考虑并网风电随机波动的电力系统小干扰概率稳定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大规模风电接入电网导致原来由可控可调度的同步电源组成的电力系统耦合了大量具有随机波动性的非同步电源,使得现代电力系统转变为随机—确定性耦合电力系统。这种耦合电力系统的稳定性问题使常规电力系统的稳定分析理论和方法遇到了新的挑战。
     风电场的出力随风速而大幅度频繁波动使系统呈现多种运行方式,如何恰当地考虑风电不确定性和随机性对小干扰稳定的影响,模拟含大规模风电的电力系统的运行状态,是目前进行小干扰稳定计算时需要着重考虑的问题。本文针对大规模风电接入电力系统存在的小干扰稳定问题,结合我国特有的风电大规模、高集中、远距离输送的特点,围绕着风电功率的随机波动性和风机与常规机组的差异性,对含并网风电的电力系统小干扰概率稳定方面的问题进行了研究和探索,主要工作归纳如下。
     建立适当的风电机组数学模型是研究大规模风电接入对电力系统小干扰稳定影响的基础,其模型和参数的准确度将直接关系到分析计算的精度。为此,本文详细建立了双馈风电机组的空气动力学模型、机械传动系统的轴系模型、桨距角控制系统模型、感应发电机模型、采用了矢量控制和前馈补偿策略的变频器控制系统模型;依据大规模风电场并网系统的小干扰稳定分析的需要,建立了风电场的动态等值模型;最后建立了系统中其它元件如同步机、励磁系统的动态模型以及输电线路、变压器、负荷的稳态模型,实现了完整的含双馈型风电场的电力系统小干扰稳定分析模型,为论文所进行的小干扰概率稳定分析奠定了基础。
     运用概率统计的方法对含风电场的电力系统进行小干扰稳定分析的首要任务是合理地对风电场随机出力进行概率建模。为此,本文从影响风电场随机出力特性的主要因素出发,提出了包含风频分布模型、风速相关性模型和风电转换模型三部分的多风电场随机出力模型。算例分析表明,对于估计风频的Weibull分布模型,极大似然估计法的准确度更高,更能精确模拟实际风电场的风频分布;本文提出的风速相关性模型既保持了每个风电场的实测风速数据的概率分布特性,又准确模拟了风电场之间的相关水平,可以用于含风电场的电力系统小干扰概率稳定分析。
     以前两部分研究内容中建立的双馈型风电场动态模型和考虑相关性的风电场随机出力模型为基础,对含风电场的小干扰概率稳定分析进行了研究。提出了一种基于2m+1点估计方案的小干扰概率稳定计算方法,通过与蒙特卡罗法的计算结果相比较,验证了算法的有效性,说明了利用2m+l点估计方案进行考虑风电场风速相关性的电力系统小干扰概率稳定分析的可行性,且具有计算精度高、求解速度快的特点。结合算例系统,通过设计不同的研究方案,详细分析了风电场接入位置、风电渗透率、风电相关性对小干扰概率稳定的影响。计算结果表明,对于互联电力系统,双馈型风电场替代本区域同步机出力会提高本区域内的局部模式和互联模式的阻尼比,对前者的影响程度最大,对其它区域内的局部模式几乎没有影响。随着风电渗透率的提高,上述情况下的阻尼比的改善程度越大,但随之而来带给系统阻尼的不确定性也越大。风电场的风速相关性对系统小干扰失稳概率和振荡模式的阻尼具有较大影响,相关度越高影响越大,影响的利弊取决于风电场的接入位置和系统潮流的变化,因此在进行小干扰概率稳定计算时有必要计及风速的相关性。算例分析结果说明了概率方法能够更加全面地刻画系统的小干扰稳定特性,为电力规划和运行人员提供更为丰富的关于系统小干扰稳定性的信息。
     从概率分析的角度,提出了电力系统振荡稳定裕度(Oscillatory Stability Margin, OSM)概率评估模型,并结合风电随机出力模型、振荡稳定裕度确定性求解模型和蒙特卡罗仿真对该模型进行了求解。为了实现对系统振荡稳定裕度的随机特征和风险水平的整体把握和完整认知,提出了两类评估指标:概率指标和风险指标。结合算例系统,对风电场接入位置、风电装机容量以及风速相关性对振荡稳定裕度的影响进行深入了探讨。算例分析的结果表明,并网风电输出功率不确定性的存在,既可能给系统带来遭受损失的风险,也可能带来获得收益的机会,这取决于风电场的位置、风电装机容量和风速相关程度。本文提出的振荡稳定裕度概率评估为解决受风电波动性影响的电力系统振荡稳定性问题提供了一种新的思路和手段,利用评估指标解析表达式以及相关图表不但可直观反映各种因素对系统OSM的影响,还可为电力系统规划和运行提供指导意见和决策支持。
Power system stability plays a significant role in modern power industries. With increasing wind power penetration, the theory of power system stability needs to be improved, because the performance of power system are no longer only influenced by controllable synchronous generators, but also a large number of stochastic and fluctuating asynchronous generators (wind turbine generators, WTG), which makes the modern power system a complex stochastic-deterministic coupling power system.
     Deterministic strategies used for small signal stability analysis of power systems as affected by penetration of large scale wind generation are limited since they are carried out based on a specified operating condition. However, since the wind generation is primarily determined by wind speed and thus fluctuating constantly, the operating conditions of the system are stochastically uncertain. Therefore, a more comprehensive probabilistic stability research that considering the uncertainties and intermittence of wind power should be conducted to assess the influence of wind generation on the power system stability from the viewpoint of probability. This dissertation studied and explored the probabilistic analysis of small-signal stability of power systems as affected by stochastic variation of grid-connected wind generation. The primary contents and original contributions of this dissertation are as follows:
     Dynamic modelling of wind turbine generator is the basis of researching the impact of wind power on power system small signal stability. For this purpose, the status equations of the aerodynamic model, shaft system model, pitch control model, converters model with application of vector control and feed-forward decoupling control strategies of the doubly-fed induction generator (DFIG) are established for analyzing small signal stability. Furthermore, in order to investigate the effects of large scale wind farms connected to an existing power grid on the small signal analysis of power system, the whole wind farm is modelled as an aggregated wind farm model by one equivalent wind generator, whose parameters can be modelled as an equivalent of the parallel connection of single generators. Apart from this, models for synchronous generators, excitation systems, transmission lines and transformers are also presented.
     The primary task of small signal stability analysis of wind integrated power systems by using the probabilistic method is to reasonably simulate the probabilistic production of wind farms. Therefore, considering the main factors affecting stochastic characteristic of wind power, probabilistic production model of multiple wind farms is developed. This model consists of three parts:wind speed frequency distribution model, wind speed correlation model and wind speed-power output transformation model. By comparing the calculated results getting from different estimation methods, it can be seen that maximal likelihood method was better in fitting the wind speed distribution. The proposed wind speed correlation model is verified from three aspects:goodness of fit test, two-dimensional kernel smoothing density estimate and aggregated power output comparison. The results show that the proposed wind speed correlation model preserves the marginal distribution of wind speed at each wind site and the correlation structure of multiple wind site, which can be applied to small signal stability analysis of power system containing wind farms.
     Based on the dynamic model of grid-connected wind farms with DFIG type and the probabilistic production model of multiple wind farms, a probabilistic methodology for small signal stability analysis of power system with correlated wind sources is presented. The approach based on the2m+1point estimate scheme and Cornish Fisher expansion, the orthogonal transformation technique is used to deal with the correlation of wind farms. A case study is carried out on two test system and the probabilistic indexes for eigenvalue analysis are computed from the statistical processing of the obtained results. The accuracy and efficiency of the proposed method are confirmed by comparing with the results of Monte Carlo simulation. The numerical results indicate that the proposed method can actually capture the probabilistic characteristics of mode properties of the power systems with correlated wind sources. Test results show that the dampings of local mode and inter-area mode tend to be improved when a synchronous generator involved in these oscillatory modes is replaced by the wind farms within the same area. Additionally, it appears that wind farms do not affect local modes in distant areas. Furthermore, the presence of correlated wind speeds increases the fluctuation of wind farms'output, which leads to a considerable influence on the probability of small signal instability and damping of oscillatory mode. It is necessary to consider the correlation among wind farms in the probabilistic small signal stability problem to build more exact models.
     At last, author provides an attempt to include probabilistic character of wind power into the power system oscillatory stability margin (OSM) analysis. The probabilistic production model of multiple wind farms is applied to generate the wind speed samples. The mathematical model of OSM for wind farm integrated power system is formulated and is calculated by the integration-based eigenvalue tracing approach. Considering the uncertainties of the wind power, several statistical indices are presented to evaluate OSM. Monte Carlo simulation is used to calculate these statistics. The impact of wind power uncertainty on OSM restricted by inter-area mode is investigated in two test system, respectively, for different wind farm locations, wind power penetration levels and wind speed correlation (WSC) degrees. For both interconnected systems, wind power uncertainty variation is found to have a positive or negative impact on the probabilistic OSM. The impact depends on the locations of the wind farms (the degree of network congestion), the wind power penetration level and wind speed correlation degree. Statistical indices allow visualizing the above phenomena and, which is more important, can be used to assist power system operators and planners in quantitatively assessing the impact of wind generation and certain operating decisions with respect to changing operating conditions. The risk index provides system operators and planners with information necessary for decision making, including risk threshold selection. Hopefully, the analysis presented in this paper can be extended to include possible preventive and remedial measures necessary to improve the probability of oscillatory stability or maintain a certain OSM in the actual system operation.
引文
[1]Global wind statistics 2013[R]. Brussels:GLOBAL WIND ENERGY COUNCIL,2014.
    [2]张硕.计及风电场容量可信度的电力系统可靠性研究[D].北京:华北电力大学,2010.
    [3]中国产业信息网.我国风电行业发展历程回顾[EB/OL]http://www.chyxx.com/industry/201308/217542.html.
    [4]Ming Z, Ximei L, Yulong L, et al. Review of renewable energy investment and financing in china:Status, mode, issues and countermeasures[J]. Renewable and Sustainable Energy Reviews,2014,31(1):23-37.
    [5]李俊峰.2012中国风电发展报告[R].北京:中国风能协会,2012.
    [6]水电水利规划设计总院.2012年中国风电建设统计评价报告[R].北京:水电水利规划设计总院,2013.
    [7]水电水利规划设计总院.2013年上半年中国风电建设统计评价报告[R].北京:水电水利规划设计总院,2013.
    [8]苏伟.快哉,神风——我国七座千万千瓦级风电基地建设调查[N].中国电力报,2010-07-21(4).
    [9]Agency I E. Variability of wind power and other renewables:Management options and strategies[R]. Paris:International Energy Agency,2005.
    [10]于大洋,韩学山,梁军,等.基于nasa地球观测数据库的区域风电功率波动特性分析[J].电力系统自动化,2011,35(05):77-81.
    [11]舒印彪,汤涌,孙华东.电力系统安全稳定标准研究[J].中国电机工程学报,2013,33(25):1-9.
    [12]Akhmatov V. Analysis of dynamic behaviour of electric power systems with large amount of wind power[D]. Kgs. Lyngby:Electric Power Engineering, (?)rsted-DTU, Technical University of Denmark,2003.
    [13]Erlich I, Kretschmann J, Fortmann J, et al. Modeling of wind turbines based on doubly-fed induction generators for power system stability studies[J]. IEEE Transactions on Power Systems,2007,22(3):909-919.
    [14]Ledesma P, Usaola J. Doubly fed induction generator model for transient stability analysis[J]. IEEE Transactions on Energy Conversion,2005,20(2): 388-397.
    [15]Yazhou L, Mullane A, Lightbody G, et al. Modeling of the wind turbine with a doubly fed induction generator for grid integration studies [J]. IEEE Transactions on Energy Conversion,2006,21(1):257-264.
    [16]Miller N W, Sanchez-Gasca J J, Price W W, et al. Dynamic modeling of ge 1.5 and 3.6 mw wind turbine-generators for stability simulations[C]//IEEE Power Engineering Society General Meeting. Toronto, Canada,2003: 1977-1983.
    [17]Clark K, Miller N W, Sanchez-Gasca J J. Modeling of ge wind turbine-generators for grid studies [J]. General Electric International, Technical Report,2010.
    [18]Shi L, Xu Z, Hao J, et al. Modelling analysis of transient stability simulation with high penetration of grid-connected wind farms of dfig type[J]. WIND ENERGY,2007,10(4):303-320.
    [19]Poller M A. Doubly-fed induction machine models for stability assessment of wind farms [C]//IEEE Bologna Power Tech Conference Proceedings. Bologna, Italy,2003:1-6.
    [20]Feijoo A, Cidras J, Carrillo C. A third order model for the doubly-fed induction machine [J]. Electric Power Systems Research,2000,56(2):121.
    [21]Hatziargyriou N, Donnelly M, Papathanassiou S, et al. Cigre technical brochure on modeling new forms of generation and storage [R]. CIGRE TF38.01.10,2000.
    [22]de Almeida R G, Peas Lopes J A, Barreiros J A L. Improving power system dynamic behavior through doubly fed induction machines controlled by static converter using fuzzy control[J]. IEEE Transactions on Power Systems, 2004,19(4):1942-1950.
    [23]Mullane A, Lightbody G, Yacamini R. Wind-turbine fault ride-through enhancement[J]. IEEE Transactions on Power Systems,2005,20(4): 1929-1937.
    [24]Senthil Kumar N, Gokulakrishnan J. Impact of facts controllers on the stability of power systems connected with doubly fed induction generators [J]. International Journal of Electrical Power & Energy Systems,2011,33(5): 1172-1184.
    [25]Dufour C, Be, x, et al. A real-time simulator for doubly fed induction generator based wind turbine applications[C]//IEEE 35th Annual Power Electronics Specialists Conference. Aachen, Germany,2004:3597-3603.
    [26]Hansen A D, Soerensen P, Iov F, et al. Overall control strategy of variable speed doubly-fed induction generator wind turbine[C]//Proceedings of Wind Power Nordic Conference. Gothenburg, Sweden,2004:1-7.
    [27]Norheim I, Uhlen K, Olav J. Doubly fed induction generator model for power system simulation tools[C]//Nordic wind power conference. Gothenburg, Sweden,2004:1-6.
    [28]Anaya-Lara O, Hughes F M, Jenkins N, et al. Rotor flux magnitude and angle control strategy for doubly fed induction generators [J]. WIND ENERGY,2006,9(5):17.
    [29]严干贵,周志强,穆钢.双馈感应风电机组仿真建模及实证研究[J].电力电子,2009,(02):21-25.
    [30]魏巍,王渝红,李兴源,等.基于psasp的双馈风电场建模及接入电网仿真[J].电力自动化设备,2009,29(12):68-73.
    [31]李东东,陈陈.风力发电机组动态模型研究[J].中国电机工程学报,2005,25(03):117-121.
    [32]Shafiu, Shafiu A, Anaya L, et al. Aggregated wind turbine models for power system dynamic studies[J]. Wind Engineering,2006,30(3):171-185.
    [33]Slootweg J G, Kling W L. Aggregated modelling of wind parks in power system dynamics simulations[C]//IEEE Bologna Power Tech Conference Proceedings. Bologna, Italy,2003:1-6.
    [34]黄梅,万航羽.在动态仿真中风电场模型的简化[J].电工技术学报,2009,24(09):147-152.
    [35]Fernandez L M, Garcia C A, Saenz J R, et al. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds [J]. Energy Conversion and Management,2009,50(3):691-704.
    [36]Slootweg J G. Wind power modelling and impact on power system dynamics[D]. Technische Universiteit Delft Electrical Engineering, Mathematics and Computer Science,2003.
    [37]Poller M, Achilles S. Aggregated wind park models for analyzing power system dynamics [C]//Proceedings of 4th International Workshop on Large-Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms. Billund, Denmark,2003:1-10.
    [38]Fernandez L M, Jurado F, Saenz J R. Aggregated dynamic model for wind farms with doubly fed induction generator wind turbines[J]. Renewable Energy,2008,33(1):129-140.
    [39]Rudion K, Styczynski Z A, Orths A, et al. Mawind-tool for the aggregation of wind farm models[C]//IEEE Power and Energy Society General Meeting. Pittsburgh, USA,2008:1-8.
    [40]邓威,李欣然,徐振华,等.考虑风速相关性的概率潮流计算及影响分析[J].电网技术,2012,36(04):45-50.
    [41]陈雁,文劲宇,程时杰.考虑输入变量相关性的概率潮流计算方法[J].中国电机工程学报,2011,31(22):80-87.
    [42]范荣奇,陈金富,段献忠,等.风速相关性对概率潮流计算的影响分析[J].电力系统自动化,2011,35(04):18-22+76.
    [43]潘雄,周明,孔晓民,吴玥,刘文霞.风速相关性对最优潮流的影响[J].电力系统自动化,2012,36.
    [44]石东源,蔡德福,陈金富,等.计及输入变量相关性的半不变量法概率潮流计算[J].中国电机工程学报,2012,32(28).
    [45]鲍海波,韦化.考虑风电的电压稳定概率评估的随机响应面法[J].中国电机工程学报,2012,32(13):77-85,194.
    [46]Vallee F, Lobry J, Deblecker O. Impact of the wind geographical correlation level for reliability studies[J]. IEEE Transactions on Power Systems,2007, 22(4):2232-2239.
    [47]Yi G, Billinton R, Karki R. Composite generation and transmission system reliability evaluation incorporating two wind energy facilities considering wind speed correlation[C]//40th North American Power Symposium. Calgary, Canada,2008:1-7.
    [48]Wu L, Park J, Choi J, et al. Probabilistic reliability evaluation of power systems including wind turbine generators considering wind speed correlation[J]. Journal of Electrical Engineering & Technology,2009,4(4): 485-491.
    [49]Xie K, Billinton R. Considering wind speed correlation of wecs in reliability evaluation using the time-shifting technique [J]. Electric Power Systems Research,2009,79(4):687-693.
    [50]Wangdee W, Billinton R. Considering load-carrying capability and wind speed correlation of wees in generation adequacy assessment[J]. IEEE Transactions on Energy Conversion,2006,21(3):734-741.
    [51]Miranda M S, Dunn R W. Spatially correlated wind speed modelling for generation adequacy studies in the uk[C]//IEEE Power Engineering Society General Meeting. Tampa,USA,2007:1-6.
    [52]Billinton R, Yi G. Multistate wind energy conversion system models for adequacy assessment of generating systems incorporating wind energy[J]. IEEE Transactions on Energy Conversion,2008,23(1):163-170.
    [53]Gao Y, Billinton R. Adequacy assessment of generating systems containing wind power considering wind speed correlation[J]. IET Renewable Power Generation,2009,3(2):217-226.
    [54]张宏宇,印永华,申洪,等.大规模风电接入后的系统调峰充裕性评估[J].中国电机工程学报,2011,31(22):26-31.
    [55]Qin Z, Li W, Xiong X. Generation system reliability evaluation incorporating correlations of wind speeds with different distributions[J]. IEEE Transactions on Power Systems,2012, PP(99):1-1.
    [56]Feijoo A E, Cidra, x, et al. Wind speed simulation in wind farms for steady-state security assessment of electrical power systems [J]. IEEE Transactions on Energy Conversion,1999,14(4):1582-1588.
    [57]Bechrakis D A, Sparis P D. Correlation of wind speed between neighboring measuring stations[J]. IEEE Transactions on Energy Conversion,2004,19(2): 400-406.
    [58]Wen J, Zheng Y, Donghan F. A review on reliability assessment for wind power [J]. Renewable and Sustainable Energy Reviews,2009,13(9): 2485-2494.
    [59]Feijoo A, Villanueva D, Pazos J L, et al. Simulation of correlated wind speeds:A review[J]. Renewable and Sustainable Energy Reviews,2011, 15(6):2826-2832.
    [60]Luo G, Chen J, Cai D, et al. Probabilistic assessment of available transfer capability considering spatial correlation in wind power integrated system[J]. IET Generation, Transmission & Distribution,2013,7(12):1527-1535.
    [61]Zhilong Q, Wenyuan L, Xiaofu X. Generation system reliability evaluation incorporating correlations of wind speeds with different distributions [J]. IEEE Transactions on Power Systems,2013,28(1):551-558.
    [62]Slootweg J G, Kling W L. The impact of large scale wind power generation on power system oscillations[J]. Electric Power Systems Research,2003, 67(1):9-20.
    [63]Anaya-Lara O, Hughes F M, Jenkins N, et al. Influence of windfarms on power system dynamic and transient stability[J]. Wind Engineering,2006, 30(2):107-127.
    [64]Chen W, Libao S, Liming W, et al. Small signal stability analysis considering grid-connected wind farms of dfig type[C]//IEEE Power and Energy Society General Meeting Pittsburgh, USA,2008:1-6.
    [65]Wang C, Shi L, Wang L, et al. Modelling analysis in power system small signal stability with grid-connected wind farms of dfig type[J]. Wind Engineering,2008,32(3):243-264.
    [66]Lingling F, Zhixin M, Osborn D. Impact of doubly fed wind turbine generation on inter-area oscillation damping[C]//IEEE Power and Energy Society General Meeting. Pittsburgh, USA,2008:1-8.
    [67]汤宏,吴俊玲,周双喜.包含风电场电力系统的小干扰稳定分析建模和仿真[J].电网技术,2004,28(01):38-41.
    [68]Mei F, Pal B C. Modelling and small-signal analysis of a grid connected doubly-fed induction generator[C]//IEEE Power Engineering Society General Meeting. San Francisco, USA,2005:2101-2108.
    [69]Mendonca A, Lopes J A P. Impact of large scale wind power integration on small signal stability[C]//International Conference on Future Power Systems. Amsterdam,2005:1-5.
    [70]张红光,张粒子,陈树勇,等.大容量风电场对电力系统小干扰稳定和阻尼特性的影响[J].电网技术,2007,31(13):75-80.
    [71]杨涛,郑涛,迟永宁,等.大规模风电外送对电力系统小干扰稳定性影响[J].中国电力,2010,43(06):20-25.
    [72]Vowles D J, Samarasinghe C, Gibbard M J, et al. Effect of wind generation on small-signal stability — a new zealand example [C]//IEEE Power and Energy Society General Meeting. Pittsburgh, USA,2008:1-8.
    [73]Gautam D, Vittal V. Impact of dfig based wind turbine generators on transient and small signal stability of power systems [C]//IEEE Power & Energy Society General Meeting. Calgary, Canada,2009:1-6.
    [74]Gautam D, Vittal V, Harbour T. Impact of increased penetration of dfig-based wind turbine generators on transient and small signal stability of power systems[J]. IEEE Transactions on Power Systems,2009,24(3): 1426-1434.
    [75]Vittal V. Impact of increased dfig wind penetration on power systems and markets[R]. Power Systems Engineering Research Center:Power Systems Engineering Research Center,2009.
    [76]Gautam D, Vittal V, Harbour T. Impact of increased penetration of dfig based wind turbine generators on transient and small signal stability of power systems[C]//Power and Energy Society General Meeting,2010 IEEE.2010: 1-1.
    [77]李生虎,刘正楷,杨振林.风电系统中异步电机机电模式研究[J].电力系统保护与控制,2010,38(21):6-11+18.
    [78]郝正航,余贻鑫.双馈风电场对电力系统阻尼影响的转矩分析[J].电工技术学报,2011,26(05):152-158.
    [79]林卫星,文劲宇,艾小猛,等.风电功率波动特性的概率分布研究[J].中国电机工程学报,2012,32(01):38-46+20.
    [80]Burchett R C, Heydt G T. Probabilistic methods for power system dynamic stability studies[J]. IEEE Transactions on Power Apparatus and Systems, 1978, PAS-97(3):695-702.
    [81]Billinton R, Kuruganty P R S. A probabilistic index for transient stability[J]. IEEE Transactions on Power Apparatus and Systems,1980, PAS-99(1): 195-206.
    [82]赵霞.并网异步化同步发电机实用动态模型及概率功角稳定性评估研究[D].重庆:重庆大学,2009.
    [83]赵霞,周家启,胡小正,等.暂态稳定性分析中的确定性方法和概率性方法[J].电力系统自动化,2006,30(06):100-103.
    [84]雷兴.风电接入带来的不确定性研究[D].济南:山东大学,2012.
    [85]余贻鑫,赵义术,刘辉,等.基于实用动态安全域的电力系统安全成本优化[J].中国电机工程学报,2004,24(06):17-22.
    [86]Li W. Risk assessment of power systems:Models, methods, and applications[M]. New York:John Wiley & Sons,2005.
    [87]Noferi P L, Paris L, Salvaderi L. Monte carlo methods for power system evaluation in transmission and generation planning[C]//Proceedings of the Annual Reliability and Maintainability Symposium. Washington, D.C., USA, 1975.
    [88]Wei J, Li G, Zhou M. Monte carlo simulation and bootstrap method based assessment of available transfer capability in ac-dc hybrid systems[J]. International Journal of Electrical Power & Energy Systems,2013,53(0): 231-236.
    [89]Borkowska B. Probabilistic load flow[J]. IEEE Transactions on Power Apparatus and Systems,1974,PAS-93(3):752-759.
    [90]Allan R N, Al-Shakarchi M R G. Probabilistic a.C. Load flow[J]. Proceedings of the Institution of Electrical Engineers,1976,123(6): 531-536.
    [91]Aien M, Fotuhi-Firuzabad M, Rashidinejad M. Probabilistic optimal power flow in correlated hybrid wind-photovoltaic power systems[J]. IEEE Transactions on Smart Grid,2014,5(1):130-138.
    [92]Xu Z, Dong Z Y, Zhang P. Probabilistic small signal analysis using monte carlo simulation[C]//IEEE Power Engineering Society General Meeting. San Francisco, USA,2005:1658-1664.
    [93]Rueda J L, Colome D G, Erlich I. Assessment and enhancement of small signal stability considering uncertainties [J]. IEEE Transactions on Power Systems,2009,24(1):198-207.
    [94]Billinton R, Kuruganty P R S. Probabilistic evaluation of transient stability in a multimachine power system[J]. Proceedings of the Institution of Electrical Engineers,1979,126(4):321-326.
    [95]Billinton R, Kuruganty P R S, Carvalho M F. An approximate method for probabilistic assessment of transient stability[J]. IEEE Transactions on Reliability,1979, R-28(3):255-258.
    [96]Faried S O, Billinton R, Aboreshaid S. Probabilistic evaluation of transient stability of a wind farm[J]. IEEE Transactions on Energy Conversion,2009, 24(3):733-739.
    [97]Faried S O, Billinton R, Aboreshaid S. Probabilistic evaluation of transient stability of a power system incorporating wind farms [J]. IET Renewable Power Generation,2010,4(4):299-307.
    [98]张节潭,王茂春,徐有蕊,等.采用最小累积风险度法的含风电场电力系统发电机组检修计划[J].电网技术,2011,35(05):97-102.
    [99]Nezhad A R, Mokhtari G, Davari M, et al. A new high accuracy method for calculation of Imp as a random variable[C]//International Conference on Electric Power and Energy Conversion Systems. Sharjah, United Arab Emirates,2009:1-5.
    [100]刘怡芳,张步涵,李俊芳,等.考虑电网静态安全风险的随机潮流计算[J].中国电机工程学报,2011,31(01):59-64.
    [101]张节潭,程浩忠,姚良忠,等.分布式风电源选址定容规划研究[J].中国电机工程学报,2009,(16):1-7.
    [102]Timko K J, Bose A, Anderson P M. Monte carlo simulation of power system stability[J]. IEEE Transactions on Power Apparatus and Systems,,1983, PAS-102(10):3453-3459.
    [103]Li W. Reliability assessment of electrical power systems using monte carlo methods[M]. Springer,1994.
    [104]Christian P R, George C. Monte carlo statistical methods [M]. Springer. 1998.
    [105]Ferreira C M M, Dias Pinto J A, Barbosa F P M. Dynamic security analysis of an electric power system using a combined monte carlo-hybrid transient stability approach[C]//IEEE Porto Power Tech Proceedings. Porto, Portugal, 2001:1-6.
    [106]李生虎,丁明,汪兴强.电力系统静态电压安全问题的概率评价[J].电力系统自动化,2003,27(20):26-30.
    [107]李文沅,卢继平.暂态稳定概率评估的蒙特卡罗方法[J].中国电机工程学报,2005,25(10):18-23.
    [108]Anders G J. Probability concepts in electric power systems[M]. New York: John Wiley & Sons,1990.
    [109]Allan R N, Leite Da Silva A M, Burchett R C. Evaluation methods and accuracy in probabilistic load flow solutions[J]. IEEE Transactions on Power Apparatus and Systems,1981, PAS-100(5):2539-2546.
    [110]Hu Z, Xifan W. A probabilistic load flow method considering branch outages[J]. IEEE Transactions on Power Systems,2006,21(2):507-514.
    [111]Sanabria L A, Dillon T S. Stochastic power flow using cumulants and von mises functions[J]. International Journal of Electrical Power & Energy Systems,1986,8(1):47-60.
    [112]Brucoli M, Torelli F, Trovato M. Probabilistic approach for power system dynamic stability studies[J]. IEE Proceedings on Generation, Transmission and Distribution,1981,128(5):295-301.
    [113]Hsu Y-Y, Chang C-L. Probabilistic transient stability studies using the conditional probability approach[J]. IEEE Transactions on Power Systems, 1988,3(4):1565-1572.
    [114]Wang K W, Chung C Y, Tse C T, et al. Improved probabilistic method for power system dynamic stability studies [J]. IEE Proceedings-Generation, Transmission and Distribution,2000,147(1):37-43.
    [115]Pei Z, Lee S T. Probabilistic load flow computation using the method of combined cumulants and gram-charlier expansion[J]. IEEE Transactions on Power Systems,2004,19(1):676-682.
    [116]Miller A C, Rice T R. Discrete approximations of probability distributions[J]. Management Science,1983,29(3):352-362.
    [117]Morales J M, Perez-Ruiz J. Point estimate schemes to solve the probabilistic power flow[J]. IEEE Transactions on Power Systems,2007,22(4): 1594-1601.
    [118]吴蓓,张焰,陈闽江.点估计法在电压稳定性分析中的应用[J].中国电机工程学报,2008,28(25):38-43.
    [119]Outcalt D M. Probabilistic load flow for high wind penetrated power systems based on a five point estimation method[D]. University of Wisconsin--Milwaukee,2009.
    [120]Bracale A, Carpinelli G, Caramia P, et al. Point estimate schemes for probabilistic load flow analysis of unbalanced electrical distribution systems with wind farms [C]//14th International Conference on Harmonics and Quality of Power. Bergamo, Italy,2010:1-6.
    [121]Morales J M, Baringo L, Conejo A J, et al. Probabilistic power flow with correlated wind sources[J]. IET Generation, Transmission & Distribution, 2010,4(5):641-651.
    [122]王敏,丁明.考虑分布式电源的静态电压稳定概率评估[J].中国电机工程学报,2010,30(25):17-22.
    [123]杨慧敏,易海琼,文劲宇,等.一种实用的大电网低频振荡概率稳定性分析方法[J].电工技术学报,2010,25(03):124-129+137.
    [124]Ahmadi H, Ghasemi H. Probabilistic optimal power flow incorporating wind power using point estimate methods[C]//10th International Conference on Environment and Electrical Engineering. Rome, Italy,2011:1-5.
    [125]Qiang F, Yu D, Ghorai J. Probabilistic load flow analysis for power systems with multi-correlated wind sources[C]//IEEE Power and Energy Society General Meeting. San Diego, Canada,2011:1-6.
    [126]Xiaomeng A, Jinyu W, Luo W. A discrete point estimate method for probabilistic load flow based on the measured data of wind power[C]//IEEE Innovative Smart Grid Technologies-Asia. Tianjin, China,2012:1-6.
    [127]易海琼,程时杰,侯云鹤,等.基于点估计的电力系统小扰动稳定概率分析[J].电力系统自动化,2007,31(23):1-4+29.
    [128]徐遐龄,查晓明,林涛.微电网小干扰稳定概率分析[J].高电压技术,2009,35(12):3117-3122.
    [129]Xue L, Yuzeng L, Shaohua Z. Analysis of probabilistic optimal power flow taking account of the variation of load power[J]. IEEE Transactions on Power Systems,2008,23(3):992-999.
    [130]Madrigal M, Ponnambalam K, Quintana V H. Probabilistic optimal power flow[C]//IEEE Canadian Conference on Electrical and Computer Engineering. Waterloo, Canada,1998:385-388.
    [131]李雪,李渝曾,李海英.几种概率潮流算法的比较与分析[J].电力系统及其自动化学报,2009,21(03):12-17.
    [132]Bu S Q, Du W, Wang H F, et al. Probabilistic analysis of small-signal stability of large-scale power systems as affected by penetration of wind generation[J]. IEEE Transactions on Power Systems,2011,27(2):1-9.
    [133]Yuan Y, Zhou J, Ju P, et al. Probabilistic load flow computation of a power system containing wind farms using the method of combined cumulants and gram-charlier expansion[J]. IET Renewable Power Generation,2011,5(6): 448-454.
    [134]杜文娟,卜思齐,王海风.考虑并网风电随机波动的电力系统小干扰概率稳定性分析[J].中国电机工程学报,2011,31(S1):7-11.
    [135]Malekpour A R, Niknam T, Pahwa A, et al. Multi-objective stochastic distribution feeder reconfiguration in systems with wind power generators and fuel cells using the point estimate method[J]. IEEE Transactions on Power Systems,2012, PP(99):1-1.
    [136]E.A.Cornish, R.A.Fisher. Moments and cumulants in the specification of distributions[J]. Revue de l'Institut International de Statistique,1937, (5): 307-320.
    [137]Usaola J. Probabilistic load flow with wind production uncertainty using cumulants and cornish-fisher expansion[J]. International Journal of Electrical Power & Energy Systems,2009,31(9):474-481.
    [138]Usaola J. Probabilistic load flow in systems with wind generation[J]. IET Generation, Transmission & Distribution,2009,3(12):1031-1041.
    [139]吴纯杰,王兆军.基于cornish-fisher展开的稳健综合控制图设计[J].应用概率统计,2009,25(03):257-265.
    [140]Usaola J. Probabilistic load flow with correlated wind power injections[J]. Electric Power Systems Research,2010,80(5):528-536.
    [141]王敏,分布式电源的概率建模及其对电力系统的影响[D].合肥:合肥工业大学,2010.
    [142]王敏,丁明.含大型太阳能发电系统的极限传输容量概率计算[J].电力系统自动化,2010,34(07):31-35.
    [143]周建华,袁越.含风电场电力系统的cornish-fisher级数概率潮流计算[J].电力自动化设备,2011,31(12):68-71.
    [144]Ruiz-Rodriguez F J, Hernandez J C, Jurado F. Probabilistic load flow for photovoltaic distributed generation using the cornish-fisher expansion[J]. Electric Power Systems Research,2012,89(0):129-138.
    [145]董炜,余健明,杨濛濛.含风电场配电网随机潮流计算及其电压安全分析[J].中国电力,2012,45(04):82-86.
    [146]Loparo K A, Blankenship G L. A probabilistic mechanism for small disturbance instabilities in electric power systems [J]. IEEE Transactions on Circuits and Systems,1985,32(2):177-184.
    [147]Shahidehpour S M, Qiu J. Effect of random perturbations on the dynamic behavior of power systems[J]. Electric Power Systems Research,1986,11(2): 117-127.
    [148]Tse C T, Wang K W, Chung C Y, et al. Parameter optimisation of robust power system stabilisers by probabilistic approach[J]. IEE Proceedings Generation, Transmission and Distribution,2000,147(2):69-75.
    [149]Wang K W, Chung C Y, Tse C T, et al. Probabilistic eigenvalue sensitivity indices for robust pss site selection[J]. IEE Proceedings-Generation, Transmission and Distribution,2001,148(6):603-609.
    [150]Chung C Y, Wang K W, Tse C T, et al. Probabilistic eigenvalue sensitivity analysis and pss design in multimachine systems[J]. IEEE Transactions on Power Systems,2003,18(4):1439-1445.
    [151]Rueda J L, Colome D G. Probabilistic performance indexes for small signal stability enhancement in weak wind-hydro-thermal power systems [J]. IET Generation, Transmission & Distribution,2009,3(8):733-747.
    [152]Rueda J L, Erlich I. Impacts of large scale integration of wind power on power system small-signal stability[C]//4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Weihai, China,2011:673-681.
    [153]Chen W, Libao S, Liangzhong Y, et al. Modelling analysis in power system small signal stability considering uncertainty of wind generation[C]//IEEE Power and Energy Society General Meeting. Minneapolis, USA,2010:1-7.
    [154]Zheng C, Kezunovic M. Impact of wind generation uncertainty on power system small disturbance voltage stability:A pcm-based approach[J]. Electric Power Systems Research,2012,84(1):10-19.
    [155]关宏亮.大规模风电场接入电力系统的小干扰稳定性研究[D].北京:华北电力大学,2008.
    [156]Heier S, Waddington R. Grid integration of wind energy conversion systems[M].2nd. Wiley,2006.
    [157]李先奇.变速风电机组风电场并网的系统电压稳定性研究[D].武汉:华中科技大学,2008.
    [158]Muller S, Deicke M, De Doncker R W. Doubly fed induction generator systems for wind turbines[J]. IEEE Industry Applications Magazine,2002, 8(3):26-33.
    [159]Wu F, Zhang X P, Godfrey K, et al. Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator [J]. IET Generation, Transmission & Distribution,2007,1(5):751-760.
    [160]Ko H-S, Yoon G-G, Kyung N-H, et al. Modeling and control of dfig-based variable-speed wind-turbine[J]. Electric Power Systems Research,2008, 78(11):1841-1849.
    [161]郝正航,余贻鑫.双馈风电机组机电耦合与轴系稳定的分析与辨识[J].电工技术学报,2011,26(03):134-139.
    [162]Mei F, Pal B. Modal analysis of grid-connected doubly fed induction generators[J]. IEEE Transactions on Energy Conversion,2007,22(3): 728-736.
    [163]郝正航.双馈风电机组的暂态行为及其对电力系统稳定性影响[D].天津: 天津大学,2011.
    [164]陈树勇.大型并网风力发电场规划方法研究[D].北京:电力部电力科学研究院,1998.
    [165]梁双,胡学浩,张东霞,等.考虑风速变化特性的风电容量可信度评估方法[J].中国电机工程学报,2013,33(10):18-27.
    [166]Ieee recommended practice for excitation system models for power system stability studies[J]. IEEE Std 4215-2005 (Revision of IEEE Std 4215-1992), 2006:01-85.
    [167]Kundur P, Balu N J, Lauby M G. Power system stability and control [M]. McGraw-Hill,1994.
    [168]Rogers G. Power system oscillations[M]. Norwell:Kluwer Academic,2000.
    [169]Carta J A, Ramirez P, Velazquez S. A review of wind speed probability distributions used in wind energy analysis:Case studies in the canary islands[J]. Renewable and Sustainable Energy Reviews,2009,13(5): 933-955.
    [170]Celik A N. On the distributional parameters used in assessment of the suitability of wind speed probability density functions [J]. Energy Conversion and Management,2004,45(11-12):1735-1747.
    [171]Kavak Akpinar E, Akpinar S. A statistical analysis of wind speed data used in installation of wind energy conversion systems[J]. Energy Conversion and Management,2005,46(4):515-532.
    [172]牟聿强,王秀丽,别朝红,等.风电场风速随机性及容量系数分析[J].电力系统保护与控制,2009,37(01):65-70.
    [173]Shuo Z, Gengyin L, Ming Z. Adequacy evaluation of wind farm integration in power generation and transmission systems[C]//International Conference on Sustainable Power Generation and Supply. Nanjing, China,2009:1-7.
    [174]韩爽.风电场功率短期预测方法研究[D].北京:华北电力大学,2008.
    [175]Sumner J, Masson C. Influence of atmospheric stability on wind turbine power performance curves [J]. Journal of Solar Energy Engineering,2006, 128(4):531-538.
    [176]潘文霞.大型风电场电压稳定性分析与控制研究[D].南京:河海大学,2004.
    [177]Holttinen H. Hourly wind power variations in the nordic countries[J]. WIND ENERGY,2005,8(2):173-195.
    [178]肖创英,汪宁渤,丁坤,等.甘肃酒泉风电功率调节方式的研究[J].中国电机工程学报,2010,30(10):1-7.
    [179]National Renewable Energy Laboratory (NERL). Wind integration datasets[EB/OL] http://www.nrel.gov/wind/integrationdatasets/.
    [180]Der Kiureghian A, Liu P. Structural reliability under incomplete probability information[J]. Journal of Engineering Mechanics,1986,112(1):85-104.
    [181]陈树勇,戴慧珠,白晓民,等.风电场的发电可靠性模型及其应用[J].中国电机工程学报,2000,20(03):27-30.
    [182]Manwell J F, McGowan J G, Rogers A L. Wind energy explained:Theory, design and application[M]. Wiley,2002.
    [183]秦志龙.计及相关性的含风电场和光伏电站电力系统可靠性评估[D].重庆:重庆大学,2013.
    [184]Bowman A W, Azzalini A. Applied smoothing techniques for data analysis: The kernel approach with s-plus illustrations[M]. New York:Oxford University Press,1997.
    [185]Preece R, Milanovic J V. The probabilistic collocation method for dealing with uncertainties in power system small disturbance studies[C]//IEEE Power and Energy Society General Meeting. San Diego, Canada,2012:1-7.
    [186]中国气象科学数据共享服务网.中国地面气候资料逐小时数据集[EB/OL]http://cdc.cma.gov.cn/.
    [187]伍红,赵霞,周家启.电力系统小扰动概率稳定性的蒙特卡罗仿真[J].电力系统自动化,2009,33(11):8-12+23.
    [188]赵霞,周家启,赵渊.含异步化同步发电机电力系统小扰动功角稳定性的概率分析[J].中国电机工程学报,2009,29(28):68-74.
    [189]薛禹胜,刘强,LEDWICH G, et al.关于暂态稳定不确定性分析的评述[J].电力系统自动化,2007,31(14):1-6+75.
    [190]刘强,薛禹胜,LEDWICH G, et al.基于稳定域及条件概率的暂态稳定不确定性分析[J].电力系统自动化,2007,31(19):1-6.
    [191]D1 755-2001电力系统安全稳定导则[R].中华人民共和国国家经济贸易委员会,2001.
    [192]Liapunov A M, Pliss V A, Basov V, et al. Stability of motion[M]. Academic Press New York,1966.
    [193]张艳萍.受端系统小扰动电压稳定问题的研究[D].北京:华北电力大学,2008.
    [194]薛禹胜,郝思鹏,刘俊勇,等.关于低频振荡分析方法的评述[J].电力系统自动化,2009,33(03):1-8.
    [195]W.Sauer P, M.A.Pai. Power system dynamics and stability[M].1998.
    [196]Fishman G. Monte carlo:Concepts, algorithms, and applications[M]. New York:Springer,1996.
    [197]伍红.基于蒙特卡罗模拟的概率小扰动稳定分析[D].重庆:重庆大学,2009.
    [198]Evans D H. An application of numerical integration techniques to statistical tolerancing[J]. Technometrics,1967,9(3):441-456.
    [199]Rosenblueth E. Point estimates for probability moments[C]//Proceedings of National Academy of Science of United States of America.1975:3812-3814.
    [200]Rosenblueth E. Two point estimates in probabilities [J]. Applied Mathematical Modelling,1981,5(5):6.
    [201]Harr M E. Probabilistic estimates for multivariate analyses[J]. Applied Mathematical Modelling,1989,13(5):313-318.
    [202]Li K. Point-estimate method for calculating statistical moments [J]. Journal of Engineering Mechanics,1992,118(7):1506-1511.
    [203]H.P H. An efficient point estimate method for probabilistic analysis[J]. Reliability Engineering and System Safety,1998,59(3):261-267.
    [204]Caramia P, Carpinelli G, Varilone P. Point estimate schemes for probabilistic three-phase load flow[J]. Electric Power Systems Research,2010,80(2): 168-175.
    [205]Lind N C. Modelling of uncertainty in discrete dynamical systems[J]. Applied Mathematical Modelling,1983,7(3):146-152.
    [206]Cramer H. Numerical methods of statistics [M]. Princeton, NJ: Princeton University Press.1946.
    [207]汪隆君,王钢.基于动态安全域与埃奇沃斯级数的电力系统暂态稳定概率评估[J].中国电机工程学报,2011,31(01):52-58.
    [208]彭志炜,胡国根,韩祯祥.基于分叉理论的电力系统电压稳定性分析[M].中国电力出版社,2005.
    [209]李宏仲.基于hopf分岔理论的电力系统动态电压稳定研究[D].上海:上海交通大学,2008.
    [210]戴博,张建华,刘军.动态电压振荡型失稳边界分析与算法研究[J].中国电机工程学报,2008,28(25):44-49.
    [211]Alvarado F, Dobson I, Hu Y. Computation of closest bifurcations in power systems[J]. IEEE Transactions on Power Systems,1994,9(2):918-928.
    [212]Dobson I, Alvarado F, DeMarco C L. Sensitivity of hopf bifurcations to power system parameters [C]//Proceedings of the 31st IEEE Conference on Decision and Control. Tucson, USA,1992:2928-2933.
    [213]Seydel R. Practical bifurcation and stability analysis:From equilibrium to chaos[M].1st. Elsevier,1988.
    [214]Xiaoyu W, Ajjarapu V. Application of a novel eigenvalue trajectory tracing method to identify both oscillatory stability margin and damping margin[J]. IEEE Transactions on Power Systems,2006,21(2):817-824.
    [215]Perninge M, Lindskog F, Soder L. Importance sampling of injected powers for electric power system security analysis[J]. IEEE Transactions on Power Systems,2012,27(1):3-11.
    [216]Yu H, Chung C Y, Wong K P, et al. Probabilistic load flow evaluation with hybrid latin hypercube sampling and cholesky decomposition[J]. IEEE Transactions on Power Systems,2009,24(2):661-667.
    [217]Zhaohong B, Xifan W. Studies on variance reduction technique of monte carlo simulation in composite system reliability evaluation[J]. Electric Power Systems Research,2002,63(1):59-64.
    [218]Falaghi H, Ramezani M, Singh C, et al. Probabilistic assessment of ttc in power systems including wind power generation[J]. IEEE Systems Journal, 2012,6(1):181-190.
    [219]Kamwa I, Beland J, Trudel G, et al. Wide-area monitoring and control at hydro-quebec:Past, present and future [C]//IEEE Power Engineering Society General Meeting. Montreal, Canada,2006:12 pp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700