豌豆对水分胁迫的响应及复水效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤水分是限制干旱地区农业生产与作物布局的主要生态因子,揭示作物对水分胁迫的响应机制及复水效应,对选育作物新品种、建立节水高产栽培技术具有重要意义。本试验于2008年3~8月在甘肃农业大学农学院实验基地进行,采用盆栽土培人工控水法,模拟水分胁迫和复水生境,设定了水分胁迫及复水时期、水分胁迫程度及历时(持续时间)等处理,通过测定水分胁迫及复水条件下豌豆生长形态及相关生理、生化指标,系统研究了豌豆对土壤水分胁迫的响应和复水效应。
     1.水分胁迫导致豌豆植株外部形态发生变化,并存在滞后效应。复水可产生补偿效应。各生育时期水分胁迫均导致株高降低,分枝数减少,主茎、主根变细,叶面积减小,主、侧根伸长,侧根数增加,随水分胁迫程度加重和胁迫历时延长变化量增大。苗期水分胁迫对豌豆外部形态的影响最大,花期次之,灌浆期最小;复水对水分胁迫引起的豌豆植株外部形态变化产生补偿效应,苗期补偿效果最好,花期次之,灌浆期最差。复水在一定程度上减弱了水分胁迫对主、侧根伸长及侧根数的促进作用。
     2.水分胁迫导致豌豆冠层干重降低、根部干重增大、根冠比提高,并存在滞后效应。复水能有效促进根冠协调生长。水分胁迫没有改变根、冠干物质积累的总趋势,但导致豌豆侧根数增多、侧根总长增加、根系生长量加大,株高降低、分枝数减少、主茎变细、叶面积减小、冠层干重降低。复水对苗期轻度胁迫处理根冠比可产生超补偿效应,对花期轻度胁迫5d处理根冠比可产生等量补偿效应,对苗期、花期重度胁迫处理和灌浆期各胁迫处理根冠比产生等量补偿效应,集中体现在促进了根冠的协调生长。
     3.水分胁迫导致豌豆根系活力降低,离体叶片保水力及叶绿素含量发生变化,根系总吸收面积、活跃吸收面积和活跃吸收面积率均降低,影响了根瘤的生长。复水可产生补偿效应。在水分胁迫下,豌豆各生育时期根系活力降低,随着水分胁迫强度加重降幅增大。苗期复水可产生超补偿效应,花期和灌浆期可产生等量补偿效应;重度水分胁迫引起离体叶片保水力发生显著变化,复水可产生等量补偿效应;苗期和花期豌豆在水分胁迫下叶绿素含量均增加,叶绿素a含量和叶绿素b含量的变化幅度不同。灌浆期水分胁迫导致叶绿素a含量和叶绿素b含量以及叶绿素总量降低,复水产生等量补偿效应或超补偿效应;水分胁迫导致各生育时期豌豆根系总吸收面积和活跃吸收面积、活跃吸收面积率降低,复水可产生部分补偿效应;水分胁迫导致豌豆根瘤个数下降,苗期和花期最大根瘤直径增大,灌浆期最大根瘤直径缩小,复水促进了根瘤的生长。
     4.水分胁迫均导致豌豆叶片ABA、IAA含量增加,ZT、GA含量降低,各种内源激素比例发生变化,复水可产生补偿效应。水分胁迫对豌豆各种内源激素含量的影响存在滞后效应,复水的补偿效应因豌豆的生育时期、水分胁迫强度和历时不同而不同。复水5d对部分内源激素含量产生部分补偿效应,复水10d时可产生等量补偿效应。复水对水分胁迫引起的各种内源激素比例变化产生部分补偿效应。
     5.水分胁迫影响了豌豆保护酶活性、膜脂过氧化程度和抗氧化能力,复水对各种保护酶活性可产生补偿作用。水分胁迫导致苗期和灌浆期豌豆叶片SOD活性降低、CAT、POD活性提高,随水分胁迫程度加重和胁迫历时延长变化量加大。水分胁迫存在滞后效应。复水对各种保护酶活性均产生补偿效应。水分胁迫导致豌豆叶片过氧化产物MDA含量和叶片质膜透性增加,随水分胁迫程度加重和胁迫历时延长增幅加大。复水5d可产生补偿作用,有效地改善了抗氧化能力。
     6.水分胁迫导致豌豆细胞可溶性蛋白含量减少、脯氨酸和可溶性糖含量增加,并存在滞后效应,复水可产生补偿效应。各生育时期水分胁迫均导致豌豆叶片可溶性蛋白含量呈现较大变化,复水产生等量补偿效应;水分胁迫均导致各生育时期豌豆叶片脯氨酸含量增加,苗期和灌浆期水分胁迫后复水5d时仍保持增加趋势,复水10d时产生补偿效应。花期轻度胁迫10d和重度胁迫处理复水后先显现超补偿作用,然后再显现等量补偿作用;灌浆期水分胁迫5d导致豌豆叶片可溶性糖含量增加,水分胁迫10d导致可溶性糖含量减少。复水后产生部分补偿效应或等量补偿效应。
     7.苗期和花期豌豆在土壤水分胁迫下,籽粒干物质的动态变化呈“S”型曲线,各项灌浆参数均发生变化。苗期适度的水分胁迫有利于提高产量。苗期和花期水分胁迫降低了豌豆籽粒干物质积累速率,随着水分胁迫时间延长和胁迫程度加重影响程度加大。重度长历时胁迫对豌豆灌浆特性的影响最大,轻度长历时胁迫次之,短历时水分胁迫影响最小。依据籽粒干物质积累曲线,拟合了苗期和花期水分胁迫下描述籽粒干物质积累过程的三次多项式方程。苗期适度水分胁迫虽降低了百粒重,但有效提高了每株豆荚数和每荚粒数,显著提高了单株产量。
Soil water is the main biological factor limiting crop production and distribution in dry area. It is essential to reveal crop’s response to water stress and rewater effect for breeding and setting up hi-yield and water-saving technology system. The pot experiment, characterized by artificial water control and simulated water stress and rewater condition, was conducted in agronomic experimental base of Gansu Agriculture University from March to August, 2008. Several treatments were designed, covering stage of exerting water stress and rewater, water stress degree and duration. Response to changes of soil water and rewater effect of pea were also analysised in this paper basing on determining its growing shape and relevant physiological and biochemical characters.
     1. Water stress altered the outer characteristics of pea, and existed hysteresis effect. Rewater made compensation effect. Water stress in each stage resulted in a decrease in the height of plant, the number of branches, the diameter of main stem , main root and leaf area, but an increase in the length of main and lateral roots and the number of lateral root, the serious the water stress and the longer the stress duration, the more obvious the variation. The effect of water stress on outer characters of pea in seedling stage topped the list of all period, followed by that of flowering stage, the effect of filling stage was unnoticeable. Rewater made compensation to changes of outer characters caused by water stress, and the compensation appeared the same intendancy of the effect above. Rewater weakened the effect of water stress on main and lateral roots to some extent.
     2. Water stress decreased canopy weight, increased root weight as well as raised ratio of root to canopy, and existed hysteresis effect. Rewater improved growth between root and canopy. Water stress didn’t change the total intendancy of dry matter accumulation of root and canopy,but increased the number of lateral roots, the length of total lateral roots as well as the mass growth of roots,while decreased the plant height. the number of branch, the diameter of main stem, the leaf area,and the canopy dry weight. In term of ratio of root to canopy under slight stress, rewater made over-compensation effect in seedling stage, and equivalent compensation effect in flowering stage under slight stress for 5d. But equivalent compensation effect in seedling and flowering stage under serious stress and in filling stage under all kinds of stresses, concentrating on the coordination of growth between root and canopy.
     3. Water stress declined the vitality of root and altered the water retention capacity of leaf and content of chlorophylls. The total root absorption area, active absorption area and the ratio of active absorption area all appeared in declining trend, influencing the growth of root nodule. Rewater produced compensation effect. In any stage,The root vitality showed a decline which rate became larger as water stress enhanced. Rewater made over-compensation effect in seedling stage and equivalent compensation effect in flowering and filling stage. Serious water stress caused significant change in water retention capacity of leaves, and equivalent compensation effect appeared after rewater. The content of chlorophyll showed an intendancy of increase under water stress in seedling and flowering stage, but the content of chlorophyll a and b changed little. In filling stage, water stress led to a decrease in content of chlorophyll a, chlorophyll b and total chlorophyll, and rewater made equivalent compensation or even over-compensation effect. The total root absorption area, active absorption area and the ratio of active absorption area all appeared in a tendency of decrease under water stress, rewater made part-compensation effect. Water stress declined the number of root nodule in each stage, enlarged the diameter of max-root nodule in seedling and flowering stage, and narrowed the max-root nodule diameter in filling stage. Rewater promoted the growth of root nodule diameter.
     4. Water stress increased the content of ABA and IAA,decreased the content of GA and ZT, and changed the ratio between any two endogenous hormones,rewater induced compensation effect. The impact of water stress on content of each endogenous hormone appeared hysteresis effect. The compensation effect after rewater varied with growing stage, water stress degree and rewater time. For the content of some endogenous hormones, rewater for 5d caused part-compensation effect, and equivalent compensation effect when for 10d. For the change of ratio of any two endogenous hormones, rewater produced part-compensation effect.
     5. Water stress impacted protective enzymes activity, degree of membrane lipid proximate,and antioxidant capability. Rewater produced compensation to each protective enzyme activity. In seedling and filling stage, water stress resulted in a decline in SOD activity and an increase in CAT and POD activity, which range or rate raised with the stress became more serious and its duration got longer. The stress also had hysteresis effect, and rewater made reasonable compensation to all protective enzymes. Water stress increased the content of MDA and promoted the cell membrane permeability, and the increasing rate of them went up as the stress got more serious and the time got longer. The compensation on MDA and RC emerged within 5d after rewater,thus effectively improving antioxidant capability.
     6. Water stress caused soluble protein accumulation of pea plant cell decreased and the content of prolin and soluble sugar increased,and appeared hysteresis effect. Rewater made compensation. Water stress caused visible change of soluble protein content in any stage, and rewater produced equivalent compensation effect. Water stress increased the content of prolin in any stage, and the intendancy was kept till to the time after rewater for 5d, and then produced compensation at the time after rewater for 10d. In flowering stage, slight stress for 10d and serious stress treatments firstly showed over-compensation effect after rewater, then the equivalent effect. For soluble sugar in filing stage, 5d stress led to an increase while 10d stress led to a decrease. Rewater induced part-compensation or equivalent compensation effect.
     7. Under water stress in seedling and flowering stage, grain dry weight changed dynamically in s-like curve. Appropriate degree of water stress was favorite to improving out put. Water stress in seedling and flowering stage declined grain dry substance accumulation rate, and the influencing degree enhanced with the stress time extended and its degree intensified. Serious degree of water stress for long time topped the impact on filling characteristics, followed by that of slight degree for long time. The affection caused by short-time stress was not obvious. A cubic polynomial equation which can give objective demonstration of grain dry substance accumulation in seedling and flowering stage under water stress evolved basing on the grain dry substance accumulation curve. Although appropriate degree of water stress in seedling stage decreased hundred grain weights, the pod number of per hill and grain number of per pod considerably increased, significantly raising the unit yield at last.
引文
[1] Wilhite D. A. Drought as a natural hazard:Concepts and definitions. In: D A Wilhite,Ed. Drought:A Global Assessment[M]. Routledge. 2000,3—18
    [2] Wallace J. S. Increasing agricultural water use efficiency to meet future food production[J]. Agriculture,Ecosystemsand Environment. 2000,82:105—119
    [3]王志伟,翟盘茂.中国北方近50年干旱变化的特征[J].地理学报,2003,(58):61—68
    [4]尚宗波,高琼.中国水分状况对个球气候变化的敏感性分析[J].生态学报,2001,71(4):528—537
    [5] IPCC Climate change: Synthesis report. Third assessment report of the intergovenrmental panel on climate change[M]. New York:Cambridge University Press,2001
    [6]白莉萍.夏玉米不同生育时期对水分胁迫的响应与适应机制[D].北京:中国科学院植物研究所,2005
    [7]白文明,李凌浩,宋世环.植物水分关系研究进展植物科学研究进展(第四卷)[M].北京:高等教育出版社,2002,295—302
    [8]段爱旺,张寄阳.中国灌溉农田粮食作物水分利用效率的研究[J].农业工程学报,2000,16(4):41—44
    [9]连荣芳,王梅春,墨金萍.半干旱地区豌豆高产栽培技术[J].甘肃农业科技,2008,9:52—53
    [10]郑卓杰,王述民,宗绪晓.中国食用豆类学[M].北京:中国农业出版社,1997,88—127
    [11] FAO. Statistical Database,Food and agriculture Organization(FAO)of the United Nations,Rome. http://www.fao.org,2006
    [12]施积炎,袁小凤,丁贵杰.作物水分亏缺补偿与超补偿效应的研究现状[J].山地农业生物学报,2000,19(3):226—233
    [13] Chaves M M,Pereira J S,Maroc J. Understanding plant response to drought from genes to the whole plant[J]. Funct Plant Biol,2003,89:239—264
    [14] Goodwin S M,Jenks M A. Plant cuticle function as a barrier to water loss[C]. In:Jenks M A,Hasegawa P M eds. Plant Abiotic stress. Oxford,UK:Blackwell Publishing,Inc. 2005,14—32
    [15]刘海涛,齐红岩,刘洋,等.不同水分亏缺程度对番茄生长发育、产量和果实品质的影响[J].沈阳农业大学学报,2006,37(3):414—418
    [16]潘东明.水分胁迫与枇杷叶片SOD活性及脂质过氧化作用[J].福建农学院学报(自然科学版),1993,22(2):254—257
    [17]李云荫.植物抗旱生理研究概述[J].生态农业研究,1996,4(1):37—41
    [18]闫风霞,常建忠,刘学义.作物对水分胁迫反应的研究进展[J].山西农业科学,2008,36(7):90—92
    [19]姜孝成,周广洽,陈良碧,等.开花~灌浆期水分胁迫对水陆稻细胞膜透性和产量性状的影响[J].中国水稻科学,1998,12(增刊):34—38
    [20]杨建昌,王志琴,朱庆森.水稻品种的抗旱性及其生理特性的研究[J].中国农业科学,1995,28(5):65—72
    [21]唐连顺,李广敏.干旱对玉米杂交种及其亲本自交系幼苗膜质过氧化及其保护酶活性的影响[J].作物学报,1995,21(4):509—512
    [22] Gaff D F. Proplasmic tolerance of extreme water stress. In: Turner NC,Kramer P J(eds),Adaptation of plant to water and high temperature stress[M]. New York: John Wiley & Sons,1976
    [23] Vieira D S J. Water stress, ultrastructure and enzymatic activity. In: Lange OL,Kappen L,Schulze ED(eds).Water and Plant life: Problem and Modern Approaches[J]. Springer-Verlag,Berlin,1979,202—224
    [24]王凤茹,张红,商振清,等.水分胁迫及复水过程中小麦幼苗叶片内Ca2+的定位[J].植物生理学报,2000,26(4):280—282
    [25] Goodwin S M,Jenks M A. Plant cuticle function as a barrier to water loss[C]. In: Jenks M A,Hasegawa P M eds. Plant Abiotic Stress. Oxford,UK: Blackwell Publishing,Inc. 2005. 14—32
    [26] Wang T,Zhang X,Li C. Growth,abscisic acid content,and carom isotope composition in wheat cultivars grown under different soil moisture[J]. Biologia Planetarium,2007,51(1):181—184
    [27]李连朝,王学臣.水分胁迫下细胞延伸生长与细胞膨压和细胞壁特性的关系[J].植物生理学通讯,1998,34(3):161—167
    [28] Kage H,Kochler M,Stuzel H. Root growth and dry matter partition of cauliflower under drought stress conditions measurement and simulation[J]. Eur J Agron,2004,20:379—394
    [29] Kozlowski T T,Pallardy S G. Acclimation and adaptive responses of woody plants to environment stresses[J]. Bot Rev,2002,68:270—334
    [30] Schreiber L,Hartmann K,Skrabs M,et al. Apoplectic barriers in roots:Chemical composition of endodermal and hypodermal cell walls[J]. Journal of Experimental Botany,1999,50:1267—1280
    [31]居辉,兰霞,李建民,等.不同灌溉制度下冬小麦产量效应与耗水特性研究[J].中国农业大学学报,2000,5(5):23—29
    [32]白莉萍,隋方功,孙朝晖,等.土壤水分胁迫对玉米形态发育的影响[J].生态学报,2004,24(7):1556—1560
    [33]王空军,郑洪建.我国玉米品种更替过程中根系时空分布特性的演变[J].植物生态学报,2001,25(4):472—478
    [34]肖俊夫,刘战东,段爱旺,等.不同灌水处理对冬小麦籽粒灌浆过程的影响研究[J].节水灌溉:2007,(1):9—12
    [35]张秋英,李发东,高克昌,等.水分胁迫对冬小麦光合特性及产量的影响[J].西北植物学报,2005,25(6):1184—1190
    [36]王维,蔡一霞,蔡昆争,等.水分胁迫对贪青水稻籽粒充实及其淀粉合成关键酶活性的影响[J].作物学报,2006,32(7):972—979
    [37]王立秋,靳占忠,曹敬山,等.水肥因子对小麦籽粒及面包烘烤品质的影响[J].中国农业科学,1997,30(3):67—73
    [38]黎秀卿,王文正,吕潇.北方春大麦区蛋白质含量与生态条件的关系[J].山东农业科学,1998,2:20—21
    [39]高占旺,庞万福,宋伯符.水分胁迫对马铃薯的生理反应[J].马铃薯杂志,1995,9(1),1—6
    [40]万超文,李舒凡.持续水分胁迫对大豆鼓粒期抗旱性及籽粒质量的影响[J].植物遗传资源学报,2000,20(4):1—6
    [41]周瑞莲,王刚.水分胁迫下豌豆保护酶活力变化及脯氨酸积累在其抗旱中的作用[J].草业学报,1997,6(4):39—43
    [42]郑若良,宋志荣.水分胁迫对辣椒生理机制的影响研究[J].河北农业科学,2003,7(1):11—15
    [43] Singh T N,Aspinall D, Palag L G. Praline accumulation and varietals adaptability to drought in barley:A potential irrigation and drought[J]. Crop Sci.,1982,22:1121—1125
    [44] Hong Z. Removal of feed back inhibition of△1-pyrroling-5-carboxylate synthase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiol,2000,122:1129—1136
    [45]李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报,1992,8(1):37—44
    [46] Legg B. J,Day W, Lawtor D. W,et al. The effect of drought on barley growth;Models and measurements showing relative importance of leaf area and photosynthetic rate[J]. J.Agric. Sci. 1979,92:703—716
    [47]李广敏,关军锋.作物抗旱生理与节水技术[M].北京:气象出版社,2001:6
    [48] Graan T,Boyer J S. Very high CO2 partially restores photosynthesis in sunflower at low water potential[J]. Planta,1990,423—430
    [49]吕丽华,李雁鸣,胡玉昆.水分胁迫对不同抗旱性小麦品种光合特性及产量形状的影响[J].河北农业大学学报,2005,28(3):1—5
    [50]曹慧,许雪峰,韩振海,等.水分胁迫下抗旱性不同的两种苹果属植物光合特性的变化[J].园艺学报,2004,31(3):285—290
    [51]刘子凡.作物对土壤水分胁迫适应机理的最新研究进展[J].安徽农业科学,2007,35(34):11011—11013,11018
    [52] Kaul R. Effect of water stress on respiration of wheat[J]. Can J Bot.,1996,44:623—632
    [53]吴旭红,郑桂萍,穆有革.水分胁迫对作物形态和生理过程的影响[J].齐齐哈尔师范学院学报(自然科学版),1995,15(3):37—40
    [54]高素华,毛飞,郭建平.水分胁迫对冬小麦生理因素的影响[M].徐祥德,吴正华主编,华北干旱预测研究进展.北京,气象出版社,1999:78—86
    [55] Moran J F,Becana M,Iturbeormaetxe I,et al. Drought induces oxidative strea in pea plant[J]. Planta,1994,194(3):34—63
    [56]吴永美,吕炯章,王书健,等.植物抗旱生理生态特性研究进展[J].杂粮作物,2008,28(2):90—93
    [57] Yang J S,Zhang J H,Ye Y X,et al. Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling[J]. Plant,Cell and environment,2004,27:1055—1064
    [58] Sharp R E. Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress[J]. Plant,Cell and environment,2002,25:1055—1064
    [59]陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响极其与抗旱性的关系[J].植物生理学报,1999,25(1):49—56
    [60]于同泉,柴丽娜,刘宗萍.水分胁迫下小麦幼苗可溶性蛋白质的表现与小麦抗旱蛋白之初探[J].北京农学院学报:1995,10(1):26—30
    [61]赵福庚,何庆龙,罗庆云.植物逆境生理生态学[M].北京:化学工业出版社,2004:3
    [62]李玲,余光辉.水分胁迫下植物脯氨酸累积的分子机理[J].华南师范大学学报:自然科学版, 2003(1):126—134
    [63]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994
    [64]闫成仕.水分胁迫下植物叶片抗氧化系统的相应研究进展[J].烟台师范学院学报:自然科学版,2002,18(3):220—285
    [65]王俊儒,李生秀,李凯丽.冬小麦不同生育时期水分亏缺对叶片保护酶系统的影响[J].西北植物学报,2001,21(1):47—52
    [66]杨帆,苗灵凤,胥晓,等.植物对水分胁迫的响应研究进展[J].应用与环境生物学报,2007,13(4):586—591
    [67] Shinozaki K,Yamaguchi—Shinozaki K. Molcular esponses to dehydration and low temperature:difference and cross—talk between water stress signaling pathway[J]. Curr Opin Plant Biol,2000,3:217—223
    [68]王霞,侯平,尹林克,等.土壤水分胁迫对柽柳体内膜保护酶及膜脂过氧化的影响[J]. 2002,19(3):17—20
    [69] Seo M,Koshiba T. Complex regulation of ABA biosynthesis in plants[J]. Trends Plant Sci,2002,7:41—48
    [70] Seki M,Narusaka H,Abeh M,et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray[J]. Plant Cell,2001,13(1):61—72
    [71] Matos A R, Lameta A,Franca M,et al. A novel patain-like gene stimulated by drought stress encodes a galactolipod acyl hydrolase[J]. Febs lett,2001,491:188—192
    [72] Riccardi F,Gazeau P,de Vienne D,et al. Protein changes in response to progressive water dificit in maize[J]. Plant Mol Biol,1998,38:587—596
    [73] Salekdeh G H,Siopongco J,Wade I J,et al. Proteomic analysis of rice leaves during drought stress and recovery[J]. Proteomics,2002,2:1131—1145
    [74] Melchior W,Steulle E. Water transport in onion roots. Change of axial hydraulic conluctivities during root development[J]. Plant Physiology,1993,101:1305—1315
    [75]袁永慧,邓西平,黄明丽,等.生物节水中的补偿效应与根系调控研究[J].中国农业科技导报,2003,5(6):24—28
    [76]梁卫理,王贵彦.作物生产系统中的激发效应[J].农业现代化研究,1999,20(4):222—225
    [77] Shan L. Developmental tendency of dry land farming technologies[J]. Agricultural science in China,2002,1:934—944
    [78]山仑,邓西平,苏佩,等.挖掘作物抗旱节水潜力——作物对多变低水环境的适应与调节[J].中国农业科技导报,2000,2(2):66—70
    [79] Eck H. V. Effect of water deficits on yield, yield compoments, and water use efficiency of irrigated cron[J]. Agon J, 1986,78:1035—1040
    [80]王琴.玉米水分胁迫下补偿效应初步研究[D].南京:河海大学,2006
    [81]李世清,田宵鸿,李生秀.养分对旱地小麦水分胁迫的生理补偿效应[J].西北植物学报,2000,20(1):22—28
    [82]范雪梅,姜东,戴廷波,等.花后干旱或渍水逆境下氮素对小麦籽粒产量和品质的影响[J].植物生态学报,2006,30(1):71—77
    [83] Belsky A J. Does hebivory benefit plants? A review of the evidence[J]. The American Naturalist,1986,127(6):871—891
    [84]胡田田,康绍忠.植物抗旱性中的补偿效应及其在农业节水中的应用[J].生态学报,2005,25(4):885—891
    [85]胡展育.植物受虫害后的补偿作用[J].文山师范高等专科学校学报,2007,20(4):106—109
    [86] Wenkert W,et al. Leaf elongation and turgor maintenance at low water potentials in the elongation region of maize leaves[J]. Agron. J.,1978,70:761—764
    [87] Kramer J P. Water deficits and plant growth[C]. In: Kramer J P(ed.). Water relations of plant. Academic Press, NewYork,London,1983,354—359
    [88]陈晓远,罗远培.开花期复水对受旱冬小麦的补偿效应研究[J].作物学报,2001,27(4):512—516
    [89]关义新,戴俊英,徐世昌,等.玉米花期干旱及复水对植株补偿生长及产量的影响[J].作物学报,1997,23(6):740—745
    [90] Palta J A,Kbata T,Turner N C,et al. Remobilization of carbon and nitrogen in wheat as influenced by post-anthesis water deficits[J]. Crop Sci,1994,34:118—124
    [91] Sharme B R,Chaudhary T N. Wheat root growth,gain yield and water uptake as influenced by water depth me and depth of nitrogen placement in a sand[J]. Agriculture water management,1983,6:365—373
    [92]霍治国,白月明,温民,等.水分胁迫效应对冬小麦生长发育影响的试验研究[J].生态学报,2001,21(9):1527—1530
    [93] Bielorai H,Hopmans P M. Recovery of leaf water potentia transpiration,and photosynthesis of cotton uring irrigation cycle[J]. Agron J,1975,67:629—632
    [94] Xu X, Bland W L. Resumption and water uptake by sorghum after water stress[J]. Agron J,1993,85:697—702
    [95]洪法水,张帆.玉米幼苗萎蔫过程中某些理化性质变化的研究[J].西北植物学报,1999,19(1):71—74
    [96]吕谋超,冯俊杰,瞿国亮.地下滴灌夏玉米的初步试验研究[J].农业工程学报,2003,19(1):67—70
    [97]陈晓远,罗远培,李韵珠.滴灌期复水对冬小麦根冠生长及其相互关系影响的研究[J].干旱地区农业研究,2003,21(4):73—77
    [98]山仑.节水农业与作物高效用水[J].河南大学学报(自然科学版),1999,6(1):2—13
    [99] Linghe Z,Michael C S. Salinity effects on seedling growth and yield components of rice[J]. Crop Science,2000,40(4):996—1003
    [100] Garcta L F,RharrabtiY,et al. Evaluation of grain yield and its components in Durum Wheat under Mediterranean conditions[J]. Agronomy Journal,2003,95 (2):266—274
    [101]鲍巨松.不同生育时期水分胁迫对玉米生理特性的影响[J].作物学报,1991,4:281—286
    [102] Reddy C R,Reddy S R. Scheduling irrigation for peanuts with variable amounts of available water[J]. Agricultural Water Management,1993,23:19
    [103]郭相平.水分胁迫的滞后效应[D].南京:河海大学,2002
    [104] Zhang JK , Kirham MB. Drought stress-induced changes in activities of superoxide dismutase.catalase.and peroxidase in wheat specise[J]. Plant Cell Physiol,1994,35(5):785—791
    [105]李跃强,盛承发.植物的超越补偿反应[J].植物生理学通讯,1996,32(6):457—464
    [106]杨洪强,贾文锁,黄丛林,等.蛋白磷酸化参与湖北海棠根系中水分胁迫诱导的ABA积累[J].科学通报,2001,46(1):50—53
    [107]梁建生,张建华.根系逆境信号ABA的生产和运输及其生理作用[J].植物生理学通讯,1998,34(5):329—338
    [108] Wilinson S,Davies W J. Xylem sap PH increase: A drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast[J]. Plant Physiol,1997,113:559—573
    [109] Acevedo E,Fereres E,Hsiao TC. Diurnal growth trends,water potential,and osmotic adjustment of maize and sorghum leaves in the field[J]. Plant Physiol,1979,64:476—480
    [110]陈晓远,罗远培.拔节期复水对苗期受旱冬小麦的激发效应[J].中国农业大学学报,1999,4(3):23—28
    [111] Steudle E,Pelerson C A. How does water get through roots? [J]. Joural of Experimental Botany,1998,49:775—778
    [112]邓西平,山仑.旱地春小麦对有效灌水高效利用的研究[J].干旱地区研究,1995,13(2):42—46
    [113] Gajri P R. Effects of nitrogen and early irrigation on root development and water use by wheat on two soils[J]. Field Crops Research,1989,21:103—114
    [114] Gullo M L,Nardini A,Salleo S and Tyree M. Changes in root hydraulic conductances of Oleaoleaster seedings following drought strss and irrigation[J]. New Phytol,1998,140:25—31
    [115] Morgan J M. 0smoregulation and water stress in higher plants[J]. Ann Rev. Plant Physiol,1984,35:299—319
    [116]张开春.葡萄对干旱的适应性[J].果树科学,,1993,10(4):230—232
    [117]张方,迟伟,金成哲,等.高粱C4型磷酸烯醇式丙酮酸羧化酶基因的分子克隆及其转基因水稻的培育[J].科学通报,2003,48(14):1542—1546
    [118] Bohnert H J. Biochemical and celluar mechanism of stress tolerance in plants:Response to salt stress in halophyte Mesembryanthemum crytalliunum[C]. In:Cherry J H ed. Biochmical and Cellular Mechanisms of Sterss Tolerance in Plants.Berlin. Springer Verlag. 1994,415—428
    [119] Bray E A. Molecular responses to water deficit[J]. Plant Physiol,1993,103:1035—1040
    [120]王伟.植物对水分亏缺的某些生化反应[J].植物生理学通讯. 1998,34(35):388—393
    [121]原保忠,王静,张荣,等.苗期刈割伤害对春小麦生长及产量的影响[J].应用生态学报, 2002,13(4):413—416
    [122] Maurel C. Aquaporins and water permeability of plant membranes[J]. Annu Rev Plant Physiol PlantMol Biol,1997,48:399—429
    [123]余秋海,武志海,沈秀瑛,等.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化[J].吉林农业大学学报,2003,25(3):239—242
    [124]郭相平,张烈君,王琴,等.作物水分胁迫补偿效应研究进展[J].河海大学学报(自然科学版),2005,33(6):634—637
    [125]王泽港,梁建生,曹显祖,等.半根水分胁迫处理对水稻叶片光合特性和糖代谢的影响[J].江苏农业研究,1999,20(3):21—26
    [126]缪颖,五炳华.植物抗逆性的获得与信号传导[J].植物分子生理学通讯,2001,37(2):71—76
    [127] Nettong AG,Ph,Abscisic. Acid and the integration of metabolic in plants under stressed and Non-stressed condition:cellar response to stress and their implication for plant water relations[J]. Exp.Bot,2000,51(343):147—158
    [128]郭仕贤.谷子旱后补偿效应研究[J].应用生态学报,1999,10(5):563—566
    [129]蔡昆争,吴学祝,骆世明,等.不同生育时期水分胁迫对水稻根系活力、叶片水势和保护酶活性的影响[J].华南农业大学学报,2008,29(2):7—10
    [130]杨晓光,于卢宁.冬小麦、夏玉米水分胁迫监测系统[J].生态农业研究,2000,8(1):27—29
    [131]蔡焕杰,康绍忠,张振华,等.作物调亏灌溉的适宜时间与适宜程度研究[J].农业工程学报,2000,16(3):24—27
    [132]陈晓远,罗远陪.不同生育时期复水对受旱冬小麦的补偿效应研究[J].中国农业生态学报,2002,10(1):35—37
    [133]康绍忠,史文娟,胡笑涛,等.调亏灌溉对玉米生理指标及水分利用效率的影响[J].农业工程学报,1998,14(4):82—87
    [134]刘庚山,郭安红,任三学,等.夏玉米苗期有限水分胁迫拔节期复水的补偿效应[J].生态学杂志,2004,23(3):24—29
    [135]胡笑涛,梁宗锁,康绍忠,等.模拟调亏灌溉对玉米根系生长及水分利用效率的影响[J].灌溉排水,1998,17(2):11—15
    [136]苏佩,山仑.拔节期复水对玉米苗期受旱胁迫的补偿效应[J].植物生理学通讯,1995,3l(5),341—344
    [137]张喜英,由慈正,王新元.不同时期水分调亏及不同调亏程度对冬小麦产量的影响[J].华北农学报,1999,14(2),1—5
    [138]孟兆江,刘安能,庞鸿宾,等.夏玉米调亏灌溉的生理机制与指标研究[J].农业工程学报,1998,4:88—92
    [139]黄占斌.干湿变化与作物的补偿效应规律研究[J].生态农业研究,2000,8(1):30—33.
    [140]李建民,兰霞,王璞,等.冬小麦限水灌溉条件下磷肥补偿效应的研究[J].华北农学报,1999,14(4):78—83
    [141]刘晓英,罗远培,等.考虑水分胁迫滞后影响的作物生长模型[J].水利学报,2002,6:32—37
    [142] Schaffner A R. Aquaporin function,structure and expression:Are there more surprise to surface in water relation[J]. Planta,1998,204:131—139
    [143] Chalmers D J. Control of peach tree growth and productivity by regulated water supply free density and summer prouning[J]. Soc,Sci,1981,106(3):307—312
    [144] Chalmers D J. The physiology of growth control of peach and trees using reduced irrigation[J]. Acta Horticulture,1984,146:143—148
    [145]闫志利,王本亮,林瑞敏.水分胁迫条件下稻作技术的改进措施[J].垦殖与稻作,2001,3:12—14
    [146]轩春香,牛俊义,张红萍,等.水分胁迫对豌豆根系生长及产量的影响[J].甘肃农业大学学报,2008,14(5):45—49.
    [147]张宪政,陈风玉,王荣富,等.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,1994:198—200.
    [148] Dijkstra P,Lambers H. Plant analysis of specific leaf area and photosynthesis of two inbred lines of Plantago major differing in relative growth rate[J]. New phytol,1989,113:283—290.
    [149]牛俊义,杨祈峰.作物栽培学研究方法[M].兰州:甘肃民族出版社,1998,85—88.
    [150]何钟佩.农作物化学控制实验指导[M].北京:中国农业大学出版社,1993,60—68.
    [151]梁爱华,马富裕,梁宗锁,等.水分胁迫后复水激发玉米根系功能补偿效应的生理机制研究[J].西北农林大学学报,2008,36(4):58—64.
    [152] Jiang M. Y.,Zhang J. H. Water stress induced abscises acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves [J]. J Exp. Bot.,2002,53:2401—2410.
    [153]袁庆华,桂枝,张文淑.苜蓿抗感褐斑病品种内超氧化物歧化酶、过氧化物酶和多酚氧化酶活性的比较[J].草业学报,2002,11(2):100—104.
    [154]何文亮,黄成红,杨颖丽,等.盐胁迫过程中抗坏血酸对植物的保护功能[J].西北植物学报,2004,24(12):2196—2201.
    [155] Aroca R.,Amodeo G.,Fernandez I. S.,et al. The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots[J]. Plant Physiol,2005,137:341—353.
    [156]李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,164—169,260.
    [157]熊庆娥.植物生理学实验教程[M].成都:四川科学技术出版社,2003,112—114.
    [158] Belsky F A. Does herbivory benefit plants? A review of the Evidence[J]. An. Nat. 1986,127:807—829.
    [159] Maschinski J,Whitham T G. The Continum of plant responses to herbivory:The influence of plant association,nutrient availability and timing[J]. An. Nat.,1989,134:1—19.
    [160] Shaozong Kang,Lu Zheng,Yinli Liang,et al. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China[J]. Agriculture Water Management, 2002,55:203—216.
    [161]韩刚,党青,赵忠.水分胁迫下沙生灌木花棒的抗氧化保护响应研究[J].西北植物学报,2008,28(5):1007—1013
    [162]施积炎,丁桂杰,袁小风.不同家系马尾松苗木水分参数的研究[J].林业科学,2004,40(3):51—55
    [163]熊淑萍,谷秋荣,何建国,等.水分处理对不同专用型小麦籽粒灌浆特征和产量的影响[J].干旱地区农业研究,2005,23(4):113—118.
    [164]管秀娟,赵世伟,王俊振,等.不同生育时期干旱对冬小麦根冠生长发育的影响[J].华北农学报,2001,16(4):71—76
    [165] Katerji N,Tardieu F, Bethenod O. Behavior of maize stem diameter during drying cycles: comparison of two methods for detecting water stress[J]. Crop Science,1994,34:165—169
    [166] Garnier E,Berger A. Effect of water stress on stem diameter changes of peach tree growing in the field[J]. Journal of Applied Ecology,1986,23:193—209
    [167] Goldhamer D A,Fereres E. Irrigation scheduling protocolsusing recorded trunk diameter measurements[J]. Irrigation Science,2001,20:115—125
    [168]姜东,谢祝捷,曹卫星,等.花后干旱和渍水对小麦光合特性和物质运转的影响[J].作物学报,2004,30(2):175—182
    [169]高庆荣,孙兰珍,刘保申.杂种小麦花后干物质积累运转动态和分配[J].作物学报,2000,26(2):163—170
    [170]原保忠,王静,赵松林.植物补偿作用机制初探[J].生态学杂志,1998,6(4):12—15
    [171] Potter G,Pasternak T P,Guisez Y,et al. Stress-induced morphgenic response:growing out of trouble[J]. Trends Plant Sci,2007,12:98—105
    [172]王同朝,卫利,吴克宁,等.小麦根系对水分亏缺的生物学响应[J].河南农业大学学报,2000,34(1):17—21
    [173] Gullo M L,Nardini A,Salleo S,et al. Changes in root hydraulic conductionces of oleaoleaster seeding following drought stress and irrigation[J]. New Phytol,1998,140:25—31
    [174] Southey J M,Jooste J H. Physiological response of Vitis vinifera(cv. Chenin blanc)grafted ontodifferent rootstocks on a relatively saline soil[J]. South Afr Jenol Vitic,1992,(13):10—22
    [175] Smart C M. Gene expression during leaf senescence[J]. New Phytol,1994,(126):419—448
    [176]张寄阳,段爱旺,孟兆江,等.不同水分状况下棉花茎直径变化规律研究[J].农业工程学报,2005,21(5):7—11
    [177]王万里.植物对水分胁迫的反映[J].植物生理学通讯,1981,5:55—64
    [178] Hamblin A,Tennat D,Perry M W. The cost of stress: Dry matter partitioning changes with sea-sonal supply of water and nitrogen to dry land wheat[J]. Plant and soil,1990,122:47—58
    [179] Zobel R W. Sensitivity analysis of computer—based diameter measurement from digital images[J]. Crop Sci,2003,43:583—591
    [180] Huang B,Eissenstat D M. Linking hydraulic conductivity to anatomy in plants that vary in specific root length[J]. J An Soc Hortic Sci,2000,125:260—264
    [181] Benjamin J G,Nielsen D C. Water deficit effects on root distribution of soybean,field pea and chickpea[J]. Field Crop Res,2006,97:248—253
    [182] Peman J,Voltas J,Gil-Pelegrin E. Morphological and functional variability in the root system of Quercus ilex L. subject to confinement:consequences for affortestation[J]. Ann For Sci,2006,63:425—430
    [183]葛体达,隋方功,李金政,等.干旱对夏玉米根冠生长的影响[J].中国农学通报,2005,21(1):103—109
    [184]黄明丽,邓西平,周生路,等.二倍体、四倍体和六倍体小麦产量及水分利用效率[J].生态学报,2007,27(3):1113—1121
    [185] Wang T,Zhang X,Li C. Growth,abscisic acid content,and caron isotope composition in wheat cultivars grown under different soil moisture[J]. Biologia Plantarum,2007,51(1):181—184
    [186]陈晓远,高志红,罗远培,等.水分胁迫效应对冬小麦生长发育的影响研究[J].华北农学报,2004,19(3):43—46
    [187]葛体达,隋方功,张金政,等.玉米根、叶质膜透性和叶片水分对土壤水分胁迫的反应[J].西北植物学报,2005,25(3):507—512
    [188]张红萍.水分胁迫及复水对豌豆冠层生长及生理生化特性的影响和补偿效应研究[D].兰州:甘肃农业大学,2008
    [189]张烈君.水稻水分胁迫补偿效应研究[D].南京:南京农业大学,2006
    [190]姚磊,杨阿明.不同水分胁迫对番茄生长的影响[J].华北农学报,1997,12(2):102—106
    [191]张秋英,李发东,高克昌,等.水分胁迫对冬小麦光合特性及产量的影响[J].西北植物学报,2005,25(6):1184—1190
    [192]房海育,张仁涉.无机营养和水分胁迫对冬小麦叶绿素、丙二醛含量等的影响及其相关性[J].甘肃农业大学学报,2001,36(1):89—94
    [193]李合生.现代植物生理学[M].北京:高等教育出版社,2006:199—200
    [194]何钟佩.作物激素生理及化学控制[M].北京:中国农业大学出版社,1997:225—232
    [195]董宝娣,刘孟雨,张正斌,等.水分胁迫条件下不同抗旱类型小麦灌浆初期内源激素的变化[J].麦类作物学报,2007,27(5):852—858
    [196] Pustovoitova T. N.,Drozdova I. S.,Zhdanova N. E.,et al.Leaf growth, photosynthetic rate, and phytohormone contents in Cucumis sativus plants under progressive soil drought[J].Annals of Applied Biology,2003,51(4):441—443
    [197] Pustovoitova T. N.Changes in the levels of IAA and ABA in cucumber leaves under progressive soil drought[J].Russian Journal of Plant Physiology,2004,51(4):513—517
    [198] Lenoble M. E.,Spollen W. G.,Sharp R. E.Maintenance of shoot growth by endogenous ABA: Genetic assessment of the involvement of ethylene suppression[J].Journal of Experimental Botany,2004,55(395):237—245
    [199] Jonathan P.Comstock, hydraulic and chemical signaling in the control of stomatal conductance and transpiration[J].Journal of Experimental Botany,2002,53(367):195—200
    [200] Borel C.,Frey A.,Marion-poll A.,et al.Does engineering abscisic acid biosynthesis in Nicotiana plumbaginifolia modify stomata response to drought[J].Plant,Cell and Environment,2001,24:477—489
    [201]李玉梅,李建英,王根林,等.水分胁迫对大豆幼苗叶片内源激素的影响[J].大豆科学,2007,26(4):627—629,636
    [202]闫志利,轩春香,牛俊义,等.水分胁迫及复水对豌豆根系内源激素含量的影响[J].中国生态农业学报,2009,17(2):297—301
    [203]郑湘如,王丽.植物学[M].北京:中国农业大学出版社,2005:108
    [204]轩春香.水分胁迫及复水对豌豆根系生长及内源激素含量的影响和补偿效应研究[D].兰州:甘肃农业大学,2008
    [205]闫洁,曹连莆,张薇,等.土壤水分胁迫对大麦籽粒内源激素及灌浆特性的影响[J].石河子大学学报,2005,23(1):30—38
    [206] Anderson B E,Ward J M,Schroeder J I. Evidence for an extracellular reception site for abscisic acid in Commelina guard cells[J]. Plant physiol,1994,104:1177—1183
    [207]刘瑞香,杨拮,高丽,等.中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J].水土保持学报,2005,19(3):148—151,169
    [208]王玮,李德全,杨兴洪,等.水分胁迫对不同抗旱性小麦品种芽根生长过程中IAA、ABA含量的影响[J].作物学报,2000,26(6):737—732
    [209]顾者珉,沈曾佑,张志良,等.细胞分裂素对水分胁迫中小麦胚芽鞘生长的影响[J].植物生理学报,1984,10:355—360
    [210]李向义,赵强,何兴元.策勒绿洲前沿两种植物的水分生理生态特征[J].干旱区研究,2004,21(2):171—174
    [211]吴琦,张希明.水分条件对梭梭气体交换特性的影响[J].干旱区研究,2005,22(1):79—84
    [212]孙一荣,朱教军,康宏樟.水分处理对沙地樟子松幼苗膜脂过氧化作用及保护酶活性影响[J].生态学杂志,2008,27(5):729—734
    [213] Bowler C., Montagu M. V., Inze D. Superoxide dismutase and stress tolerance [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:83—116
    [214]韩蕊莲,李丽霞,梁宗索.水分胁迫下沙棘膜脂过氧化保护体系的研究[J].西北林学院学报,2002,17(4):1—5
    [215]韩蕊莲,李丽霞,梁宗索.水分胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J].西北植物学报,2003,13(1):23—27
    [216]孙彩霞,沈秀英,刘志刚.作物抗旱生理生化机制的研究现状和进展[J].杂粮作物,2002,22(5):285—288
    [217]刘巍,于志水,纪纯阳,等.植物盐胁迫研究进展[J].防护林科技,2008,82(1):57—61
    [218] Moran J. F.,Becana M.,Ormaetexe I. I.,et al. Drought induces oxidative stress in pea plants[J]. Planta,1994,194:346—352
    [219] Zhang J. X.,Kirkham M. B. Antioxidant responses to drought in sunflower and sorghum seedlings[J]. New Phytol.,1996,132:361—373
    [220] Hurng W. P.,Kao C. H. Effect of flooding on the activities of some enzymes of activated oxygen metabolism,the levels of antioxidants,and lipoid per oxidation in senescing tobacco leaves[J]. Plant Growth Regulation,1994,39(7):634—640
    [221]许长成,邹琦.大豆叶片旱促衰老及其与膜脂过氧化的关系[J].作物学报,1993,19(4):359—364
    [222]单长卷,徐新娟,王光远,等.冬小麦幼苗适应土壤干旱的生理学变化[J].植物学报,2007,27(1):54—58
    [223] Riesa S. K.,Giannopelitis C. N. Superoxide dismutase ocurrence in higher plants[J]. Plant Physiol,1997,59
    [224] Karamanos A I,Drossopopulos I B,Niabis K A. Free proline accumulation during development in the organ of two wheat cultivars subjected to different degree of water stress[J]. Crop Physiol Abst,1985,11:428
    [225] Bhaskaran S,Smith R H,Newton R J. Physiological changes in cultured sorghum cell in response to induced water stress. Free proline[J]. Plant Physiol,1985,79:266—269
    [226]康利平,王羽梅,张禄,等.水分胁迫对豇豆幼苗水分状况、气孔变化及生理生化指标的影响[J].华北农学报,2005,(专辑):21—23
    [227]张殿忠,汪沛洪、赵会贤,等.测定小麦叶片游离脯氨酸的方法[J].植物生理通讯,1990,(4):62—65
    [228]杨书运,严平,梅雪英.水分胁迫对冬小麦抗性物质可溶性糖与脯氨酸的影响[J].中国农学通报,2007,23(2):51—54
    [229]李科江,张西科,刘文菊,等.不同栽培措施下冬小麦灌浆模拟研究[J].华北农学报,2001,16(2):70—74
    [230]吴少辉,高海涛,王书子,等.干旱对冬小麦籽粒形成的影响及灌浆特性分析[J].干旱地区农业研究,2002,20(2):49—51
    [231]李静,王术,王伯伦,等.不同水稻品种灌浆特性的研究[J].农业现代化研究,2008,29(4):490—493
    [232] Inoue T, Inanaga S, Sugimoto Y, et al. Contribution of pre-anthesis assimilates and current photosynthesis to grain yield and their relationships to drought resistance in wheat cultivars groan under different soil moisture[J]. Photosynthetic,2004,42(1):99—104
    [233]刘明学,李邦发,王晓飞,等.干旱条件下绵阳26小麦籽粒灌浆特性分析[J].安徽农业科学,2008,36(16):6708—6710,6718
    [234] Board James E, Harikrishna M. Dry matter accumulation predictors for optimal yield in soybean[J]. Crop Sci.,2005,45:1790—1799
    [235]李志贤,柴守玺,齐伟宏.不同灌溉处理下冬小麦籽粒灌浆特性的研究[J].甘肃农业大学学报,2007,42(1):35—40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700