含三唑环的膦酸及羧酸构筑的配位聚合物的合成、拓扑结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三氮唑及其衍生物构筑的功能金属配合物呈现出高的稳定性和好的吸附性能、特殊光、磁性能为其走向功能化和应用提供了基础。本文使用膦酸或羧酸基团对三氮唑进行化学修饰,合成了三个新的膦酸或羧酸配体,2-(1-三唑基)-1-羟基-1,1’-亚乙基二膦酸(tahedpH4),2-(1H-1,2,4-三唑)乙酸盐酸盐(Htaa)和2-((1-三唑基)亚甲基)-4,5-咪唑二甲酸(H3tmidc),采用水热合成和常温溶液挥发等方法,构筑了14个配合物,重点分析了其中几个配合物的拓扑结构,并对磁性和荧光性质进行了研究。全文共分为4章:
     第1章主要介绍了研究的背景,特别是对三氮唑及其衍生物构筑的功能金属配合物在吸附、选择性分离、磁性等领域的研究和应用现状进行了系统性的分析,并对本论文的选题意义和主要的研究内容做了概述。
     第2章是利用2-(1-三唑基)-1-羟基-1,1’-亚乙基二膦酸(tahedpH4)作为配体,在水热条件下与过渡金属盐构筑了四个具有微孔结构的聚合物[Mn2(tahedp)(H2O)2]n (1)、[Cu2(tahedp)(H2O)]n (2)、[Co(tahedpH2)]n (3)、[Ni2(tahedpH2)2·(NH2CH2CH2NH2)]n(4)。其中,聚合物1中每一个tahedp4-酸根离子与两个{Mn12O2}二聚体单元和三个Mn2离子连接,而每一个{Mn12O2}二聚体单元与四个tahedp4-酸根离子连接,每一个Mn2离子连接有三个tahedp4-酸根离子。从拓扑的角度来分析,聚合物1的结构可以被描述为一个在金属膦酸化合物中未见报道的三节点的(4.66.83)2(42.62.82)(63)2拓扑网络。在聚合物2的结构中,tahedp4-酸根离子,{Cu12O2}双聚体和Cu2离子分别被抽象为5-连接,4-连接和3-连接的节点,拓扑结构分析表明它是一个唯一的(42.6)2(42.84)(43.6.86)2网络。在聚合物3中,[Co2O42]二聚体单元作为6-连接的节点,而tahedpH22-酸根离子作为3-连接的节点存在,聚合物3是一个双节点的(43)2(46.66.83)二维网络。聚合物4是由{NiO5N}八面体被膦酸基团和三唑环连接而成的二维层状结构。磁性测量实验表明在聚合物1-4中金属离子间存在着反铁磁偶合作用。我们还使用2-氨基乙基膦酸和4,4’-联吡啶、Co(Ⅱ)离子组装得到了一个含有6次螺旋链的三维聚合物[[Co(aepa)(4,4'-bpy)(H2O)2]·2H2O]n(5)。这在金属膦酸配合物中属于发现六次螺旋链的第二例报道。
     第3章是利用2-(1H-1,2,4-三唑)乙酸盐酸盐作为配体,与过渡金属盐构筑了六个金属-有机聚合物,[Cd(taa)Cl]n(6)、[Hg(taa)Cl]n(7)、[Ag1.5(taa)(No3)0.5]n(8)、[Cu(taa)2]n (9)、[Cu(taa)2·(H20)4-Nao.5·(C104)0.5]n (10) [Cu(taa)2-(H20)4-Nao.5·(BF4)0.5]n(11)。在聚合物6的结构中,每个[Cd2(CO2)2]双聚体单元是一个八连接的节点,它与六个三唑乙酸根离子taa-和另两个[Cd2(CO2)2]双聚体单元连接在一起;三唑乙酸根离子taa-则是三连接的节点,与三个[Cd2(CO2)2]双聚体单元连接,从拓扑的角度来分析,它是一个唯一的(3,8)-连接的网络,施克拉夫利Schlafli符号是(4.5.6)2(42.56.616.72.82)。聚合物7是2重贯穿的6-连接三维网络结构。聚合物6-8的固体荧光实验发现,它们在380 nm的激发波长条件下,最大发射峰出现在415 nm处,发射荧光是由于配体内的电子跃迁造成的。聚合物9-11在合成条件及结构上的差别说明,2-(1H-1,2,4-三唑)乙酸与Cu(Ⅱ)离子在水溶液中受到高氯酸根离子或氟硼酸根离子的诱导作用,分别在聚合物10和11产生了四次螺旋链。四次螺旋链缠绕构成了横截面为正方形的空腔,里面分别容纳了高氯酸根离子或氟硼酸根离子和以水分子连接的钠链。2-(1H-1,2,4-三唑)乙酸盐酸盐与Th(Ⅲ)离子组装得到了一个具有八面体结构的分子化合物[Th(taa-)·(H20)2·Ac-·(CH3O-)]n(12)。我们还利用2-((1-三唑基)亚甲基)-4,5-咪唑二甲酸在水热条件下与Co(Ⅱ)或Zn(Ⅱ)离子组装得到了两个新的配合物,[Co1.5(tmidc)(H2O)4]n (13)和[Zn(Htmidc)]n(14)。在聚合物13的结构中,两个相邻的Co2离子被连接在一起构成了[Co2(tmidc3-)3]二聚体单元,这些相邻的二聚体作为配位单元在沿着c轴的方向进行连接构成了一个4次的无限螺旋链。这些4次螺旋链绕着4次螺旋轴盘绕在一起,构成了一个横截面为正方形的通道。
     第4章是总结论。
The chemistry of functional coordination polymers constructed by triazole and its derivatives has been of growing interesting not only due to their high thermal stability and excellent adsorptive property but also for their potential applications in the areas of catalysis, luminescence, magnetism, and so on. In the dissertation, we introduced the phosphonate or carboxylate group into the backbone of the triazole and synthesized three new ligands,2-(1-riazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid (tahedpH4),2-(1H-1,2,4-triazol)-1-acetic acid monohydrochloride (Htaa) and 2-((1H-1,2,4-triazol-1-yl)methyl)-1H-imidazole-4,5-dicarboxylic acid (H3tmidc). We have obtained 14 novel coordination polymers and especially investigated their topological structures, using solvent-volatilizing and hydrothermal syntheses technology. Their magnetic and fluorescent properties have been studied. The whole dissertation is divided into four chapters.
     In Chapter 1, the background of this research is primarily introduced. Especially, the application of functional coordination polymers constructed by triazole and its derivatives in the area of adsorption, selective separation and magnetism is analysed by the numbers. The significance and progress of this work is also outlined.
     In Chapter 2, four novel metal phosphonates, namely, Mn2(tahedp)(H2O)2 (1), Cu2(tahedp)(H2O) (2), Co(tahedpH2) (3) and Ni2(tahedpH2)2·(NH2CH2CH2NH2) (4) have been synthesized by hydrothermal reactions of Mn(Ⅱ), Cu(Ⅱ), Co(Ⅱ) and Ni(Ⅱ) salts with 2-(1-triazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid. In polymer 1, each tahedp4- ligand is connected to two {Mn12O2} dimer units and three Mn2 centers through Mn-O and Mn-N bonds. Contrarily each {Mn12O2} dimer unit links with four tahedp4- ligands and each Mn2 ion links with three tahedp4- ligands. Topologically, the tahedp4- ligand,{Mn12O2} dimer unit and Mn2 ion can be defined as a 5-,4-and 3-connected node, respectively. On the basis of this simplification, the structure of 1 can be described as an unprecedented trinodal (4.66.83)2(42.62.82)(63)2 topological network. To the best of our knowledge, no metal phosphonates with trinodal (4.66.83)2(42.62.82)(63)2 topology have been reported to date. Topological analysis of polymer 2 reveals that it is a unique 3,4, and 5-connected net with (42.6)2(42.84)(43.6.86)2 topology, where the Cu2 ions,{Cu12O2} dimers and tahedp4-ligands act as 3-,4-and 5-connected nodes, respectively. A better insight into the nature of compound 3 can be achieved by the application of topological analysis. the [CO2O42] dimer unit is defined as a 6-connected node. Similarly, tahedpH22- ligand can act as a 3-connected node. In this structure, the ratio of 3-connected and 6-connected node is 2:1. Consequently, this structure is a binodal net with the Schlafli symbol of (43)2(46.66.83). Polymer 4 exhibits a layer architecture that built from {NiO5N} octahedra interconnected by phosphonate groups and triazole rings. Polymer 4 exhibits a layer architecture that built from {NiO5N} octahedra interconnected by phosphonate groups and triazole rings. The temperature-dependent magnetic susceptibility data of compounds 1-4 indicates a weak antiferromagnetic interaction between the magnetic centers. [Co(aepa)·(4,4'-bpy)·(H2O)2]·2H2O (5) features a 3D alveolate network structure assembling from the intertwist of the six-fold helical chains.
     In Chapter 3, six novel coordination polymers, namely, [Cd(taa)Cl]n (6)、[Hg(taa)Cl]n (7)、[Ag1.5(taa)(NO3)0.5]n (8)、[Cu(taa)2]n (9) [Cu(taa)2·(H2O)4·Na0.5·(ClO4)0.5]n (10)、[Cu(taa)2·(H2O)4·Na0.5·(BF4)0.5]n (11) have been synthesized with 2-(1H-1,2,4-triazol)-1-acetic acid monohydrochloride. In polymer 6, if the [Cd2(CO2)2] unit is considered as a eight-connected node (connecting to six taa- ligands and other two [Cd2(CO2)2] units), the taa- ligand can be considered as a three-connected node (connecting to three bimetallic [Cd2(CO2)2] units), from the topological point of view, the structure can be classified as an unprecedented (3,8)-connected network with the Schlafli symbol (4.52)2(42.58.614.73.8). From a topological view, the formed 3D net of 7 can be best described as a doubly interpenetrated six-connected net with the Schlafli symbol of (410.62.83). Excitation at 380 nm leads to blue fluorescent emission band at 415 nm for the compounds 6-8. The emission can probably be assigned to the intraligand (π-π*) fluorescent emission because the free ligand display fluorescent properties in solid state with the emission maxima being located at 410 nm. Considering that the coordination pattern of Htaa ligand and the other experimental conditions are almost the same in preparing polymers 9-11, we can conclude that the shape, size and charge of ClO4- may be the most important factors in determining the four-fold helical chains in polymer 10-11. A notable structural feature of polymer 10-11 is that it comprises channels formed by the intertwist of the helical chains which are fully filled by the sodium cations and perchlorate anions, respectively. Two novel coordination polymers, namely, [Co1.5(tmidc)(H2O)4]n (13)和[Zn(Htmidc)]n (14) have been synthesized with 2-((1H-1,2,4-triazol-1-yl)methyl)-1H-imidazole-4,5-dicarboxylic acid by the means of hydrothermal technique. In polymer 13, two neighboring Co2 ions are fused together forming a [Co2(tmidc3-)3] dimeric unit. These [Co2(tmidc3-)3] dimeric units are connected along the direction of c axis to form a four-fold infinite helical chain. The channels having square section are formed by the intertwist of these helical chains.
     In Chapter 4, conclusion of this work is given.
引文
[1]游效曾, 我国配位化学进展[J]。 化学通报,1999,10,7。
    [2](a)游效曾,Molecular based Materials-pto-electronic Funtional Compounds. ShangHai Technology Press,2001. (b) Kahn 0, Magnetism:A Supramolecular Function. Weinheim:VCH,1996. (c) Braga D, Grepioni F, Orpen A G. Crystal Engineering:From Molecules and Crystals to Materials. Dordrecht, Kluwer Academic Publishers,1999. (d) Interrante L V, hampden-Smith M J. Chemistry of Advanced Materials, An Overview. Wiley-VCH, New York,1998. (e) Seddon K, Zaworotko M. Crystal engineering:the design and application of functional solids. Dordrecht, Kluwer Academic Publishers,1999.
    [3]Zhang J P, Chen X M. Exceptional Framework Flexibility and Sorption Behavior of a Multifunctional Porous Cuprous Triazolate Framework[J]. J. Am. Chem. Soc. 2008.130.6010-6017.
    [4](a) Eddaoudi M, Kim J, Yaghi. O M, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science.2002.295.469-472. (b) Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature.2003.423.705-714. (c) Rosi N L, Eckert, J, Yaghi O M, et al. Hydrogen storage in microporous metal-organic frameworks [J]. Science.2003.300.1127~1129. (d) Rowsell J L C, Yaghi O M. Metal-organic frameworks:a new class of porous materials[J]. Microporous and Mesoporous Materials.2004.73.3~14.
    [5]Zhang J P, Chen X M. Optimized Acetylene/Carbon Dioxide Sorption in a Dynamic Porous Crystal[J]. J. Am. Chem. Soc.2009.131.5516~5521.
    [6]Yang C, Wang X P, Omary M A. Fluorous Metal-Organic Frameworks for High-Density Gas Adsorption[J]. J. Am. Chem. Soc.2007.129.15454~15455.
    [7]Ouellette W, Hudson B S, Zubieta J. Hydrothermal and Structural Chemistry of the Zinc(Ⅱ)-and Cadmium(Ⅱ)-1,2,4-Triazolate Systems[J]. Inorg. Chem.2007.46. 4887~4904.
    [8](a) Klingele M H, Brooker S. The coordination chemistry of 4-substituted 3,5-di(2-pyridyl)-4H-1,2,4-triazoles and related ligands[J]. Coordination. Chemistry. Reviews.2003.241.119~132. (b) Beckmann U, Brooker S. Cobalt(Ⅱ) complexes of pyridazine or triazole containing ligands:spin-state control[J]. Coordination. Chemistry. Reviews.2003.245.17~29. (c) Haasnoot J G. Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands[J]. Coordination. Chemistry. Reviews.2000.200~202.
    [9]Zhou J H, Cheng R M, You X Z, et al. Syntheses, Structures, and Magnetic Properties of Unusual Nonlinear Polynuclear Copper(Ⅱ) Complexes Containing Derivatives of 1,2,4-Triazole and Pivalate Ligands[J]. Inorg. Chem.2005.44. 8011~8022.
    [10]Klingele M H, Boyd P D W, Brooker S, et al. First Complexes of a 4-Alkyl-3,5-di(2-pyridyl)-4H-1,2,4-triazole:Synthesis, X-ray Crystal Structures and Magnetic Properties of Dinuclear Cobalt(Ⅱ), Nickel(Ⅱ) and Copper(Ⅱ) Complexes of 4-Isobutyl-3,5-di(2-pyridyl)-4H-1,2,4-triazole[J]. Eur. J. Inorg. Chem.2005. 910~918.
    [11]Ferrer S, Koningsbruggen P J V, Miller J S, et al. Dimetallic complexes derived from a novel dinucleating chelating symmetric triazole ligand; crystal structure, magnetic properties and ESR study of bis[μ-3,5-diacetylamino-1,2,4-triazolato-O',N1,N2,O"]bis[(nitrato)(aqua)copper(Ⅱ)][J]. J. Chem. Soc., Dalton Trans.1999.4269~4276.
    [12]Klingele M H, Moubaraki B, Brooker S, et al. The first X-ray crystal structure determination of a dinuclear complex trapped in the [low spin-high spin] state: [FeⅡ2(PMAT)2](BF4)4-DMF[J]. Chem. Commun.2005.987-989.
    [13]Ouellette W, Prosvirin A V, Zubieta J, et al. Hydrothermal Synthesis, Structural Chemistry, and Magnetic Properties of Materials of the MⅡ/Triazolate/Anion Family, Where MⅡ= Mn, Fe, and Ni[J]. Inorg. Chem.2007.46.9067~9082.
    [14]Hagrman P J, Bridges C, Zubieta J, et al. A three-dimensional organic-inorganic composite material constructed from copper-triazolate networks linked through vanadium oxide chains:[{Cu3(trz)2}V4O12][J]. J. Chem. Soc., Dalton Trans.1999. 2901~2903.
    [15]Ouellette W, Dunbar K R, Zubieta J. Hydrothermal Synthesis and Structure of a Three-Dimensional Cobalt(Ⅱ) Triazolate Magnet[J]. Inorg. Chem.2006.45. 1909~1911.
    [16]Ouellette W, Prosvirin A V, Zubieta J, et al. Solid-State Coordination Chemistry of the Cu/Triazolate/X System (X= F-, Cl-, Br-,I-, OH-, and SO42-)[J]. Inorg. Chem. 2006.45.9346~9366.
    [17]Zhang W X, Xue W, Chen X M, et al. Two spin-competing manganese(Ⅱ) coordination polymers exhibiting unusual multi-step magnetization jumps[J]. Chem. Commun.2009.3804~3806.
    [18]Zhang W X, Xue W, Chen X M, et al.3D geometrically frustrated magnets assembled by transition metal ion and 1,2,3-triazole-4,5-dicarboxylate as triangular nodes[J]. CrystEngComm.2008.10.1770~1776.
    [19]Zhang J P, Lin Y Y, Chen X M, et al. Temperature-or Guest-Induced Drastic Single-Crystal-to-Single-Crystal Transformations of a Nanoporous Coordination Polymer[J]. J. Am. Chem. Soc.2005.127.14162-14163.
    [20]Zhang J P, Lin Y Y, Chen X M, et al. Copper(Ⅰ) 1,2,4-Triazolates and Related Complexes:Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties[J]. J. Am. Chem. Soc.2005.127.5495~5506.
    [21]Su C Y, Goforth A M, zur Loye H C, et al. Exceptionally Stable, Hollow Tubular Metal-Organic Architectures:Synthesis, Characterization, and Solid-State Transformation Study[J].J.Am. Chem. Soc.2004.126.3576~3586.
    [22]Li, W.; Jia, H. P.; Ju, Z. F.; Zhang, J. A Novel Chiral Cd(Ⅱ) Coordination Polymer Based on Achiral Unsymmetrical 3-Amino-1,2,4-triazole with an Unprecedented μ4-Bridging Mode. Cryst. Growth & Design 2006.6.2136-2140.
    [23]Ouellette W, Yu M H, Zubieta J, et al. Hydrothermal Chemistry of the Copper-Triazolate System:A Microporous Metal-Organic Framework Constructed from Magnetic {Cu3(μ3-OH)(triazolate)3}2+ Building Blocks, and Related Materials[J]. Angew. Chem. Int. Ed. 2006.45.3497~3500.
    [24]Ding B, Yi L, Cheng P, et al. Synthesis and Characterization of a 3D Coordination Polymer Based on Trinuclear Triangular CuⅡ as Secondary Building Units[J]. Inorg. Chem.2006.45.5799~5803.
    [25]Zhai Q G, Lu C Z, Chen S M, et al. Design of Novel Three-Dimensional Coordination Polymers Based on Triangular Trinuclear Copper 1,2,4-Triazolate Units[J]. Cryst. Growth & Design 2006.6.1393~1398.
    [26]Zhai Q G, Wu X Y, Lu C Z, et al. Construction of Ca/Zn(Ⅱ)-1,2,4-Triazolate Coordination Complexes via Changing Substituents and Anions[J]. Cryst. Growth & Design 2006.6.2126~2135.
    [27]Zhang J P, Zheng S L, Chen X M, et al. Two Unprecedented 3-Connected Three-Dimensional Networks of Copper(ⅰ) Triazolates:In Situ Formation of Ligands by Cycloaddition of Nitriles and Ammonia[J]. Angew. Chem. Int. Ed.2004.43. 206~209.
    [1]Alberti G, Constantino U, Tomassini N, et al. Crystalline Zr(R-PO3)2 and Zr(ROPO3)2 compounds(R=organic radical):A new class of materials having layered structure of the zirconium phosphate type[J]. J. Inorg. Nucl. Chem.1978,40, 1113~1117.
    [2](a) Konar S, Clearfield A. Mixed-valent dodecanuclear vanadium cluster encapsulating chloride anions and its reaction to form a "bowl"-shaped cluster [J]. Inorg. Chem.2008,47,3492~3494. (b) Konar S, Clearfield A. Solvothermal synthesis and characterization of two high-nuclearity mixed-valent manganese phosphonate clusters[J]. Inorg. Chem.2008,47,348~3491. (c) Konar S, Bhuvanesh N, Clearfield A. Oxo-, hydroxo-, and peroxo-bridged Fe(Ⅲ) phosphonate cages [J]. J. Am. Chem. Soc.2006,128,9604~9605.
    [3](a) Soghomonian V, Chen Q, Zubieta J, et al. Investigations into the targeted design of solids:hydrothermal synthesis and structures of one-, two-, and three-dimensional phases of the oxovanadium-organodiphosphonate system[J]. Angew. Chem., Int. Ed.1995,34,223~226. (b) Burkholder E, Golub V, Zubieta J, et al. A building block approach to the synthesis of organic-inorganic oxide materials: the hydrothermal synthesis and network structure of [{Ni4(tpypyz)3}{Mo5O15(O3PCH2CH2PO3)}2]·23H2O[J]. Chem. Commun.2003,17, 2128~2129. (c) Finn E, Burkholder R C, Zubieta J. The hydrothermal syntheses and characterization of one-and two-dimensional structures constructed from metal-organic derivatives of polyoxometalates: [{Cu(bpy)2}{Cu(bpy)(H2O)}(Mo5O15){O3P(CH2)4PO3}]·H2O and [{Cu2(tpypyz)(H2O)2}(Mo5O15)(O3PCH2CH2PO3)]·5.5H2O[J]. Chem. Commun.2001, 18,1852~1853.
    [4](a) Finn R C, Burkholder E, Zubieta J. Solid-state coordination chemistry:structural influences of copper-phenanthroline subunits on oxovanadium organophosphonate phases. hydrothermal synthesis and structural characterization of the two-dimensional materials[J]. Inorg. Chem.2001,40,3745-3754. (b) Armatas N G, Allis D G, Zubieta J. Molybdophosphonate clusters as building blocks in the oxomolybdate-organodiphosphonate/cobalt(II)-organoimine system:structural influences of secondary metal coordination preferences and diphosphonate tether lengths[J]. Inorg. Chem.2008,47,832~854. (c) Ouellette W, Yu M H, Zubieta J. Evolution of the structural chemistry of vanadium organodiphosphonate networks and frameworks:structural consequences of fluoride incorporation in the development of stable phases with void channels[J]. Inorg. Chem.2006,45,7628~7641. (d) Ouellette W, Yu M H, Zubieta J. Structural diversity of the oxovanadium organodiphosphonate system: a platform for the design of void channels[J]. Inorg. Chem.2006,45, 3224~3239.
    [5](a) Monot J, Petit M, Bujoli B, et al. Towards zirconium phosphonate-based microarrays for probing DNA-Protein interactions:critical influence of the location of the probe anchoring groups[J]. J. Am. Chem. Soc.2008,130,6243~6251. (b) Nonglaton G, Benitez I O, Bujoli B, et al. New approach to oligonucleotide microarrays using zirconium phosphonate-modified surfaces[J]. J. Am. Chem. Soc. 2004,126,1497~1502.
    [6](a) Ma Y S, Li Y Z, Zheng L M, et al. Tetranuclear clusters containing a CrⅢ-doped MnⅢ4O2 Core:syntheses, structures, and magnetic properties [J]. Inorg. Chem.2008,47,4536~4544. (b) Yang Y F, Ma Y S, Zheng L M, et al. Copper phosphonates based on 2-phosphonic-isonicotinate:structures and magnetic properties[J]. Cryst. Growth Des.2008,8,1213~1217. (c) Liu B, Li B L, Zheng LM, et al. Lanthanide diruthenium(Ⅱ,Ⅲ) compounds showing layered and PtS-type open framework structures [J]. Inorg. Chem.2007,46,8524~8532. (d) Yao H C, Li Y Z,; Zheng L M, et al. Dodecanuclear manganese(Ⅲ) phosphonates with cage structures[J]. Inorg. Chem.2006,45,59~65. (e) Cao D K, Li Y Z, Zheng L M. Layered cobalt(II) and nickel(II) diphosphonates showing canted antiferromagnetism and slow relaxation behavior[J]. Inorg. Chem.2007,46,7571~7578. (f) Ma Y S, Song Y, Zheng L M. Tridecanuclear and docosanuclear manganese phosphonate clusters with slow magnetic relaxation[J]. Inorg. Chem.2007,46,5459~5461. (g) Cao D K, Xiao J, Zheng L M. Metal phosphonates based on bis(benzimidazol-2-ylmethyl)imino methylenephosphonate:from discrete dimer to two-dimensional network containing metallomacrocycles[J]. Inorg. Chem.2007,46, 428~436. (h) Bao S S, Chen G S, Zheng L M. Incorporation of triazacyclononane into the metal phosphonate backbones[J].Inorg. Chem.2006,45,1124~1129.
    [7](a) Yang B P, Prosvirin A V, Mao J G, et al. Co[HO2C(CH2)3NH(CH2PO3H)2]2:A new canted antiferromagnet[J]. Inorg. Chem.2008,47,1453~1459. (b) Guo Y Q, Yang B P, Mao J G, et al. Zinc(Ⅱ) phosphonate cage compounds derived from Zn6(Zn)L6 centered octahedral cores[J]. Cryst. Growth Des.2008,8,600~605. (c) Du Z Y, Prosvirin A V, Mao J G, et al. Novel manganese(Ⅱ) sulfonate-phosphonates with dinuclear, tetranuclear, and hexanuclear clusters[J]. Inorg. Chem.2007,46, 9884~9894. (d) Du Z Y, Li X L, Mao J G, et al. Novel cadmium(Ⅱ) phosphonatophenylsulfonate cluster compounds:syntheses, structures, and luminescent properties [J]. Cryst. Growth Des.2007,7,1501~1507. (e) Tang S F, Song J L, Mao J G, et al. Novel luminescent lanthanide(III) diphosphonates with rarely observed topology [J]. Cryst. Growth Des.2007,7,360~366.
    [8](a) Shi X, Zhu G S, Qiu S L, et al. Zn2[(S)-O3PCH2NHC4H7CO2]2:A homochiral 3D zinc phosphonate with helical channels[J]. Angew. Chem. Int. Ed.2004,43, 6482~6485. (b) Zhang X M, Hou J J, Chen X M, et al. Two mixed-valence vanadium(Ⅲ,Ⅳ) phosphonoacetates with 16-Ring channels: H2(DABCO)[VIVO(H2O)VⅢ(OH)(O3PCH2CO2)2]·2.5H2O and H2(PIP)[VIVO(H2O)VⅢ(OH)(O3PCH2CO2)2]·2.5H2O[J]. Inorg. Chem. 2006,45, 8120~8125. (c) Gong Y, Tang W, Hu C W, et al. Transformation from a low-dimensional framework to a high-dimensional architecture based on different metal ions:syntheses, structures, and photoluminescences[J]. Inorg. Chem.2006,45, 4987~4995. (d) Yue Q, Yang J, Chen J S, et al. Homochiral porous lanthanide phosphonates with 1D triple-strand helical chains:synthesis, photoluminescence, and adsorption properties [J]. Inorg.Chem.2006,45,4431~4439. (e) Fu R B, Huang X H, Wu X T, et al. Rational design of new bright luminescent zinc diphosphonates with 12-member ring channels[J]. Inorg. Chem.2006,45,5254~5256.
    [9](a) Oms O, Bideau J L, Leroux F, et al. Mixed 1D-2D inorganic polymeric zinc ferrocenylphosphonate:crystal structure and electrochemical study[J]. J. Am. Chem. Soc.2004,126,12090~12096. (b) Gutschke O H, Price D J, Wood P. T, et al. Solvothermal synthesis of the canted antiferromagnet{K2[CoO3PCH2N(CH2CO2)2]}6' xH2O[J]. Angew. Chem. Int. Ed.1999,38,1088~1090.
    [10]Cheetham A K, Ferey G, Loiseau T. Open-framework inorganic materials[J]. Angew. Chem., Int. Ed.1999,38,3268~3292.
    [11]Cheetham A K, Rao C N R, Feller R K. Structural diversity and chemical trends in hybrid inorganic-organic framework materials[J]. Chem. Commun.2006, 4780~4795.
    [12]Cao G, Hong H G, Mallouk T E. Layered metal phosphates and phosphonates: from crystals to monolayers[J]. Acc. Chem. Res.1992,25,420~427.
    [13]Mao J G. Structures and luminescent properties of lanthanide phosphonate[J]. Coord. Chem. Rev.2007,251,1493~1520.
    [14](a) Langley S, Helliwell M, Winpenny E P, et al. Phosphonate ligands encourage a Platonic relationship between cobalt(II) and alkali metal ions[J]. Chem. Commun. 2004,142-143. (b) Langley S, Helliwell M, Winpenny E P, et al. Slow relaxation of magnetisation in an octanuclear cobalt(II) phosphonate cage complex[J]. Chem. Commun.2005,5029~5031. (c) Brechin E K, Coxall R A, Winpenny E P, et al. Polymetallic cobalt and manganese cages with phosphinate and phosphonate ligands[J]. Angew. Chem. Int. Ed.2001,40,2700~2703. (d) Toils E I, Helliwell M, Winpenny E P, et al. Synthesis and characterization of Iron(III) phosphonate cage complexes[J].Angew. Chem. Int. Ed.2003,42,3804-3808.
    [15]Sheldrick G. M. SHELXL-97:Program for the Refinement of Crystal Structures, University of Gottingen,1997.
    [16]Gerard R K, Ronaid B J. Preparation of (4-amino-l-hydroxybutylidene) bisphosphonic acid sodium salt. An improved for the preparation of 1-hydroxy-1,1-bisphosphonic acids[J]. J. Org. Chem.1995,60,8310~8312.
    [17](a) Tsao C P, Sheu C Y, Lii K H, et al. Ionothermal synthesis of metal oxalatophosphonates with a three-dimensional framework structure: Na2M3(C2O4)3(CH3PO3H)2 (M= FeⅡand MnⅡ)[J]. Inorg. Chem. 2006, 45, 6361~6364. (b) Merrill C A, Cheetham A K. Inorganic-organic framework structures: M(II) Ethylenediphosphonates (M=Co, Ni, Mn) and a Mn(II) Ethylenediphosphonato-phenanthroline[J]. Inorg. Chem.2007,46,278~284. (c) Konar S, Prosvirin A V, Clearfield A, et al. Synthesis and characterization of four metal-organophosphonates with one-, two-, and three-dimensional structures[J]. Inorg. Chem.2007,46,5229~5236. (d) Fu R B, Xiang S C, Wu X T, et al. Syntheses, characterization, and magnetic properties of four new layered transition-metal hydroxyl-carboxylate-phosphonates:[M(CH(OH)(CO2)(PO3H))(H2O)2] (M= Mn, Fe, Co, Zn)[J]. Cryst. Growth Des.2005,5,1795~1799.
    [18](a) Ushak S, Spodine E, Kniep R, et al. Two new hybrid organic/inorganic copper(Ⅱ)-oxovanadate(Ⅴ) diphosphonates: [Cu2(phen)2(O3PCH2PO3)(V2O5)(H2O)]·H2O and [Cu2(phen)2(O3P(CH2)3PO3)(V2O5)]·C3H8. Synthesis, structure, and magnetic properties[J]. Inorg. Chem.2006,45,5393~5398. (b) Chandrasekhar V, Sasikumar P, Boomishankar R, et al. Assembly of lipophilic tetranuclear (Cu4 and Zn4) molecular metallophosphonates from 2,4,6-triisopropylphenylphosponic acid and pyrazole ligands[J]. Inorg. Chem.2006,45,3344~3351. (c) Chandrasekhar V, Nagarajan L, Verma S, et al. A distorted cubic tetranuclear Copper(Ⅱ) phosphonate cage with a double-four-ring-type core[J]. Inorg. Chem.2008,47,1067~1073. (d) Costantino F, Bataille T, Sangregorio C, et al. Direct synthesis from various tetraphosphonic building blocks of homologous hybrid-layered copper(Ⅱ) derivatives incorporating copper hydrate cations[J]. Cryst. Growth Des.2007,7,1881~1888.
    [19](a) Yin P, Gao S, Zheng L M, et al. Field-induced magnetic transitions in metal phosphonates with ladderlike chain structures:(NH3C6H4NH3)M2(hedpH)2·H2O [M = Fe, Co, Mn, Zn; hedp= C(CH3)(OH)(PO3)2][J]. Inorg. Chem.2005,44,2761~2765. (b) Zheng L M, Gao S, Xin X Q, et al. One-dimensional cobalt diphosphonates exhibiting weak ferromagnetism and field-induced magnetic transitions[J]. Inorg. Chem.2004,43,2151~2156. (c) Bao S S, Zheng L M, Feng S H, et al. Sodium cobalt aminomethylidenediphosphonate with a novel open framework structure[J]. Inorg. Chem.2003,42,5037~5039. (d) Yin P, Gao S, Zheng L M, et al. A two-step field-induced magnetic transition in a novel layered cobalt diphosphonate[J]. Chem. Commun.2003,1076~1077.
    [20]Cao D K, Li Y Z, Zheng L M. Layered cobalt(Ⅱ) and nickel(Ⅱ) diphosphonates showing canted antiferromagnetism and slow relaxation behavior[J]. Inorg. Chem. 2007,46,7571~7578.
    [21]Darriet J, Haddad M S, Hendrickson D N, et al. Crystal structure and magnetic properties of bis(pyrazine)copper(II) perchlorate, Cu(pyz)2(C104)2, a two-dimensional Heisenberg antiferromagnet[J]. Inorg. Chem.1979,18,2679~2682.
    [22](a) Kong D, Clearfield A. Supramolecular hydrogen-bonded frameworks from 6-phosphonopyridine-2-carboxylic acid and transition metal ions[J]. Cryst. Growth Des.2005,5,1263~1270. (b) Cao D K, Li Y Z, Zheng L M, et al. Three-, two-, and one-Dimensional metal phosphonates based on [hydroxy(4-pyridyl)methyl]phosphonate:M{(4-C5H4N)CH(OH)PO3}(H2O) (M=Ni, Cd) and Gd{(4-C5H4N)CH(OH)P(OH)O2}3·6H2O[J]. Inorg. Chem.2005,44, 3599~3604.
    [23]Groves J A, Miller S R, Wright P A, et al. The first route to large pore metal phosphonates[J]. Chem. Commun.2006,3305~3307.
    [1]Zhang J P, Chen X M. Optimized Acetylene/Carbon Dioxide Sorption in a Dynamic Porous Crystal[J]. J. Am. Chem. Soc.2009.131.5516~5521.
    [2]Zhang J P, Chen X M. Exceptional Framework Flexibility and Sorption Behavior of a Multifunctional Porous Cuprous Triazolate Framework[J]. J. Am. Chem. Soc. 2008.130.6010~6017.
    [3]Zhang W X, Xue W, Chen X M, et al. Two spin-competing manganese(II) coordination polymers exhibiting unusual multi-step magnetization jumps[J]. Chem. Commun.2009.3804~3806.
    [4]Klingele M H, Moubaraki B, Brooker S, et al. The first X-ray crystal structure determination of a dinuclear complex trapped in the [low spin-high spin] state: [FeⅡ2(PMAT)2](BF4)4-DMF[J]. Chem. Commun.2005.987~989.
    [5]Ouellette W, Prosvirin A V, Zubieta J, et al. Hydrothermal Synthesis, Structural Chemistry, and Magnetic Properties of Materials of the MⅡ/Triazolate/Anion Family, Where MⅡ= Mn, Fe, and Ni[J]. Inorg. Chem.2007.46.9067~9082.
    [6]Yang C, Wang X P, Omary M A. Fluorous Metal-Organic Frameworks for High-Density Gas Adsorption[J].J.Am. Chem. Soc.2007.129.15454~15455.
    [7]Lin YY, Zhang Y B, Zhang J P. Pillaring Zn-Triazolate Layers with Flexible Aliphatic Dicarboxylates into Three-Dimensional Metal-Organic Frameworks [J]. Crystal Growth & Design.2008.8.3673~3679.
    [8]Park H, Britten J F, Mueller U. Synthesis, Structure Determination, and Hydrogen Sorption Studies of New Metal-Organic Frameworks Using Triazole and Naphthalenedicarboxylic Acid[J]. Chemistry of Materials.2007.19.1302~1308.
    [9]Zhai Q G, Lu C Z, Wu X Y. Coligand Modulated Six-, Eight-, and Ten-Connected Zn/Cd-1,2,4-Triazolate Frameworks Based on Mono-, Bi-, Tri-, Penta-, and Heptanuclear Cluster Units[J]. Crystal Growth&Design.2007.7.2332~2342.
    [10]Park H, Moureau D M, Parise J B. Hydrothermal Synthesis and Structural Characterization of Novel Zn-Triazole-Benzenedicarboxylate Frameworks[J]. Chemistry of Materials.2006.18.525~531.
    [11]Sheldrick G. M. SHELXL-97:Program for the Refinement of Crystal Structures, University of Gottingen,1997.
    [12]Pellicciari R. Reaction of alkoxycarbonylcarbenoids with imidazole; an improved preparation of ethyl imidazole-1-ylacetate and the first synthesis of diethyl imidazole-1-ylmalonate[J]. Synth. Commun.1981,629~631.
    [13]Martin D P, Montney M R, Supkowski R M, et al. Cadmium glutarate coordination polymers containing hydrogen-bonding capable tethering organodiimines:from double interpenetration to supramolecular cavities containing an unprecedented water tape morphology[J]. Cryst. Growth Des.2008.8.3091-3097.
    [14](a) Jansen M. Homoatomic d10-d10 Interactions:Their Effects on Structure and Chemical and Physical Properties [J]. Angew.Chem., Int. Ed.1987.26.1098~1110. (b) Pyykko P. Strong Closed-Shell Interactions in Inorganic Chemistry[J]. Chem. Rev. 1997.97.597~636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700