沟灌条件下SPAC系统水热传输模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沟灌SPAC系统水热传输的数值模拟,对摸清SPAC中水热能量输送与转换的定量关系,揭示隔沟交替灌溉的节水机理及水热能量传输特性等具有重要的理论意义和生产实际意义。本研究在前期研究现状的基础上,以大田玉米为试验材料,采用隔沟交替灌溉(AFI)和常规沟灌(CFI)两种沟灌方式,通过对地面光温分布、土壤水热参数、根系分布、作物生理指标等试验测定,分析了作物生长期间的地面光温分布规律以及土壤表面阻力、冠层阻力、空气动力学阻力与环境因素的关系,建立了各阻力模型,进一步构建了地面光温分布模型、土壤蒸发二维模型、根系吸水二维模型和土壤水热传输模型,揭示了AFI与CFI条件下土壤蒸发机制、根系形态对土壤水分的响应机制和水热传输特性,从整体上与相互反馈关系上建立了SPAC水热传输二维动态模型,实现了SPAC系统水热变化的动态模拟。研究取得的主要结果和结论如下:
     (1)东西行向播种时地面太阳总辐射量高于南北行向。同一播种行向时,AFI在非灌水区域地面所接受的太阳总辐射量高于灌水区域,因此AFI地面所接受的太阳总辐射量高于CFI。地表温度变化曲线同太阳辐射变化趋势非常一致,东西行向播种时地表温度高于南北行向。同一行向播种时,AFI的地面温度高于CFI,最大温差为4.23℃,最小温差为0.06℃。
     根据地面结构与太阳入射角度的几何关系建立地面太阳总辐射传输和地表温度分布模型,较好地模拟了沟灌田间太阳辐射和地面温度变化,拟合度在0.84以上。
     (2)改进了S-W模型,将AFI条件下土壤蒸发分为灌水区域和非灌水区域两部分,建立了沟灌条件下土壤蒸发二维模型和作物蒸腾模型。在Camillo(1986)和Anadranistakis et al(2000)模型基础上,建立了适于AFI灌水与非灌水区域的土壤表面阻力模式。提出了非充分供水条件下由冠层内温差表示的气孔阻力响应函数,在Jarvis(1976)模型基础上,建立了充分供水和非充分供水条件下的冠层阻力模型,模型待定系数经最小二乘法反复迭代,确定最优解。土壤蒸发模0实拟.3测值3值与和的实0.测807.8值;8有C倍F很,I的好C F的MI一A的E致作、性物?,蒸??A腾?F I和量的?模??土?分拟壤别结蒸为果发为0模.0实拟9、测值0值与.3的1实和测0. 80值5.9间倍0。的。A MFAI的E、作??物??蒸和腾??量??分模别拟为结0果.1为1、
     (3)AFI条件下,根系直径、体积密度、根尖数和表面积对土壤水热环境形成了自身的响应机制,受旱根区复水后根系生长速率加快,死亡速率变缓,根系形态出现“补偿效应”。AFI的细根根尖数和表面积较CFI增大,根系下扎更深,有利于根系吸水。
     根长密度在侧向和垂向土层深度上均呈指数递减分布。在玉米抽雄期之前,AFI的根长密度在垄位两侧不对称分布,受降雨影响,在玉米抽雄期之后,根长密度逐渐呈对称分布。CFI的根长密度在垄位两侧呈对称分布。建立了根长密度二维分布模型,AFI和CFI的根长密度模拟结果与实测值比较一致,二者的相关性决定系数在0.80以上。根据根长密度的动态分布和Feddes et al(1978)模型,建立了水分胁迫条件下的根系吸水二维动态模型。
     (4)有限元法对模拟区域的划分减小了复杂边界和非均质土壤引起的误差,有限元法的Galerkin方程提高了模拟精度,较好地模拟了AFI与CFI条件下土壤水热在时间上和空间上的传输过程,模拟结果与实测值有很好的相关性,土壤水分运动模拟值为实测值的0.96倍;而土壤温度的模拟值与实测值基本吻合,模拟值为实测值的0.98倍。
     本研究的主要创新点:
     ①根据光学几何原理,考虑地面处于遮阴区和日晒区以及土壤湿润方式,建立的沟灌地面太阳总辐射传输模型和地表温度分布模型,较好地模拟了地面不同点位处光温分布规律。
     ②确定了适合新乡轻砂壤土在AFI和CFI条件下的土壤表面阻力计算方法。所建立的冠层阻力模型中,水分亏缺条件下的气孔阻力响应函数由冠层温度表示,数据获取方便、快捷,优于土壤水分表示法,而且能够计算冠层阻力的日变化值,实用性强。
     ③考虑沟灌地表复杂边界条件、土壤水分的非均匀性和地面小气候变化,改进了S-W模型,建立了沟灌条件下的二维土壤蒸发模型和作物蒸腾模型,蒸发蒸腾量的模拟值与实测值间的MAE、RMSE小于1,di在0.87以上。
     ④揭示了活根/死根根系形态对沟灌土壤水分环境的响应机制。所建的根长密度分布模型,考虑了根系的空间分布以及根系伸展、下扎长度随时间变化,模拟精度较高,具有动态性。
It was very important to model water and heat transfer in SPAC under furrow irrigation for understanding the quantitative relationships between energy transmission and transition of SPAC, and elucidating the water-saving mechanism and characters of energy transmission of alternative furrow irrigation (AFI). Based on the current situation of water and heat transfer simulation of SPAC under furrow irrigation, the light and temperature distribution on soil surface and the relationships between soil surface resistance, canopy resistance, aerodynamic resistance and environmental factors were analyzed with observations of the light and temperature distribution, soil water and heat transfer parameters, crop root distribution and crop physical indices of maize under AFI and convention furrow irrigation (CFI), and various resistance models were also developed; furthermore, the model of light and temperature distribution on soil surface, two-dimensional model of soil evaporation and root water uptake, and soil water and heat transfer model was developed; the mechanism of soil evaporation, the response mechanism of root morphology to soil moisture and the characters of soil water and heat transfer under AFI and CFI was revealed; the 2-D water and heat transfer model of SPAC under furrow irrigation was developed with the mutual feedback relationships, achieving the dynamic simulation of water and heat variation of SPAC under furrow irrigation. Results were as follows:
     (1) Total amount of solar radiation on soil surface with West-East row was greater than that with North-South row. For spring maize under AFI with the identical row orientation, solar radiation quantities on non-irrigated zone was greater than that on irrigated zone, therefore, solar radiation quantities on soil surface under AFI was greater than that under CFI. Soil surface temperature variation curve was similar to solar radiation variation trend. Soil surface temperature with West-East row was greater than that with North-South row. For maize with the identical row orientation, soil surface temperature of AFI was greater than that of CFI, the maximum temperature difference and the minimum difference was 4.23℃and 0.06℃, respectively.
     The model of global radiation transfer on soil surface and soil temperature distribution was developed based on the geometrical relationships between soil surface structures and the incident angle of solar radiation. Variations of solar radiation and soil surface temperature under furrow irrigation were well simulated with the model, and the fitting degree was greater than 0.84.
     (2) The 2-D model of soil evaporation and crop transpiration under furrow irrigation was developed with the improved S-W model based on dividing soil evaporation zone to wet and non-wet zones under AFI. Soil surface resistance model of dry and wet region under AFI was developed with the Camillo (1986), and Anadranistakis et al (2000) model. The response function of stomatal resistance to water stress under deficient water supply was expressed as the temperature difference in the interior of canopy. Based on the Jarvis (1976) model, canopy resistance model was developed under adequate and deficit water supply; the undermined parameters of the model were calculated with the least square method, then the optimal solution was determined. The simulated values of soil evaporation were similar to the measured values. The relative deviation (MAE), root-mean-square deviation (RMSE) and fitting degree (dl) between the simulated and measured values under AFI was 0.11, 0.33 and 0.87, respectively; the values of MAE, RMSE and dl under CFI were 0.09, 0.31 and 0.90, respectively. Crop transpiration was underestimated with the model. The simulated transpiration under AFI was 0.88 times of the measured values, and the simulated values under CFI were 0.85 times of the measured values.
     (3) Under AFI, root diameter, root volume density, root tip number, and surface area present the response mechanism to soil water and heat environment. Root growth rate of root zone with water deficit was increased significantly after re-watering, the root death rate decreased, and the‘compensational effects’present. Values of root tip number and surface area of fine root under AFI was significantly greater than that under CFI; root depth under AFI was greater than that under CFI, which was favorable to root water uptake.
     Root length density (RLD) decreased exponentially with depth in lateral and vertical profile. RLD of AFI was not symmetrical distributed with ridge before jointing; RLD was symmetrical distributed with ridge after tasseling. RLD under CFI was symmetrical distributed with ridge. The two-dimensional distribution model of RLD was developed, the simulated values of RLD at different sites under AFI and CFI were similar to the measured values, coefficient of determination were higher than 0.80. The 2-D model of root water uptake under water stress condition was developed with the dynamic distribution of RLD and the Feddes model (Feddes et al., 1978).
     (4) The simulation errors caused by complex boundary and homogeneous soil were decreased with the division of the simulated domain using the finite element method, and the simulation precision increased using the Galerkin method. Soil water and heat transfer in time and space under AFI and CFI was nicely simulated using the finite element method; the simulated values had a significant correlation with measured values, the simulated values were 0.96 times of the measured values. The simulated values of soil temperature were similar to the measured values, the simulated values were 0.98 times of the measured values.
     Main innovative points of this paper:
     ①The model of global radiation transfer on soil surface and soil temperature distribution was developed based on the geometric optics, and taking into account of overshadow zone and sunshine zone and soil moist pattern. The light and temperature distribution on different sites of soil surface was well simulated with the model.
     ②The calculation method of surface resistance under AFI and CFI for sandy loam soil at Xinxiang was determined. For the developed model of canopy resistance, the response function of stomatal resistance to water stress under deficient water supply was expressed as the temperature difference in the interior of canopy, which could be easily and simply measured, being superior to express as soil moisture; values of daily variation of canopy resistance could be calculated with the
     method, which was feasible and practical.③The S-W model was improved with the complex boundary conditions of furrow irrigation, the homogeneity of soil moisture and variation of microclimate on soil surface, then the 2-D model of soil evaporation and crop transpiration under furrow irrigation was developed, and the values of MAE, RMSE between the simulated and measured values was less than 1, and di greater than 0.87.
     ④The response mechanism of the live and dead roots morphology to soil water condition under furrow irrigation was analyzed, and the 2-D model of root length density distribution, which taking account of the space distribution of root system, and variation of depth of root spread and penetration with time, has high simulation precision and dynamic characters.
引文
1.丛振涛,雷志栋,胡和平,等.冬小麦生长与土壤-植物-大气连续体水热运移的耦合研究Ⅰ:模型[J].水利学报, 2005, 36(5): 575-580
    2.单建平,陶大立,王渺.长白山阔叶红松林细根周转的研究[J].应用生态学报, 1993, 4(3): 241-245
    3.杜太生,康绍忠,王振昌,等.隔沟交替灌溉对棉花生长、产量和水分利用效率的调控效应[J].作物学报, 2007, 33(12): 1982-1990
    4.鄂玉江,戴俊英,顾慰连.Ⅰ.玉米根系生长和吸收能力与地上部分的关系[J].作物学报, 1988, 14(2): 149-154
    5.冯宝平,张展羽,张建丰,等.温度对土壤水分运动影响的研究进展[J].水科学进展, 2002, 13(5): 643-648
    6.龚元石. Penman-Monteith公式与FAO-PPP-17Penman修正式计算参考作物蒸散量的比较[J].北京农业大学学报, 1995, 21(1): 68-75
    7.侯宪东,汪志荣,张建丰.非饱和土壤水分运动数值模拟研究综述[J].水资源与水工程学报, 2006, 17(4): 41-45
    8.胡继超,张佳宝,赵炳梓,等.冬小麦冠层阻力日变化的估算[J].灌溉排水学报, 2005, 24(2):1-4
    9.胡田田,康绍忠,高明霞,等.玉米根系分区交替供应水、氮的效应与高效利用机理[J].作物学报, 2004, 30(9): 866-871
    10.黄冠华,沈荣开,张瑜芳.作物生长条件下蒸发蒸腾与土壤水分动态模拟[J].武汉水利电力大学学报, 1995, 28(5): 25-32
    11.康绍忠,刘晓明,熊章.土壤-植物-大气连续体水分传输理论及其应用[M].水利电力出版社, 1994
    12.康绍忠,潘英华,石培泽,等.控制性作物根系分区交替灌溉的理论与试验[J].水利学报, 2001, (11):80-86
    13.康绍忠,熊运章,刘晓明.用彭曼-蒙特斯模式估算作物蒸腾量的研究[J].西北农业大学学报, 1991, 19(1):13-20
    14.康绍忠,张富仓,刘晓明.作物叶面蒸腾与棵间蒸发分摊系数的计算方法[J].水利科学进展, 1995, 6(4) : 285-289
    15.康绍忠,张建华,梁宗锁.控制性交替供水——一种新的农田节水调控思路[J].干旱地区农业研究,1997, (1): 1-6
    16.李彩霞,陈晓飞,王铁良,等.控制性交替灌溉对玉米根系层水分再分布与产量的影响[J].农业工程学报, 2007, 23(11): 59-64
    17.李远华,罗金耀.节水灌溉理论与技术(第二版)[M].武汉:武汉大学出版社, 2003
    18.李跃强,王学臣.根信号及其在植物水分利用最优化中的调节作用[J].植物学通报, 1994, 11(2):37-43
    19.梁爱华,马富裕,梁宗锁,等.旱后复激发玉米根系功能补偿效应的生理学机制研究[J].西北农林科技大学学报:自然科学版, 2008, 36(4): 58-64
    20.梁宗锁,康绍忠,石培泽,等.隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学, 2000, 33(6): 26-32
    21.林家鼎,孙菽芬.土壤内水分流动、温度分布及其表面蒸发效应的研究—土壤表面蒸发阻抗的探讨[J].水利学报, 1983, 7
    22.刘钰, Perira L S,蔡林根.参照腾发量的新定义及计算方法对比[J].水利学报, 1997, (6): 27-3
    23.刘钰, Perira L S.气象数据缺测条件下参照腾发量的计算方法[J].水利学报, 2001, (3): 11-17
    24.卢振民,牛文元,张翼.作物需水量的计算与作物干燥程度判别方法[J].农业气象, 1987, (3) : 57-59
    25.卢振民.田间小麦群体内叶片气孔阻力差异研究[J].应用生态学报. 1990. 1(1):60-66.
    26.卢振民.土壤-作物-大气系统(SPAC)水流动态模拟与实验研究[C].作物与水分关系研究, 1992, 287-358
    27.陆垂裕,裴源生.适应复杂上表面边界条件的一维土壤水运动数值模拟[J].水利学报, 2007, 38(2): 136-142
    28.罗毅,于强,欧阳竹,等.利用精确的田间实验资料对几个常用根系吸水模型的评价与改进[J].水利学报, 2000, (4): 73-79
    29.莫兴国.土壤-植被-大气系统水分能量传输模拟和验证[J].气象学报, 1998, 56(3): 323-332
    30.慕自新,张岁岐,郝文芳,等.玉米根系形态性状和空间分布对水分利用效率的调控[J].生态学报, 2005, 25(11): 2895-2900
    31.潘英华,康绍忠,杜太生,等.交替隔沟灌溉土壤水分时空分布与灌水均匀性研究[J].中国农业科学, 2002, 35(5):531-535
    32.冉辛拓,郝宝锋,张新生.干旱过程中苹果茎水势和叶水势的变化研究[J].河北农业科学, 2009,13(4): 16-17
    33.任理,张瑜芳,沈荣开.条带覆盖下土壤水热动态的田间试验与模型建立[J].水利学报, 1998,(1): 76-84
    34.山仑.植物抗旱生理研究与发展半旱地农业[J].干旱地区农业研究, 2007, 25(1): 1-5
    35.史建伟,王政权,于水强,等.落叶松和水曲柳人工林细根生长、死亡和周转[J].植物生态学报, 2007, 31(2): 333-342
    36.孙景生,康绍忠,熊运章,等.夏玉米田蒸散的计算[J].中国农业气象, 1995, 16(5): 1-7
    37.孙景生,陈玉民,康绍忠,等.夏玉米田水热耦合运移的数值模拟[J].灌溉排水, 1995,14(13): 24-29
    38.孙景生.夏玉米生长盛期土壤-作物-大气连续体水热耦合运移的数值模拟[D][硕士学位论文].陕西:西北农业大学,1994
    39.孙菽芬,牛国跃,洪钟祥.干旱及半干旱区土壤水热传输模式研究[J].大气科学, 1998, 22(1):1-10
    40.王宏,作物水分亏缺诊断的研究. 2.冠层温度和农田蒸散,作物与水分关系研究[C], 1992, 271-285
    41.谢贤群,吴凯.麦田蒸腾需水量的计算模式[J].地理学报, 1997, 52(6): 528-535
    42.徐林娟.以叶水势为灌溉指标的水稻节水技术体系研究[D][博士学位论文].杭州:浙江大学, 2006
    43.杨邦杰,陈镜明.二维土壤蒸发过程的数值分析[J].生态学报, 1990, 10(4): 291-297
    44.杨邦杰, Blackwell P S, Nicholson D F.斥水土壤中水热运动模型的应用[J].土壤学报, 1997,34(4): 427-433
    45.杨邦杰.耕作的数值模型及其应用[J].生态学报, 1996, 16(6): 591-601
    46.杨邦杰.土壤蒸发过程的数值模拟及其应用[J].北京:学术书刊出版社, 1989
    47.于贵瑞,伏玉林,孙晓敏,等.中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路[J].中国科学(D辑), 2006, 36(增刊2): 1-21
    48.袁一丁,杨玉盛,陈光水,等.杉木人工林细根寿命研究[J].亚热带资源与环境学报, 2009, 4(2): 47-52
    49.张小全,吴可红, Dieter Murach.树木细根生产与周转研究方法评述[J].生态学报, 2000, 20(5): 875-883
    50.赵梦玲,张德生,窦建坤,等.二维非饱和土壤水分运动的数值模拟[J].纺织高校基础科学学报, 2005, 18(3): 254-257
    51. Allen R G, Jenson M E, Wright J L, et al. Operational estimates of reference evapotranspiration[J]. Agronomy Journal, 1989, 81: 650-662
    52. Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration guidelines for computing crop water requirements [J]. Irrigation and Drain,Paper No.56.FAO,Rome, 1998
    53. Alvenas G, Jansson P E. Model for evaporation, moisture and temperature of bare s oil : calibration and sensitivity analysis [J]. Agricultural and ForestMeteorology, 1997, 88: 47-56
    54. Anadranistakis M, Liakatas A, Kerkides P, et al. Crop water requirements model tested for crops grown in Greece [J]. Agricultural Water Management, 2000, 45:297-316
    55. Aral Sea basin M G, Horst S S, Shamutalov L S, et al. Field assessment of the water saving potential with furrow irrigation in Fergana [J]. Agricultural Water Management, 2005,77: 210–231
    56. Arta L M, Blake G R, Farrell D A. A field study of soil water depletion patterns in presence of growing soybean roots:Ⅱ. Effect of plant growth on soil water pressure and water loss patterns [J]. Soil Science Society of America, 1975a. 39, 430-436
    57. Arya L M, Blake G R, Farrell D A. A field study of soil water depletion patterns in presence of growing soybean roots:Ⅲ. Rooting characteristics and root extraction of soil water [J]. Soil Science Society of America, 1975b, 39, 437-444
    58. Avissar R, Avissar P, Maherer Y, et al. A model to simulate response of plant stomata to environmental conditions [J]. Agricultural and Forest Meteorology, 1985, 34: 21-29
    59. Bland W L. Estimating Root Length Density by the Core-Break Method[J]. Bland Soil Science Society of America Journal. 1989, 53: 1595-1597
    60. Blanke A, Rozelle S, Lohmar B, et al. Water saving technology and saving water in China [J]. agricultural water management, 2007,87:139-150
    61. Bragg P L, GOVI G, Cannell R Q. A comparison of methods, including angled and vertical minirhizotrons, for studying root growth and distribution in a spring oat crop[J]. Plant and Soil, 1983, 73, 435-440
    62. Brenner A J, Incoll L D. The effect clumping and stomatal response on evaporation from parsely vegetated shrublands[J]. Agricultural and Forest Meteorology, 1997, 84 : 178-205
    63. Brisson N, Itier B, Hotel J C, et al. Parameterisation of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop model [J]. Ecological Modelling, 1998, 107: 159-169
    64. Camillo P J, Gurney R J. A resistance parameter for bare soil evaporation models [J]. Soil Science, 1986, 141:95-106
    65. Camillo P J, Gurney R J, Schmugge J J. A soil and atmospheric boundary layer model for evapotranspiration and soil moisture studies [J]. Water Resource Research, 1983, 19: 371-380
    66. Campbell G S. Soil physics with basic. Transport models for soil-plant systems [M]. Elsevier Science Publication Come out New York, 1985.
    67. Choudhury B J, Monteith J L. Afour-layer model for the heat budget of homogeneous land surfaces[J]. Quarterly Journal of the Royal Meteorological Society,1988,114:373-398
    68. Costa C, Dwyer L M, Hamilton R I, et al. A sampling method for measurement of large root systems with scanner- based image a-nalysis [J]. Agronomy Journa, 2000, l92: 621-627
    69. Crevoisier D, Popova Z, Mailhol J C, et al. Assessment and simulation of water and nitrogen transfer under furrow irrigation [J]. Agricultural Water Management, 2008, 95(4): 354-366
    70. Crocker T L, Hendrick R L, Ruess R W, et al. Substituting root numbers for length: improving the use of minirhizotrons to study fine root dynamics [J]. Applied Soil Ecology, 2003, 23(2): 127-135
    71. Daamen C C. Two source model of surface fluxes for millet fields in Niger [J]. Agricultural and Forest Meteorology, 1997, 83: 205-230
    72. Dardanelli J L, Ritchie J T, Calmon M, et al. An empirical model for root water uptake [J]. Field Crops Research, 2004, 87: 59–71
    73. Davies W J, Wilkinson S, Loveys B. Stomatal control by chemical signalling and the exploitat ion of this mechanism to increase water use eff iciency in agriculture [J].New Phytologist, 2002, 153:449-460
    74. De Jong van Lier Q, Dourado Neto D, Metselaar K. Modeling of transpiration reduction in van Genuchten–Mualem type soils [J]. Water Resource Research, 2009, 45
    75. De Ruijter F J, Veen B W, Van Oijen M. A comparison of soil core sampling and minirhizotrons to quantify root development of field-grown potatoes [J]. Plant and Soil, 1996: 182: 301-312
    76. de Vries D A. Simultaneous transfer of heat and moisture in porous media [J]. Transactions America Geophysical Union, 1959,39(5)
    77. Denmead O T, Millar B D. Field studies of the conductance of whwat leaves and transpiration [J]. Agronomy Journal,1976, 68: 307-311
    78. Denmead O T. Plant physiological methods for studying evapotranspiration: Problems of telling the forest from the trees [J]. Agricultural Water Management, 1984, 8(1-3): 167-189
    79. Doorenbos J, Kassam A H. Yield Response to Water. FAO Irrigation and Drainage Paper 33 [R]. Food and Agricultural Organization of the United Nations, Rome, 1986
    80. Du T S, Kang S Z, Zhang J H, et al. Yeild and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China [J]. Agricultural Water Management, 2006, 84: 41-52
    81. Eapen D, Barroso M L, Ponce G, Campos M E, Cassab G I. Hydrotropism: root growth responses to water [J].Trends Plant Science, 2005.10: 44-50
    82. Emanuele Romano, Mauro Giudici. On the use of meteorological data to assess the evaporation from a bare soil[J]. Journal of Hydrology, 2009,372: 30–40
    83. Escher P, Peuke A D, Bannister P, et al. Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album (L.): Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana)[J]. Plant Physiology and Biochemistry, 2008, 46(1):64-70
    84. Evett S R, Matthias A D, Warrick A W. Energy-balance model of spatially-variable evaporation from bare soil[J]. Soil Science Society of America Journal, 1994, 58(6), 1604–1611
    85. Farahani H J, Bausch W C. Performance of evapotranspiration models for maize-bare soil to closed canopy[J]. Transactions of the American Society of Agricultural Engineers, 1995, 38(4): 1049-1060
    86. Feddes R A, Kabat P, Van Bakel P J T, et al. Modelling soil water dynamics in the unsaturated zone–state of the art [J]. Journal Hydrology, 1988,100, 69–111
    87. Feddes R A, Kowalik P J, Zaradny H. Simulaiton of Field Water Use and Crop Yield [M]. John Wiley&Sons, New York, NY, 1978
    88. Feddes R A, Raats P A C. Parameterizing the soil-water-plant root system. In: Feddes R A et al. (Eds.), Unsaturated-zone Modeling: Progress, Challenges and Applications. Wageningen UR Frontis Series [M]. Kluwer Academic Publ., Dordrecht, The Netherlands, 2004, 95–141
    89. Feddes R A. Water, heat and crop growth [D][PhD thesis].Comm. Agric. Univ., Institute of Land and Water Management Research, Wageningen, 1971. 184
    90. Federer C A, Vorosmarty C J, Fekete B.Intercomparison of methods for potential evapotranspiration in regional or global water balance models[J].Water Resource Research,1996, 32:2315-2321
    91. Fuchs M, Tanner C B.Evaporation from drying soil [J]. Journal of Applied Meteorology, 1967, 6: 852-857
    92. Gardiol J M, Serio L A, Maggiora A I D, Modeling evapo-transpiration of corn (Zea mays) under different plant densities [J]. Journal of Hydrology, 2003, 217, 188–196
    93. Gardner W R. Dynamic aspects of water availability to plants [J]. Soil Science, 1960, 89, 63-73
    94. Geraldine L. Tierney, Timothy J. Fahey.Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broadleaf forest [J]. Plant and Soil, 2001: 229: 167–176
    95. Ghasem Zarei, Mehdi Homaee, Abdol Majid Liaghat,et al. A model for soil surface evaporation based on Campbell’s retention curve [J]. Journal of Hydrology, 2010, 380: 356–361
    96. Gowing J W, Konukcu F, Rose D A. Evaporation ?ux from a shallow water table: the in?uence of avapor-liquid phase transition [J]. Journal Hydrology, 2006, 321, 77–89
    97. Grant RF. Simulation in ecosys of root growth response to contrasting soil water and nitrogen [J].Ecological Modelling, 1998, 107:237-264
    98. Heeraman D A, Juma N G. A comparison of minirhizotron, core and monolith methods for quantifying barley (Hordeum vulgare L.) and fababean (Vicia faba L.) root distribution [J]. Plant Soil, 1993 148: 29–41
    99. Hendrick R L, Pregitzer K S, Patterns of ?ne root mortality in two sugar maple forests [J]. Nature, 1993a, 361, 59–61
    100. Hendrick R L, Pregitzer K S. Applications of minirhizotrons to understand root function in forests and other natural ecosystems [J]. Plant and Soil, 1996, 185: 293-304
    101. Hillel D I. Environmental soil physics. Evaporation from Bear– Surface Soils and Winds Erosion [M]. Academic Press Incorporated. 1998, 508–522
    102. Hillel D. Environmental Soil Physics [M]. London: Academics Press, 1998
    103. Hoffman G J, Van Genuchten M. Th. Soil properties and efficient water use: water management for salinity control. In: Taylor H M, Jordan W R, Sinclair T R.(Eds.). Limitation to efficient water use in crop production [J]. American Society of Agronomy, Madison, WI, 1983, 73-85
    104. Hoogland J C, Feddes R A, Belmans C. Root water uptake model depending on soil water pressure head and maximum extraction rate [J]. Acta Horticulturae, 1981, 119, 123-131
    105. Hsiao T C, Jing J H. Leaf and root expansive growth in response to water deficits. Source:Physiology of cell expansion during plant growth: proceedings of the second annual Penn State Symposium in Plant Physiology, The Pennsylvania State University, Cosgrove D J, Knievel D P, (Eds) [M]. Rockville, MAE. (USA): American Society of Plant Physiologists, 1987. 180-192
    106. Hu Z M, Yu G R, Zhou Y L, et al. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model[J]. Agricultural and Forest Meteorology, 2009, 149: 1410–1420
    107. Idso S B, Ehrler W L. Estimating soil moisture in the root zone of crops: A technique adaptable to remote sensing [J]. Geophysical Research Lettter, 1976, 3: 23-25
    108. Idso S B, Reginato R J, Jackson R D, et al. The three stages of drying in a ?eld soil[J]. Soil Science Society of America Proceedings, 1974, 38, 831–837
    109. Idso S B. Stomatal regulation of evaporation from well-watered plant canopies, A new synthesis[J]. Agricultural Meteorology, 1983, 29: 213-217
    110. Ipbal M. An introduction to solar radiation [M]. Academic Press, Toronto, 1983
    111. Iritz Z, Lindroth A, Heikinheimo M, et al. Test of a modified Shuttleworth-Wallace estimate of boreal forest evaporation [J]. Agricultural and Forest Meteorology, 1999, 98-99:605-619
    112. Jackson R D, Idso S B. Wheat canopy temoeratature: A Practical tool for evaluating water requirements , Water Resources Research, 1977, 13, 651-656
    113. Jackson R D. Soil moisture inferences from thermal-infrared measurements of vegetation temperatures, IEEE Trans [J]. Geoscience Remote Sensing, 1982, 20: 282-286
    114. Jarvis P G. The interpretation of the variation in leaf water potential and stomatal conductance found in canopies in the field [R]. Philosophical Transactions of the Royal Society of London, B, 1976, 273:593-610
    115. Jensen M E, Burman R D, Allen R G, Evapotranspiration and irrigation water requirements [S], ASCE manual, 1990, 70
    116. Johnson M G, Tingey D T, Phillips D L, et al. Advancing fine root research with minirhizotrons [J]. Environmental and Experimental Botany, 2001,45: 263–289
    117. Jose S, Gillespie A R, Seifert J R, et al. Comparison of minirhizotron and soil core methods for quantifying root biomass in a temperate alley cropping system[J].Agroforestry Systems, 2001, 52:161-168
    118. Kage H, Kochler M, Stützel H. Root growth and dry matter partitioning of cauliflower under drought stress conditions:measurement and simulation[J].European Journal of Agronomy, 2004, 20, 379-394
    119. Kang S Z, Hu X T, Goodwin I, et al. Soil water distribution, water use, and yeild r esponse to partial root zone drying under a shallow groundwater table condition in a pear orchard [J]. Scientia Horticulturae, 2002, 92: 277-291
    120. Kang S Z, Liang Z S, Pan Y H, et al. Alternate furrow irrigation for mailze production in arid area [J]. Agricultural Water Management, 2000, (45): 267-274
    121. Kang S Z, Zhang J H, Liang Z S. combined effects of soil water content and temperature on plant root hydraulic conductivity[J].Acta Phytoecologica Sinica, 1999, 23: 211-219
    122. Kato T, Kimura R, Kamichika M. Estimation of evapotranspiration, transpiration ratio and water-use ef?ciency from a sparse canopy using a compartment model [J]. Agricultural Water Management, 2004, 65 (3): 173–191
    123. Kobayashi T, Hew, Nagai H. Mechanis ms of evaporati on from soil with a dry surface [J]. Hydrological Processes, 1998, 12: 2185 - 2191.
    124. Kondo J, Saigusa N, Sato T. A parameterization of evaporati on from bare s oil surfaces [J]. Journal of Applied Meteorology, 1990, 29: 385 - 389
    125. Kosuke Noborio. A Two-dimensional finite element model for solution, heat, and solute transport in furrow-irrgate soil [D]. Texas A&M University, doctoral dissertation of philosophy, 1995
    126. Kozak J A, Ahuja L R, Ma L, et al. Scaling and estimation of evaporation and transpiration of water across soil textures [J]. Vadose Zone Journal, 2005, 4, 418–427
    127. Kramer P J. Water relations of plants [M]. Academic Press, 1983
    128. Kut?e k M, Nielsen D R, Soil Hydrology [M]. Ctena Verlag Geoscience Publisher, 1995, 364
    129. Kyotaro N, Tadashi S, Takeo M, et al. Estimation of the fine root biomass in a Japanese cedar (Cryptomeria japonica) plantation using minirhizotrons[J].Journal of Forest Research, 2004, 9: 261-264
    130. Kyotaro Noguchi, Tadashi Sakata, Takeo Mizoguchi, et al. Estimation of the fine root biomass in aJapanese cedar (Cryptomeriajaponica) plantation using minirhizotrons [J]. The Japanese Forestry Society and Springer-Verlag Tokyo, 2004, 9: 261–264
    131. Lafolie F, Bruckler L, Tardieu F. Modeling root water potential and soil-root water transport. I. Model presentation [J]. Soil Science Society of America Journal, 1991, 55, 1203–1212
    132. Lai C T, Katul G. The dynamic role of root-water uptake in coupling potential to actual transpiration [J]. Advances in Water Resources, 2000, 23, 427–439
    133. Lauenroth W K, Bradford J B. Ecohydrology and the partitioning AET between transpiration and evaporation in a semiarid steppe [J]. Ecosystems, 2006, 9(5), 756-767
    134. Li F S, Yu J M, Nong M L, et al. Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers [J].Agricultural Water Management, 2010, 97, 231-239
    135. Li K Y, Boisvert J B, De Jong R. An exponential root-water-uptake-model. Can [J]. Journal Soil Science, 1999, 79, 333-343
    136. Li K Y, De Jong R, Boisvert J B. An exponential root-water-uptake model with water stress compensation [J]. Journal Hydrology, 2001, 252, 189–204
    137. Li Q M, Liu B B. Comparison of three methods for determination of root hydraulic conductivity of maize (Zea mays L.) root system [J].Agricultural Sciences in Chinam, 2010, 9, 1438-1447
    138. Lopez B, Sabate S, Gracia C A. Annual and seasonal changes in ?ne root biomass of a Quercus ilex L. forest [J]. Plant Soil, 2001, 230: 125–134
    139. Lu S, Ren T S, Gong Y S, et al. An improved model for predicting soil thermal conductivity from water content at room temperature [J]. Soil Science Society of America Journal, 2007, 71(1): 8-14
    140. Lund M R, Soegaard H. Modelling of evaporation in a sparse millet crop using a two-source model including sensible heat advection within the canopy [J]. Journal of Hydrology,2003,280:124-144
    141. Marco Bittelli, Francesca Ventura , Gaylon S, et al. Coupling of heat, water vapor, and liquid water ?uxes to compute evaporation in bare soils [J]. Journal of Hydrology , 2008,362, 191– 205
    142. Maihol J C, Crevoisier D, Triki K. Impact of water application conditions on nitrogen leaching under furrow irrigation: experimental and modelling approaches [J]. Agricultural Water Management, 2007, 87, 275-284
    143. Margaret E, McCully.Roots in soil:unearthing the complexities of roots and their rhizospheres [J].Annual Review Plant Physiology and Plant Molecular Biology, 1999, 50: 695-718
    144. Markus Liedgens, Walter Richner. Relation between maize (Zea mays L.) leaf area and root density observed with minirhizotrons [J]. European Journal of Agronomy, 2001,15,131-141
    145. Massman W J, Raschke K. Stomatal action [J]. Annual Review of Plant Physiology, 1975, 26 :309-400
    146. McIntyre B D, Riha S J, Flower D J. Water uptake by pearl millet in a semiarid environment [J]. Field Crops Research, 1995, 43, 67–76
    147. Metselaar K, De Jong van Lier Q. The shape of the transpiration reduction function under plant water stress [J]. Vadose Zone Journal 2007, 6, 124–139
    148. Mohammad F S. Effect of evaporation on water table drawdown under hot climatic conditions [J]. Dirasat. (Pure Apply Science) 1993, 20, 16–33
    149. Mohd Razi Ismail, Davies W J, Mohamad Hamad Awad. Leaf growth and stomatal sensitivity to ABA in droughted pepper plants [J]. Scientia Horticulturae, 2002, 96(1-4): 313-317
    150. Molz F J, Remson I. Extraction term models of soil moisture use by transpiring plants [J]. Water Resource Research, 1970, 6, 1346–1356
    151. Molz F J. Interaction of water uptake and root distribution [J]. Agronomy Journal,1971, 63, 608-610
    152. Monteith J L, Evaporation and environment. In: The State and Movement of Water in Living Organisms, Symposium of the Society for Experimental Biology, 19 [M]. Cambridge University Press, 1965, 205-224
    153. Monteith J L. Environmenntal control of plant growth (Evans L T, ed.) [M]. New York: Aeademic Press, 1963, 95-112
    154. Monteith J L. Evaporation and Environment [M]. Cambridge: University Press, 1965, 205-234
    155. Monteith J L. How do crops manipulate water supply and demand?[J]. Phil. Trans. Royal Society. London A, 1986, 316, 245–259
    156. Moran M S, Scott R L, Keefer T O, et al. Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature [J]. Agricultural and Forest Meteorology, 2009, 149(1), 59–72
    157. Morison J I L, Gifford R M. Stomatal sensitivity to carbon dioxide and humidity [M]. A comparison of two C3 and C4 grass species, Plant Physiology, 1983, 71: 789-796
    158. Nassar I N and Horton R. Water transport in unsaturated nonisothermal salt soil:Ⅱ.Theoretical development [J]. Soil Science Society of America Journal, 1989,53: 1330-1337
    159. Neuman, S. P. Saturated-unsaturated seepage by finite elements [J]. Journal of Hydraulic Division, ASCE, 1973, 99: 2233-2250
    160. Norwood M, Toldi O, Richter A, et al. Investigation into the ability of roots of the poikilohydric plant Craterostigma plantagineum to survive dehydration stress [J].Journal Experimental Botany, 2003, 54: 2313-2321
    161. Orgill J F, Hollands K G T. Correlation equation for hourly diffuse radiation on a horizontal surface [J]. Solar Energy, 1977, 19: 357-359
    162. Ortega-Farias S, Olioso A, Antonioletti R, et al. Evaluation of the Penman-Monteith model for estimating soybean evapotranspiration [J]. Irrigation Science, 2004, 23(1): 1-9
    163. Ortega-Farias S, Poblete-Echeverr? C, Brisson N. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements [J]. Agricultural and Forest Meteorology, 2010, 150: 276–286
    164. Palmer J H, Trickett S, Linacre T. Transpiration response of Atriplexnummularia Lindl. and upland cotton vegetation to soil-moisture stress [J]. Agricultural and Forest Meteorology, 1964, 1, 282–293
    165. Parker C J, Carr M K V, Jarvis N J, et al. An evaluation of the minirhizotron technique for estimating root distribution in potatoes [J]. Journal Agricultural Science, 1991, 116: 341–350
    166. Passioura J B. Roots and drought resistance [J]. Agricultural Water Management, 1983,7: 265–280
    167. Passioura J B. Water transport in and to roots. Annu. Rev.Plant Physiol [J]. Plant Molecular Biology, 1988, 39, 245–265
    168. Penman H L. Evaporation: An introductory survey [J]. Netherlands Journal of Agricultural Science, 1956, 4(1): 9-29
    169. Penman H L. Natural evaporation from open water, bare soil and grass [C]. Proceedings of the Royal Society of London. Series A 193, Mathematical and Physical Sciences, 1948, 193(1032): 120-145
    170. Penman H L. The physical basis of irrigation control [C]. In: Report of the 13th International Horticultural Congress, 1952, 913-924
    171. Philip J R, De Vries D A. Moisture movement in porous materials under temperature gradient [R]. Transactions, American Geophysical Union, 1957, 38: 222-232
    172. Philip J R. Evaporati on, and moisture and heat fields in the soil [J]. Japan Journal of Meteorology, 1957, 14: 354 - 366
    173. Raats P A C. Steady flows of water and salt in uniform soil profiles with plant roots [J]. Soil Science Society of America, 1974 38, 717-722
    174. Reynolds J F, Kemp P R, Tenhunen J D. Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis [J]. Plant Ecology, 2000, 150 (1–2):145–159
    175. Ritchie J T, Godwin D C, Otter S. Description and performance of CERES-Wheat: a user-oriented wheat yield model. In: ARS Wheat Yield Project [M]. ARS-38. National Technical Information Service, Springfield, VA, 1985, 159–175
    176. Roose T, Fowler A C. A model for water uptake by plant roots [J]. Journal of Theoretical Biology, 2004, 228: 155-171
    177. RootS P A c. Transformation of fluxes and forces, describing the simultaneous transport of water and heat in unsaturated porous dia [J]. Research, 1975, 6: 938-942
    178. Saini H S, Westgate M E. Reproductive development in grain crops during drought [J]. Advances in Agronomy, 2000, 68, 59-96
    179. Samson B K, Sinclair T R. Soil core and minirhizotron comparison for the determination of root length density [J]. Plant Soil, 1994, 161: 225–232
    180. Scott R L, Huxman T E, Cable W L, et al. Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan Desert shrubland [J]. Hydrological Processes, 2006, 20(15): 3227–3243
    181. Seen D L, Chehbouni A, Njoku E, et al. An approach to couple vegetation functioning and s oil-vegetation-atmosphere trans fer models for semiarid grasslands during the HAPEX-Sahel experiment [J]. Agricultural and Forest Meteorology, 1997, 83: 49-74
    182. Sharratt B S, Schwarzer M J, Campbell G S, et al. Radiation balance of ridge-tillage with modeling strategies for slope and aspect in the subarctic [J]. Soil Science Society of America Journal, 1992, 56: 1376-1384
    183. Shaw R H, Buchele W F. The effect of the shape of the soil surface profile on soil temperature and moisture [J]. Iowa State College Journal Science, 1957, 32: 95-104
    184. Shaw R H, Perira A R. Aerodynamic roughness of a plant canopy: a numerical experiment [J]. Agricultural Meteorology, 1982, 26: 51-65
    185. Shuttleworth W J, Wallace J S. Evaporation from sparse crops an energy combination theory [J]. Quarterly Journal Royal Meteorological Society, 1985, 111: 829-855
    186. Shuttleworth W J, Gurney R J. The theoretical relationship between foliage temperature and canopy resistane in sparse crops [J]. Quarterly Journal of the Royal Meteorological Society, 1990, 116: 497-519
    187. ?im?nek J, ?ejna M, van Genuchten M Th. The HYDRUS Software Package for Simulating the Two-and Three-Dimensional Movement of Water, Heat and Multiple Solutes in Variably-Saturated Media [S]. User Manual, Version 1.0, PC Progress, Prague, Czech Republic, 2007
    188. Snyder R L, Bali K, Ventura F, et al. Estimating evaporation from bare or nearly bare soil [J]. Journal of irrigation and Drainage Engineering, 2000, 126 (6), 399–403
    189. Spencer J W. Fourier series representation of the position of the sun [J]. Search, 1971, 2: 172
    190. Stannard D I. Comparison of Penman-Monteith, Shuttleworth-Wallace, and Modified Priestley-Taylor Evapotranspiration Models for wildland vegetation in semiarid rangeland [J]. Water Resources Research, 1993, 1379-1392
    191. Stewart J B, Gay L W. Preliminary modelling of transpiration from the fife site in Kansas [J]. Agricultural and Forest Meteorology,1989, 48(3-4):305-315
    192. Sui H, Zeng D, Chen F. A numerical model for simulating the temperature and moisture regimesof soil under various mulches[J]. Agricultural and Forest Meteorology, 1992, 61, 281-289
    193. Sun S F. Moisture and heat transport in a soil layer forced by atmospheric conditions [D][M. S. Thesis.]. Department of Civil Engineering, University of Connecticut, 1982, 1-251
    194. Tapio Tourula, Martti Heikinheimo. Modelling evapotranspiration from a barley field over the growing season [J]. Agricultural and Forest Meteorology, 1998, 91(3-4):237-250
    195. Teh C, Simmonds L P, Wheeler T R. Modelling the partitioning of evapotranspiration in a maize-sunflower intercrop [J]. Malaysian Journal of Soil Science, 2006, 6: 27-41
    196. Tourula T, Heikinheimo M. Modelling evapotranspiration from a barly field over the growing season [J]. Agricultural and Forest Meteorology, 1998, 91: 237-250
    197. Vamerali T, Ganis A, Bona S, et al. An approach to minirhizotron root image analysis [J].Plant and Soil, 1999, 217:183-193.
    198. van de Griend A A, Owe M. Bare soil surface resistance to evaporation by vapor diffusion under semiarid conditions [J]. Water Resource Research, 1994, 30(2): 181-188
    199. Van den Berg M, Driessen P M. Water uptake in crop growth models for land use systems analysis: I. A review of approaches and their pedigrees [J]. Agriculture, Ecosystems & Environment, 2002, 92, 21–36
    200. van Genuchten M Th. A Closed- form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils [J]. Soil Science Socenty Americia Journal, 1980, 44(5):892-898
    201. Ventura F, Faber B, Bali K, et al. A model for estimating evaporation and transpiration from row crops [J]. Journal of irrigation and Drainage Engineering, 2001, 127 (6), 339–345
    202. Vining K C. Two-dimensional energy balance model for ridge-furrow tillage [D] [Ph. D. diss.] Texas A&M University, College Station, TX. 1988
    203. Vogt K A, Vogt D J, Bloom?eld J. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level [J]. Plant Soil, 1998, 200, 71–89
    204. Vrugt J A, Hopmans J W, ?im?nek J. Calibration of a two-dimensional root water uptake model [J]. Soil Science Society of American Journal, 2001, 65(4): 1027-1037
    205. Vrugt J A, van Wijk M T, Hopmans J W, et al. One-, two-, and three-dimensional root water uptake functions for transient modeling [J]. Water Resource Research, 2002, 37(10): 2457-2470
    206. Warrick A W. Additional solutions for steady-state evaporation from a shallow water table [J]. Soil Science , 1988, 146, 63–66
    207. Wilkinson S, Davies W J. ABA-based chem ical signaling:the co-ordinat ion of responses to stress in plants[J].Plant,Cell and Environment, 2002, 25: 195-210
    208. Williams D G, Cable W, Hultine K, et al. Evapotranspiration components determined by stable isotope, sap ?ow and eddy covariance techniques [J]. Agricultural and Forest Meteorology, 2004, 125 (3–4), 241–258
    209. Yamanaka T, Takeda A, Shmada J. Evaporati on beneath the s oil surface: some observational evidence and numerical experiments [J]. Hydrological Processes, 1998, 12: 2193-2203
    210. Zammouri M. Case study of water table evaporation at Ichkeul marshes (Tunisia) [J]. Journal Irrigation and Drainage Engineering, 2001.127 (5), 265–271
    211. Zegbe J A, Behboudian M H, Clothier B E. Partial Root Zone Drying is a Feasible Option for Irrigating Processing Tomatoes [J]. Agricultural Water Management, 2004, 68: 195-206
    212. Zhang B Z, Kang S Z, Li F S, et al. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China [J]. Agricultural and Forest Meteorology, 2008 a,148:1629-1640
    213. Zhang J H, Jia W S, Yang J C, et al. Role of ABA in integrating plant responses to drought and salt stresses [J]. Field Crops Research, 2006, 97(1): 111-119
    214. Zhou M C, Ishidair H, Hapuarachchi H P, et al. Estimating potential evapotranspiration using Shuttleworth–Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin [J]. Journal of Hydrology, 2006, 327, 151– 173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700