531
    [2]夏友谊,万军民.新型化学吸附纤维制备及其对Cu2+吸附性能.水处理技术,2006,132(1):33-36
    [3]黄韵,马晓燕,袁莉.改性累托石吸附水溶液中苯酚的研究.离子交换与吸附,2004,20(5):464-469
    [4]Vega E D, Pedregosa J C, Narda G E, and Morando P J. Remove of oxovanadium (IV) from aqueous solution by using commercial crystalline calcium hydroxyapatite. Water Research,2003, 37:1776-1782
    [5]Maurer M, and Boller M. Modelling of phosphorus precipitationg in wastewater treatment plants with enhanced biological phoshorus removal. Water Science and Technology,1999,39(1): 147-163
    [6]Battistoni P, Pavan P, Prisciandaro M, and Cecchi F. Struite cryetallization:a feasible and reliable way to fix phosphorus in anaerobic superanatants. Water Research,2000,34(11):3033-3041
    [7]Montastruc L, Azzaro-Pantel C, Biscans B, Cabassud M, and Domenech S. A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor. Chemical Engineering Journal,2003,94:41-50
    [8]Johansson L, and Gustafsson J P. Phosphate remove using blast furnace slags and opoka-mechisms. Water Research,2000,34(1):259-265
    [9]Jang H, and Kang S H. Phosphorus removal using cow bone in hydroxyapatite crystallization. Water Research,2002,36:1324-1330
    [10]Masmoudi S, Ben Amar R, Larbot A, El Feki H, Ben Salah A, and Cot L. Elaboration of inorganic microfiltration membranes with hydroxyapatite applied to the treatment of waatewater from see product industry. Journal of Membrane Science,2005,247:1-9
    [11]de-Bashan L E, and Bashan Y. Recent advances in removing phosphorus from wastewater and its future use as fertilize(1997-2003). Water Research,2004,38:4222-4246
    [12]钟康年,魏以和,罗惠华.改性磷灰石的造粒和去除重金属离子.中国矿业,2001,10(6):18-21
    [13]Lower S K, Maurice P A, Traina S J, and Carlson E H. Aqueous Pb sorption by hydroxylapatite: Application of atomic force microscopy to dissolution, nucleation, and growth studies. American Mineralogist,1998,83:147-158
    [14]周泳,洪汉烈,边秋娟,殷莉.磷灰石矿物表面化学特性的量子化学计算.中国地质大学学报,2006,2:171-174
    [15]Domer-Reisel A, Klemm V, Irmer G, Muller E. Nano-and microstructure of short fibre reinforced and unreinforced hydroxyapatite. Biomedizinische Technik. Biomedical engineering, 2002,47(1):397-400
    [16]徐国强,李玉平.国际羟基磷灰石纤维的新颖制备方法综述.应用技术研究,2003,7:19-20
    [17]潘晓光,彭贤柱,李标荣.羟基磷灰石陶瓷湿显元件.华中工学院学报,1987,15(3):13-18
    [18]Silva C C, Pinheiro A G, Miranda M A R, Goes J C, and Sombra A S B. Structural properties of hydroxyapatite obtained by mechanosynthesis. Solid State Sciences,2003,5(4):553-558
    [19]Riman R E, Suchanek W L, Byrappa K, Chen C W, Shuk P, and Oakes C S. Solution synthesis of hydroxyapatite designer particulates. Solid State Ionics,2002,151(1-4):393-402
    [20]冯杰,曹洁明,邓少高.纳米结构羟基磷灰石的微波固相合成新方法.无机化学学报,2005,21(6):801-804
    [21]Tas A C. Synthesis of biomimetic Ca-hydroxyapatite powder at 37 ℃ in synthetic body fluid. Biomaterials,2000,21(14):1492-1438
    [22]吕奎龙,孟祥才,李星逸.人工合成纳米羟基磷灰石的研究.佳木斯大学学报,2002,1:1-4
    [23]Peltola T, Jokinen M, Veittola S, Simola J, and Yli-Urpo A. In vitro bioactivital and structural features of mildly heat-treated sol-gel-derived silica fibers. Journal of Biomedical Materials Research Part A,2001,54(4):579-590
    [24]杨晓庆,李玉宝,魏杰,王学江,左奕.医用羟基磷灰石/二氧化钛纳米复合材料的制备及性能研究.中国现代医学杂志,2003,13(5):26-28
    [25]Li Y B, Wei J, Klein C P A T, et al. Preparation and characterization of nanograde osteoapatite like rod crystals. Journal of Material Science:Material in Medicine,1994,5:252-257
    [26]Min K S, and Choi J W. Synthyesis of ultra fine hydroxyapatite powder by hydrothermal reaction. Yoop Hakhoechi,1992,29(12):997-1003
    [27]Bezzi G, Celotti G, Landi E, La Torretta T M G, Sopyanc I, and Tampieriet A. A novel sol-gel technique for hydroxyapatite preparation. Materials Chemistry and Physical,2003,78(3): 816-824
    [28]袁媛,刘昌胜.溶胶一凝胶法制备纳米羟基磷灰石.中国医学科学院学报,2002,24(2):129-133
    [29]Lim G K, Wang J, Ng S C, Chew C H, and Gan L M. Processing of hydroxyapatite via microemulsion and emulsion routes. Biomaterials,1997,18:1433-1439
    [30]Lim G K, Wang J, Ng S C, and Gan L M. Fromation of Nanocrystalline Hydroxyapatite in Nonionic Surfactant Emulsions. Langmuir,1999,15(22):7472-7477
    [31]Lim G K, Wang J, Ng S C, and Gan L M. Nnosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant. Journal of Materials Chemistry,1999,9:1635-1639
    [32]Koumoulidisa G C, Katsoulidisa A P, Ladavosa A K, Pomonisa P J, Trapalisb C C, Sdoukosa A T, and Vaimakis T C. Preparation of hydroxyapatite via microemulsion route. Journal of Colloid and Interface Science,2003,259:254-260
    [33]Lim G K, Wang J, Ng S C, and Gan L M. Processing of fine hydroxyapaptite powders via an inverse microemulsion route. Materials Letters,1996,28(4-6):431-436
    [34]任卫,李世普,王友法,曹献英,陈晓明.超细羟基磷灰石颗粒的反相微乳液合成.硅酸盐通报,2002,21(6):27-31
    [35]Slosarczyk A.羟基磷灰石牙膏.日用化学工业译丛,1992,2:43-46
    [36]王菊如,张超武,李华.生物活性羟基磷灰石牙膏的研制.齐齐哈尔轻工学院学报,1996,2:26-28
    [37]Miyaji F, Kono Y, and Suyama Y. Formation and structure of zinc-substituted calcium hydroxyapatite. Material Research Bulletin,2005,40:209-220
    [38]Yang L, Wei W Z, Gao X H, Xia J J, and Tao H. A new antibody immobilization strategy based on electrodeposition of nanometer-sized hydroxyapatite for label-free capacitive immunosensor. Talanta,2005,68:40-46
    [39]Fujii E, Ohkubo M, Tsuru K, Hayakawa S, Osaka A, Kawabata K, Bonhomme C, and Babonneau F. Selective protein adsorption property and characterization of nano-crystalline zinc-containing hydroxyapatite. Acta Biomaterialia,2006,2:69-74
    [40]张士成,李世普,陈芳.羟基磷灰石超微粉对癌细胞作用的初步研究.武汉工业大学学报,1996,18(1):5-8
    [41]Hideki A, and Masataka O. Effect of Adracin-adsorbing HAP-sol on Ca-9 cell growth. Reports of Institute for Medicaland Dental Engineering,1993,27:39-44
    [42]Ijntema K, Heuvelsl W J, and Dirix C A. Hydroxyapatite microcarriers for biocontrolled release of protein drugs. International Journal of Pharmacy,1994,112(3):215-224
    [43]彭继荣,李珍.羟基磷灰石的应用研究进展.中国非金属矿工业导刊,2005,2:12-14
    [44]Suzuki T, Hatsushika T, and Hayakawa Y. Synthetic hydroxyapatites employed as inorganic cation exchangers. Journal of the Chemical Society Faraday Transaction,1981,77:1059-1062
    [45]潘家永,林开利,成荣明,陈奕卫,于华荣.纳米羟基磷灰石粉体的制备及其对苯酚吸附的研究.水处理技术,2007,33(1):20-22
    [46]李志宏,武继民,李瑞欣,许媛媛,张西正.纳米羟基磷灰石及其复合材料的研究进展.医疗卫生装备,2007,28(4):30-31
    [47]Kikuchi M, Itoh S, Ichinose S, Shinomiya K, and Tanaka J. Self-orgnization mencha-nism in a bone-like hydroxyapatite/collogen nanocomposite synthesized in vitro and its biological reation in vivo. Biomaterials,2001,22(13):1705-1711
    [48]Zhao F, Yin Y J, Lu W W, Leong J C, Zhang W Y, Zhang J Y, Zhang M F, and Yao K D. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials,2002,23(15): 3227-3234
    [49]Kim H W, Knowles J C, and Kim H E. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. Journal of Biomedical Materials Research Part A,2005,72(1):136-145
    [50]Seitz H, Rieder W, Irsen S, Leukers B, and Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2005,74(2):782-788
    [51]Lam C X F, Mo X M, Teoh S H, and Hutmacher D W. Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering:C,2002,20(1-2):49-56
    [52]Chua C K, Leong K F, Tan K H, Wiria F E, and Cheah C M. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. Journal of Materials Science:Materials in Medicine,2004,15(10):1113-1121
    [53]Williams J M, Adewunmi A, Schek R M, Flanagan C L, Krebsbach P H, Feinberg S E, Hollister S J, and Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials,2005,26(23):4817-4827
    [54]Tan K H, Chua C K, Leong K F, Cheah C M, Cheeang P, Abu Bakar M S, and Cha S W. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials,2003,24(18):3115-3123
    [55]Lickorish D, Ramshaw J A M, Werkmeister J A, Glattauer V, Rolfe Howlett C. Collagen-hydroxyapatite composite prepared by biomimetic process. Journal of Biomedical Materials Research Part A,2004,68A(1):19-27
    [56]Tanahashi M, Yao T, Minoda M, Miyamoto T, Nakamura T, and Yamamura T. Apatite coated on organic polymers by biomimetic process:Improvement in its adhesion to substrate by glow-discharge treatment. Journal of Biomedical Materials Research,1995,29(2):349-357
    [57]Kong L J, Gao Y, Cao W L, Gong Y D, Zhao N M, and Zhang X F. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. Journal of Biomedical Materials Research Part A,2005,75A(2):275-282
    [58]Chen F, Wang Z C, and Lin C J. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Materials Letters,2002,57(4):858-861
    [59]Sairam Sundaram C, Viswanathan N, and Meenakshi S. Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite. Bioresource Technology,2008,99: 8226-8230
    [60]Jang S H, Mina B G, Jeong Y G, Lyoo W S, and Lee S C. Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams. Journal of Hazardous Materials,2008,152: 1285-1292
    [61]Dormont D. Prions, BSE and food. International Journal of Food Microbiology,2002,78:181-189
    [62]Syndicat des industries francaises de co-produits animaux (animals byproducts french industries syndicate), www.sifco.fr.
    [63]European Regulation (EC) NO.1774/2002 of the European Parliament and of the Council of 3 October 2002 laying down health rules concerning animal by-products not intended for human consumption, Official Journal of European Union,2002,45:1-95
    [64]Mavropoulos E, Rossi A M, and Costa A M. Studies on the mechanisms of lead immobilization by hydroxyapatite. Environmental Science & Technology,2002,36(7):1625-1629
    [65]Hodson M E, Valsami-Jones E, and Cotter-Howells J D. Bonemeal additions as a remediation treatment formetal contaminated soil. Environmental Science & Technology,2000,34(16): 3501-3507
    [66]Sneddon I R, Orueetxebarria M, Hodson M E., Schofield P F, and Valsami-Jones E. Use of bone meal amendments to immobilise Pb, Zn and Cd in soil:A leaching column study. Environmental Pollution,2006,144(3):1-10
    [67]Sneddon I R, Garelick H, and Valsami-Jones E. An investigation into arsenic(V) removal from aqueous solutions by hydroxylapatite and bonechar. Mineralogical Magazine,2005,69:769-780
    [68]Rivasseau C, Boisson A M, Mongelard G, Couram G, Bastien O, and Bligny R. Rapid analysis of organic acids in plant extracts by capillary electrophoresis with indirect UV detection Directed metabolic analyses during metal stress. Journal of Chromatography A,2006,1129(6):283-290
    [69]Wang M, Qu F, Shan X Q, and Lin J M. Development and optimization of a method for the analysis of low-molecular-mass organic acids in plants by capillary electrophoresis with indirect UV detection. Journal of Chromatography A,2003,989(2):285-292
    [70]Tatar E, Mihucz V G, Kmethy B, Zaray G, and Fodord F. Determination of organic acids and their role in nickel transport within cucumber plants. Microchemical Journal,2000,67(1-3):73-81
    [71]Ma J F, Zheng S J, Matsumoto H, and Hiradate S. Detoxifying aluminium with buckwheat. Nature, 1997,390(6660):569-570
    [72]Ma J F, Ryan P R, and Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Sciences,2001,6(6):273-278
    [73]Ma Z, and Miyasaka S C. Oxalate Exudation by Taro in Response to Al. Plant Physiology,1998, 118(3):861-865
    [74]Ma J F, Hiradate S, and Matsumoto H. High aluminum resistance in buckwheat:Ⅱ. Oxalic acid detoxifies aluminum internally. Plant Physiology,1998,117(3),753-759
    [75]Delhaize E, and Ryan P R. Aluminum toxicity and tolerance in plants. Plant Physiology,1995, 107(2):315-321
    [76]Li X F, Ma J F, and Matsumoto H. Pattern of aluminum-induced secretion of organic acids differs between rye and wheat. Plant Physiology,2000,123(4):1537-1543
    [77]Krishnamurti G S R, Cieslinski G, Huang P M, and Van Rees K C J. Kinetics of cadmium release from soils as influenced by organic acids:implication in cadmium availability. Journal of Environmental Quality,1997,26(1):271-277
    [78]Cieslinski G, Van Rees K C J, Szmigielska A M, Krishnamurti G S R, and Huang P M. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant and Soil,1998,203(1):109-117
    [79]Senden M H M N, van der Meer A J G M, Verburg T G, and Wolterbeek H Th. Citric acid in tomato plant roots and its effect on cadmium uptake and distribution. Plant and Soil,1995,171(2): 333-339
    [80]Huang J W, Michael J, Blaylock, Kapunik Y, and Ensley B. Phytoremediation of uranium-contaminated soils:role of organic acids in triggering uranium hyperaccumulation in plants. Environmental Science & Technology,1998,32(13):2004-2008
    [81]Wei Z G, Wong J W, Hong F S, Zhao H Y, Li H X, and Hu F. Determination of inorganic and organic anions in xylem saps of two contrasting oilseed rape (Brassica juncea L.) varieties:roles of anions in long-distance transport of cadmium. Microchemical Journal,2007,86(1):53-59
    [82]Lian H Z, Mao L, Ye X L, and Miao J. Simultaneous determination of oxalic, fumaric, maleic and succinic acids in tartaric and malic acids for pharmaceutical use by ion-suppression reversed-phase high performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 1999,19(3-4):621-625
    [83]Rodrigues C I, Martaa L, Maiaa R, Mirandab M, Ribeirinhob M, and Maguas C. Application of solid-phase extraction to brewed coffee caffeine and organic acid determination by UV/HPLC. Journal of Food Composition and Analysis,2007,20(5):440-448
    [84]Ding J H, Wang X X, Zhang T L, Li Q M, and Luo M B. Optimization of RP-HPLC Analysis of Low Molecular Weight Organic Acids in Soil. Journal of Liquid Chromatography & Related Technologies,2006,29(1):99-112
    [85]Cunha S C, Fernandes J O, Ferreira I M P L V O. HPLC/UV determination of organic acids in fruit juices and nectars. European Food Research Technology,2002,214(1):67-71
    [86]Cao X, Yin M, and Wang X. Elimination of the spectral interference from polyatomic ions with rare earth elements in inductively coupled plasma mass spectrometry by combining algebraic correction with chromatographic separation. Spectrochimica Acta, Part B,2001,56(4):431-441.
    [87]Narina I, Soylak M, Elcib L, and Doganc M. Determination of trace metal ions by AAS in natural water samples after preconcentration of pyrocatechol violet complexes on an activated carbon column. Talanta,2000,52(6):1041-1046
    [88]Matoso E, Kubota L T, and Cadore S. Use of silica gel chemically modified with zirconium phosphate for preconcentration and determination of lead and copper by flame atomic absorption spectrometry. Talanta,2003,60(6):1105-1111
    [89]Hiraide M, Iwasawa J, and Kawaguchi H. Collection of trace heavy metals complexed with ammonium pyrrolidinedithiocarbamate on surfactant-coated alumina sorbents. Talanta,1997,44(2): 231-237
    [90]Vassileva E, Proinova I, and Hadjiivanov K. Solid-phase extraction of heavy metal ions on a high surface area titanium dioxide (anatase). The Analyst,1996,121:607-612
    [91]Long M, Hong F S, Li W, Li F C, Zhao H Y, Lv Y Q, Li H X, Hu F, Sun L D, Yan C H, and Wei Z G. Size-dependent microstructure and europium site preference influence fluorescent properties of Eu3+-doped Ca10(PO4)6(OH)2 nanocrystal. Journal of Luminescence,2008,128(3):428-436
    [92]Liu J B, Li K W, Wang H, Zhu M K, and Yan H. Rapid formation of hydroxyapatite nanostructures by microwave irradiation. Chemical Physics Letters,2004,396(4-6):429-432
    [93]Gasser M S. Adsorption and pre-concentration ofGd(III) andU(VI) fromaqueous solution using artificial adsorbents. Separation and Purification Technology,2007,53(1):81-88
    [94]Han J K, Song H Y, Saito F, and Lee B T. Synthesis of high purity nanosized hydroxyapatite powder by microwave-hydrothermal method. Materials Chemistry and Physics,2006,99(2-3): 235-239
    [95]Wang A L, Yin H B, Liu D, Wu H X, Ren M, Jiang T S, Cheng X N, and Xu Y Q. Size-controlled synthesis of hydroxyapatite nanorods in the presence of organic modifiers. Materials Letters,2007, 61(10):2084-2088
    [96]Sonoda K, Furuzono T, Walsh D, Sato K, and Tanaka. Influence of emulsion on crystal growth of hydroxyapatite. Solid State Ionics,2002,151(1-4):321-327
    [97]Wang Y J, Chen K W, Zhang S H, and Wang X D. Surfactant-assisted synthesis of hydroxyapatite particles. Materials Letters,2006,60(27):3227-3231
    [98]Bogdanoviciene I, Beganskiene A, Tonsuaadu K, Glaser J, Jurgen Meyer H, and Kareiva A. Calcium hydroxyapatite, Ca10(P04)6(OH)2 ceramics prepared by aqueous sol-gel processing. Materials Research Bulletin,2006,41(9):1754-1762
    [99]Smiciklas I, Onjia A, and Raicevic S. Experimental design approach in the synthesis of hydroxyapatite by neutralization method. Separation and Purification Technology,2005,44(2): 97-102
    [100]Zakeri M, Yazdani-Rad R, Enayati M H, and Rahimipour M R. Synthesis of nanocrystalline MoSi2 by mechanical alloying. Journal of Alloys and Compounds,2005,403(1-2):258-291
    [101]Maurice-Estepa L, Levillain P, Lacour B, and Daudon M. Advantage of zero-crossing-point first-derivative spectrophotometry for the quantification of calcium oxalate crystalline phases by infrared spectrophotometry. Clinica Chimica Acta,2000,298(1-2):1-1
    [102]徐寿昌.有机化学.北京:高等教育出版社.1993:254-256,365-367,375-377
    [103]Hankenson K, and Schaeffer D J. Microtox assay of Trinitrotoluene Diaminonitrotoluene and Dinitromethylaniline Mixtures. Bulletin of Environmental Contamination and Toxicology,1991, 46(4):550-553
    [104]Harter D R. The use and importance of nitroaromatic chemicals in thechemical industry. Toxiciy of nitroaromatic compounds. Washington, DC:Hemisphere Publishing,1985:11-13
    [105]Howard P H. Handbook of Environmental Fate and Exposure Data Fororganic Chemicals. Chelsea Lewis Publisher,2003:421-430
    [106]Boyd S A, Sheng G Y, Teppen B J, and Johnston C T. Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays. Environmental Science & Technology,2001,35(21): 4227-4234
    [107]Haigler B E, and Spain J C. Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways. Applied and Environment Microbiology,1991,57(11):3156-3162
    [108]Richards D. Benzene faces rising surplus. Chem Market Report,1996,249:7-12
    [109]王惠娟,李秋筠,府兆程.松花江污染同江段水中硝基苯、苯分析.黑龙江环境通报,2006,30(1):21-22
    [110]陈忠林,马军,李圭白,沈吉敏,纪峰,张涛,梁恒,陈杰,齐飞,任芝军.受硝基苯污染松花江原水的应急处理工艺研究.中国给水排水,2006,22(13):1-5
    [111]王连生.环境健康化学.北京科学出版社,1994:61-63
    [112]赵汪,傅大放,曾苏.硝基芳香烃废水处理技术研究进展.环境污染治理技术与设备,2002,3(5):31-35
    [113]朗咸明,吴昊,孟菊英.炉渣吸附法处理硝基废水的研究.环境保护科学,2001,27(3):18-19
    [114]徐仲艳,三晓蓉.改性土壤对模拟含硝基苯废水的吸附.环境化学,2002,21(3):236-239
    [115]徐中其,陆晓华.活性炭纤维在硝基苯水溶液中的吸附和再生.华中理工大学学报,2000,28(7):102-104
    [116]孙家寿,张泽强,沈静,刘羽,鲍世聪,孙良全.累托石层孔材料在废水处理中的应用.武汉化工学院学报,2003,25(1):43-45
    [117]张全兴,王勇.树脂吸附法处理硝基苯和硝基氛苯生产废水的研究.化工环保,1997,17(6):323-326
    [118]毛连山,赵泉珍,林忠祥.硝基苯废水的治理.环境污染与防治,2000,22(6):22-24
    [119]何占航,张哲,肖芳.剩余活性污泥对硝基酚类有机物吸附性能的研究.环境保护,2002,6:34-35
    [120]Smiciklas I, Dimovic S, Plecas I, Mitric M. Removal of Co2+from aqueous solutions by hydroxyapatite. Water research,2006,40:2261-2274
    [121]Polat H, Molva M, and Polat M. Capacity and mechanism of phenol adsorption on lignite. International Journal of Mineral Processing,2006,79(4):264-273
    [122]Ahmaruzzaman M, and Sharma D K. Adsorption of phenols from wastewater. Journal of Colloid and Interface Science,2005,287(1):14-24
    [123]Qin Q D, Ma J, and Liu K. Adsorption of nitrobenzene from aqueous solution by MCM-41. Journal of Colloid and Interface Science,2007,315(1):80-86
    [124]Khalid M, Joly G, Renaud A, and Magnoux P. Removal of phenol from eater by adsorption using zeolites. Industrial and Engineering Chemistry Research,2004,43(17):5275-5280
    [125]Yan L G, Shan X Q, Wen B, and Zhang S Z. Effect of lead on the sorption of phenol onto montmorillonites and organo-montmorillonites. Journal of Colloid and Interface Science,2007, 308(1):11-19
    [126]Sari A, Tuzen M, Citak D, and Soylak M. Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. Journal of Hazardous Materials,2007,148(1-2):387-394
    [127]Lu M C, Roam G D, Chen J N, and Huang C P. Adsorption characteristics of dichlorvos onto hydrous titanium dioxide surface. Water Research,1996,30(7):1670-1676
    [128]Zheng H, Wang Y, Zheng Y, Zhang H M, Liang S P, and Long M. Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite. Chemical Engineering Journal,2008,143(1-3):117-123
    [129]Ho Y S, and Chiang C C. Sorption studies of acid dye by mixed sorbents. Adsorption,2001,7(2): 139-147
    [130]Koumanova B, and Peeva-Antova P. Adsorption of p-chlorophenol from aqueous solutions on bentonite and perlite. Journal of Hazardous Materials,2002,90(3):229-234
    [131]Tao Q H, and Tang H X. Effect of dye compounds on the adsorption of atrazine by natural sediment. Chemosphere,2004,56(1):31-38
    [132]Zhao X K, Yang G P, Wu P, and Li N H. Study on adsorption of chlorobenzene on marine sediment. Journal of Colloid and Interface Science,2001,243(2):273-279
    [133]Johnson M D, Huang W L, Dang Z, and Weber W J Jr. A distributed reactivity model for sorption by soils and sediments.12. Effects of subcritical water extraction and alterations of soil organic matter on sorption equilibria. Environmental Science & Technology,1999,33(10):1657-1663
    [134]von Oepen B, Kordel W, and Klein W. Sorption of nonpolar and polar compounds to soils: processes, measurements and experience with the applicability of the modified OECD-Guideline 106. Chemosphere,1991,22(3-4):285-304
    [135]Zheng C L, Zhou J T, Zhao L H, Lu H, Qu B C, and Wang J. Isolation and characterization of a nitrobenzene degrading streptomyces strain from activated sludge. Bulletin of Environment Contamination and Toxicology,2007,78(2):163-167
    [136]Oyanedel-Craver V A, Fuller M, and Smith J A. Simultaneous sorption of benzene and heavy metals onto two organoclays. Journal of Colloid and Interface Science,2007,309(2):485-492
    [137]Hsu P H. Aluminum oxides and oxyhydroxides. In Minerals in soil environments; Dixon, J.B.; Weed, S.B., Eds.; Soil Science Society of America:Adison, Wisconsin,1989,331-378
    [138]Pei Z G, Shan X Q, Liu T, Xie Y N, Wen B, Zhang S Z, and Khan S U. Effect of lead on the sorption of 2,4,6-trichlorophenol on soil and peat. Environmental Pollution,2007,147(3):764-770
    [139]Carter C W, and Suffet I H. Interactions between dissolved humic and fulvic acids and pollutants in aquatic environments. In Fate of chemicals in the environment; Swann R A, and Eschenroeder A. Eds.; American Chemical Society Symposium Series, No 225, American Chemical Society: Washington D.C.,1983,215-229
    [140]Spurlock F C, and Biggar J W. Effect of naturally occurring soluble organic matter on the adsorption and movement of simazine [2-Chloro-4,6-bis(ethylamino)-s-triazine] in Hanford sandy loam. Environmental Science & Technology,1990,24(5):736-741
    [141]Maqueda C, Morillo E, Martin F, and Undabeytia T. Interactions of pesticides with the soluble fraction of natural and artificial humic substances. Journal of Environment Science and Health, Part B Pesticides,1993,28(6):655-670
    [142]Abdul A S, Gibson T L, and Rai D N. Use of humic acid solution to remove organic contaminants from hydrogoelogic systems. Environmental Science & Technology,1990,24(3):328-333
    [143]Tamon H, Saito T, Kishimura M, Okazaki M, and Toei R. Solvent regeneration of spent activated carbon in wastewater treatment. Journal of Chemical Engineering of Japan,1990,23(4):426-432
    [144]Ding G, Novak J, Herber S, and Xing B. Long-term tillage effects on soil metolachlor sorption and desorption behavior. Chemosphere,2002,48(9):897-904
    [145]李玉瑞.细胞外间质生物化学及研究方法.北京:人们卫生出版社,1998:128-146
    [146]田卫东,李声伟,邓楠,陈伟辉,高振南.胶原与羟基磷灰石复合人工骨的实验研究.中国口腔种植学杂志,1999,1:7-11
    [147]Chang M C, Ko C C, and Douglas W H. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials,2003,24:2853-2862
    [148]Word A G, and Courts A. The Science and Technology of Gelatin. London:Academic Press,1977
    [149]Veis A. The Macromolecular Chemistry of Gelatin. London:Academic Press,1964
    [150]Cai S, Yu X Z, Xiao Z Y, Xu G H, Lv H, and Yao K D. Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin-based precipitation method. Ceramics International,2007,33: 193-196
    [151]Chen X, Wright J V, Conca J L, and Peurrung L M. Evaluation of heavy metal remediation using mineral apatite. Water, Air, and Soil Pollution,1997,98:57-78
    [152]Han R P, Zou W H, Zhang Z P, Shi J, and Yang J J. Removal of copper (II) and lead (II) from aqueous solution by manganese oxide coated sand:1. Characterization and kinetic study. Journal of Hazardous Materials,2006,137:384-395
    [153]Hsu Y C, Chiang C C, and Yu M F. Adsorption behaviors of basic dyes on activated clay. Separation Science and Technology,1997,32:2513-2534
    [154]Ho Y S, Chiang C C, and Hsu Y C. Sorption kinetics for dye removal from aqueous solution using activated clay. Separation Science and Technology,2001,36:2473-2488
    [155]Zhao X K, Yang G P, and Gao X C. Studies on the sorption behaviors of nitrobenzene on marine sediments. Chemosphere,2003,52(5):917-925
    [156]Yu Y, Zhuang Y Y, and Wang Z H. Adsorption of water-soluble dye onto functionalized resin. Journal of Colloid and Interface Science,2001,242(2):288-293
    [157]Ma L Q, Logan T J, and Traina S J. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environmental Science & Technology,1995,29: 1118-1126
    [158]Ma L Q, and Rao G N. Effects of phosphate rock on sequential chemical extraction of lead in contaminated soils. Journal of Environmental Quality,1997,26:788-794
    [159]Gabaldon C, Marzal P, Ferrer J, and Seco A. Single and competitive adsorption of Cd and Zn onto a granular activated carbon. Water Research,1996,30:3050-3060
    [160]Dabbi S, Azzi M, and Guardia M. Removal of hexavalent chromium from wastewaters by bone charcoal. Fresenius Journal of Analytical Chemistry,1999,363:404-407
    [161]Wilson J A, Demis J, Pulford L D, and Thomas S. Sorption of Cr (III) and Cr (VI) by natural (bone) charcoal. Environmental Geochemistry and Health,2001,23:291-295
    [162]Cheung C W, Chan C K, Porter J F, and McKay G. Combined diffusion model for the sorption of cadmium, copper, and zinc ions onto bone char. Environmental Science & Technology,2001,35: 1511-1522
    [163]Danny C K K, Cheung C W, Choy K K H, Porter J F, and McKay G. Sorption equilibria of metal ions on bone char. Chemosphere,2004,54:273-281

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700