CFRP加固负载混凝土梁抗弯承载力及可靠度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维复合材料(CFRP)由于具有强度高、模量高、耐腐蚀和施工简便等突出优点,已经成为混凝土结构加固的主要材料,其加固计算理论研究和设计方法完善一直是人们关注的热点问题。本文结合钢筋混凝土梁在不同受荷状态下加固前以及碳纤维布加固后的受弯承载力试验,寻找滞后应变随受荷状态的变化规律,以及对抗弯加固效果的影响,建立更加符合工程实际的滞后应变简化公式,并从可靠度角度出发,建立以界限配布率控制材料用量的碳纤维布加固混凝土梁受弯承载力的实用设计公式,达到延性设计和可靠设计的目的,主要研究成果如下:
     (1)滞后应变值与受荷状态有关,卸载前承担的荷载越大,卸载后滞后应变值越高。根据钢筋混凝土梁在不同荷载历史条件下卸载至不同程度时的混凝土和钢筋的应变变化规律,得到卸载时截面应变仍服从平截面假定,受压区混凝土和受拉钢筋的应力-应变关系服从卸载定理,裂缝在卸载的过程中逐渐闭合,可以认为卸载过程中中和轴位置不变。
     (2)建立滞后应变简化公式。首先根据卸载前钢筋混凝土梁受压区混凝土和受拉钢筋所处的4种不同弹塑性状态,分别建立了相应的4个卸载后的碳纤维片材滞后应变理论公式。然后对此4个理论公式进行影响因素分析,得出配筋率和相对卸载量是影响滞后应变的重要因素,据此经过一系列回归并结合试验结果得到考虑受荷状态的滞后应变简化公式。
     (3)钢筋的屈服是加固梁发生延性破坏的有利条件。从不同损伤程度的钢筋混凝土梁抗弯加固试验结果中得出:当碳纤维布与混凝土粘贴牢固时,只有在钢筋屈服之后,应力才会发生重分布,应力的增长将由碳纤维布来承担,说明只有利用钢筋的屈服性质,才能充分发挥碳纤维布的作用。因此,加固设计需保证加固梁破坏之前钢筋已经屈服。
     (4)采用满足延性要求的界限配布率控制碳纤维布用量。由于滞后应变的存在,为充分发挥材料作用以及避免脆性破坏的发生,与传统的界限破坏条件不同,结合试验重新确定界限破坏条件,据此确定最小配布率和最大配布率,达到经济合理的设计目的。
     (5)确定滞后应变为随机变量的碳纤维布加固混凝土梁抗弯承载力的统计参数和概率分布模型。首先在碳纤维布力学性能指标测试试验的基础上,采用数理统计方法得到了碳纤维布拉伸强和弹性模量的统计参数和概率分布模型,然后利用Matlab优化统计工具箱结合Monte-Carlo法对工程常用材料强度、截面尺寸的碳纤维布加固梁按本文建议公式进行抗弯承载力模拟,在考虑滞后应变为随机变量的情况下,对发生规范所允许的受压破坏时的抗力进行了统计分析,得到抗力比值的统计参数和概率分布模型。
     (6)基于可靠度的碳纤维布加固混凝土梁抗弯承载力界限配布率优化。对于常见的三种荷载组合工况,采用JC法分别计算了不同荷载效应比值情况下按照本文建议公式进行碳纤维布加固混凝土梁抗弯承载力设计的可靠指标,得出受压破坏的可靠指标平均值满足二级结构延性破坏的目标可靠指标要求,并从满足目标可靠指标的角度优化界限配布率,验证了本文提出的配布率界限值具有较好的可靠指标一致性。
CFRP have become the major materials for strengthened concrete structures because of their advantage of high strength, high elastic modulus, excellent anticorrosion and simple construction. Based on flexural capacity experiment of reinforced concrete beams under different loading history before and after strengthened by carbon fiber reinforced plastic (CFRP), the variation of hysteretic strain with loading history and the influence on the reinforcement effect are found, a revised formula for hysteretic strain is proposed to accord with engineering practice. From the view of reliability, the practicable formula with material requirement controlled by limit ratio of CFRP is presented for flexural capacity of strengthened concrete beams satisfying ductile and reliable design. The following are the main research results:
     (1) The hysteretic strain is relevant to loading history, which is higher after unloading with the higher load before unloading. According to the variation of strain of concrete and of steel bars after unloading to varying level under different loading history, cross-sectional strain is still subject to the plane section assumption, the stress-strain relationship of compressed concrete and of tensile steel bars obey the offloading theorem, and then location of the neutral axis remains the same because of cracks closing gradually during unloading.
     (2) A revised formula for hysteretic strain is presented. In accordance with four elastoplastic states of compressed concrete and of tensile steel bars, the corresponding theoretical formulas are established especially. The reinforcement ratio and the relative amount of unloading are the important influential factors, so the simplified formula for hysteretic strain associated with above-mentioned influential factors and the experiment results are obtained after a series of regression analysis, which considers the load history.
     (3) The steel yielding is advantageous to the ductile failure for CFRP-strengthened beams. On the basis of the experimental results under different damage degree, the redistribution of stress will occur only after the steel yielding with firm interface bond, and the growing stress is born by CFRP. That is CFRP would play a greater role after steel yielding. Therefore, the steel must be yielded before ductile failure in the design.
     (4) Material requirement is controlled by limit ratio of CFRP satisfying ductility. Because of hysteretic strain, the critical failure condition, different from ordinary critical failure basis, are reconsidered upon experiments in order to achieve economical design, for the sake of functioning adequately and avoiding brittle failure.
     (5) Statistical parameters and the probability distribution model with hysteretic strain as a random variable for flexural capacity of CFRP-strengthened concrete beams are obtained. Based on the mechanical property tests of CFRP, statistical characteristics of tensile strength and elastic modulus are acquired by mathematical statistics. Then, the flexural capacity suggested in this paper are simulated for engineering material strength, and cross-sectional dimensions commonly used, using optimized statistical tool-box in Matlab and Monte-Carlo method. So in the case of hysteretic strain as a random variable, statistical characteristics of resistance ratio for compression failure are given.
     (6) The limit ratios of CFRP are optimized on the basis of reliability. Reliability indexes of flexural capacity suggested in this paper meet the object reliability index for ductile failure of secondary structures, using JC method under different load effect ratios for usual three load combinations respectively. The limit ratios of CFRP are optimized from the point of reliability, which achieve better consistency of reliability index.
引文
[1]中华人民共和国国家标准.混凝土结构加固设计规范GB50367-2006[S].北京:中国建筑l工业出版社,2006
    [2]于锦生,王海龙.CFRP加固钢筋混凝土结构的技术与应用[J].纤维复合材料,2006,(2):47-50
    [3]卜良桃,周靖,叶蓁等.混凝土结构加固设计规范算例[M].北京:中国建筑工业出版社,2008
    [4]赵彤,谢剑.碳纤维布补强加固混凝土结构新技术[M].天津:天津大学出版社,2001
    [5]Kaiser.H. Bewehren Von Stahlbeton mit kohlenstoffaserverstarken Epoxidharzen [D]. Federal Technical Highschool of Zurich,1989
    [6]Deuring.M. Verstarken von Stahlbeton mit gespannten Faserverbundwerkstoffen [R]. Swiss Federal Laboeatories for Material Testing and Rearch (224),1993
    [7]Meier. U, Deuring. M, Meier. H et al. CFRP bonded sheets. Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures [J]. Properties and Application,1993:423-434
    [8]U. Meier. Bridge repair with high performance composite materials [J]. Material and Technique,1987(4):125-94
    [9]U.Meier. Strengthening of structures using carbon fiber/epoxy composites [J]. Construction and Building Materials,1995,19(6):86-94
    [10]腾锦光,陈建飞,S.T.史密斯等.FRP加固混凝土结构[M].北京:中国建筑工业出版社,2005
    [11]张芳芳.普通和预应力FRP加固梁的数值模拟与理论分析[D].大连理工大学,2008
    [12]顾履恭.混凝土结构用碳纤维增强聚合物在国外的开发和应用[J].建筑技术,2001,32(5):310-313
    [13]王小燕.预应力碳纤维加固RC梁受弯构件的有限元分析[D].河北工程大学,2009
    [14]ACI Committee 440. Guide for the Design and Construction of Externally Bonded FRP System For Strengthening Concrete Structures [S]. Detroit:American Concrete Institute, 2000
    [15]钱伟.预应力碳纤维布加固损伤混凝土梁的受力性能[D].郑州大学.2007
    [16]卢亦焱,黄银燊,张号军等.FRP加固技术研究新进展[J].中国铁道科学,2006,27(3):34-40
    [17]中国建设标准化协会标准.碳纤维片材加固修复混凝土结构技术规程CECS146:2003[S].北京:中国计划出版社.2003
    [18]中华人民共和国交通行业标准.桥梁结构用芳纶纤维复合材料JT/T 531-2004[S].北京:人民交通出版社,2004
    [19]中华人民共和国交通行业标准.桥梁结构用碳纤维片材JT/T 532-2004[S].北京:人民交通出版社,2004
    [20]中华人民共和国建筑工业行业标准.结构加固修复用粘贴树脂产品标准[S].北京:中国建筑工业出版社.2005
    [21]中华人民共和国国家标准.高性能纤维复合材料应用技术规范[S].北京:中国建筑工业出版社,2006
    [22]中华人民共和国国家标准.结构加固修复用碳纤维片材GB/T21490-2008[S].北京:中国建筑工业出版社,2008
    [23]赵彤,谢剑,戴自强.碳纤维布加固钢筋混凝土梁的受弯承载力试验研究[J].建筑结构,2000,13(7):12-15
    [24]董江峰,王清远,何东.碳纤维布加固钢筋混凝土梁受力性能的试验研究[J].应用力学学报.2011,28(5):521-526
    [25]张广泰,刘清,王克新.碳纤维布加固钢筋混凝土梁的抗弯试验和数值分析[J].工业建筑,2009,39(8):80-83
    [26]周戟,郭蓉,付士峰等.碳纤维布加固混凝土梁抗弯试验研究[J].河北工业大学学报,2007,36(4):105-109
    [27]黄慧明.粘贴碳纤维片材加固钢筋混凝土梁正截面承载力试验研究[J].湖南大学学报(自然科学版),2001,25(3):121-126
    [28]王春阳.碳纤维布加固钢筋混凝土梁的抗弯试验研究[J].武汉理工大学学报,2009,31(8):91-93
    [29]M.R. Esfahani, M.R. Kianoush, A.R. Tajari. Flexural behaviour of reinforced concrete beams strengthened by CFRP sheets [J]. Engineering Structures,2007,29(10):2428-2444
    [30]A.H. Al-Saidy, A.S. Al-Harthy, K.S. Al-Jabri et al. Structural performance of corroded RC beams repaired with CFRP sheets [J]. Composite Structures,2010,92(8):1931-1938
    [31]A.A. El-Ghandour. Experimental and analytical investigation of CFRP flexural and shear strengthening efficiencies of RC beams [J]. Construction and Building Materials,2011, 25(3):1419-1429
    [32]F. Ceroni. Experimental performances of RC beams strengthened with FRP materials [J]. Construction and Building Materials,2010,24(9):1547-1559
    [33]Grace N F, Tsuyoshi Enomoto, Saju Sachidanandan. Use of CFRP/CFCC reinforcement in prestressed concrete box-beam bridges [J]. ACI Structural Journal.2006,103(1):123-132
    [34]Z. J. Wu, C. G. Bailey. Fracture Resistance of a Cracked Concrete Beam Post-strengthened with FRP Sheets [J]. International Journal of Fracture,2005(9):35-39
    [35]Taljsten B, COrdin H. Concrete Structures Strengthened with Near-Surface Mounted Reinforcement of CFRP [J]. Advances in Structural Engineering,2002(3):201-213
    [36]John F. Bonacci, Mohamed Maalej. Externally Bonded Fiber-Reinforced Polymer for Rehabilitation of Corrosion Damaged Concrete Beams [J]. ACI Structural Journal,2000(5): 703-711
    [37]Mohsen Shahawy, Omar Chaalal, Thomas E. Beitelman, ang Adnan El-Saad. Flexural Strengthening with Carbon Fiber-Reinforced Full-Scale Girders [J]. ACI Structural Journal, 2001(5):735-743
    [38]Farhang Farahbod, Davood Mostofinejad. Experimental study of moment redistribution in RC frames strengthened with CFRP sheets [J]. Composite Structures,2011,93(3): 1168-1177
    [39]杨勇新,岳清瑞.碳纤维布加固混凝土梁截面刚度计算[J].工业建筑,2001,31(9):1-4
    [40]田水.谷倩,张海涛.碳纤维布补强加固钢筋混凝十梁的刚度计算方法[J].武汉理工大学学报,2004,26(12):49-58.
    [41]黄凤霞,曹双寅,蔺新艳.CFRP加固钢筋混凝土梁抗裂、刚度等正常使用性能试验研究[J].工程抗震与加固改造,2011,33(5):53-57
    [42]曹双寅,蔺新艳,敬登虎登.外贴碳纤维布加固钢筋混凝土梁裂缝性能试验研究[J].建筑结构学报,2010,31(1):33-40
    [43]赵志平,王秀册,袁影辉.关于CFRP加固钢筋混凝十受弯构件抗弯刚度的非线性有限元研究[J].四川建筑科学研究,2008,34(1):73-75
    [44]Pecce M, Ceroni F. Modeling of tension-stiffening behavior of reinforced concrete ties strengthened with fiber reinforced plastic sheets [J]. Journal of Composites for Construction [J],2004,8(6):510-518
    [45]Hayder A. Rasheed, Richard R. Harrison, Robert J. Peterman et al. Ductile strengthening using externally bonded and near surface mounted composite systems [J]. Composite Structures,2010,92(10):2379-2390
    [46]M. S. Wendel. Sensitivities of Strength and Ductility of Plated Reinforced Concrete Sections to Preexisting Strains [J]. Journal of Structural Engineering,2002 (5):624-636
    [47]K. L. Tai. D. E. P. Austin, et al. Ductile Design of Reinforced Concrete Beams Retrofitted with Fiber Reinforced Polymer Plates [J] Journal of Composite for Construction,2004 (6): 489-500
    [48]Ceroni F, Pecce M. Cracking behaviour of RC beams externally strengthened with emerging materials [J]. Construction and Building Materials,2007,21(4):736-745
    [49]Muhammad Masood Rafi, Ali Nadjai. Faris Ali, Didier Talamona. Aspects of behaviour of CFRP reinforced concrete beams in bending [J]. Construction and Building Materials,2008, 22:277-285
    [50]贺学军.FRP加固负载混凝土梁的抗弯性能及剥离行为研究[D].中南大学,2007
    [51]褚云朋,贾彬,姚勇等CFRP复合加固损伤RC梁抗弯承载力试验[J].建筑结构.2011,41(2):120-123
    [52]滕志红.卢晓峰CFRP口固在用混凝土梁抗弯承载力研究[J].四川建筑,2009,29(1):127-128
    [53]李贵炳,张爱晖,金伟良.持载下外贴纤维布加固RC梁抗弯性能研究[J].浙江大学学报(工学版),2005,39(1):70-75
    [54]王文炜,赵国藩,黄承逢等.碳纤维布加固己承受荷载的钢筋混凝土梁抗弯性能试验研究及抗弯承载力计算[J].[程力学,2004,21(4):172-178
    [55]R.EL-Hacha, s.H.Rizkalla, R.Kotynia. Modelling of Reinforced Concrete Flexural Members Strengthened with Near-Surfaee Mounted FRP Reinforcement [C].7th International Symposium,2005(2):1681-1700
    [56]Tamer El Maaddawy, Mohamed El Sayed. Beckry Abdel-Magid. The effects of cross-sectional shape and loading condition on performance of reinforced concrete members confined with Carbon Fiber-Reinforced Polymers [J]. Materials & Design,2010,31(5): 2330-2341
    [57]Laura A, Antonio B, Giusy F. Increasing the flexural performance of RC beams strengthened with CFRP materials [J]. Construction and Building Materials,2005,19(1):55-61
    [58]S.Yeong-soo, and L. Chadon. Flexural Behavior of Reinforced Concrete Beams Strengthened with Carbon Fiber-Reinforced Polymer Laminates at Different Levels of Sustaining Load [J]. ACI Structural Journal,2003(52):231-240
    [59]胡孔国,陈小兵,岳清瑞等.考虑二次受力碳纤维布加固混凝土构件正截面承载力计算[J].建筑结构,2001,31(7):63-65
    [60]高颖,曹征良.碳纤维布加固钢筋混凝土梁的受弯承载力计算[J].深圳大学学报(理工版).2005,22(1):85-90
    [61]朱磊,王慧.二次受力条件下RC梁外贴碳纤维布抗弯承载力计算方法[J].安徽建筑工业学院学报(自然科学版),2008,16(4):20-23
    [62]赵丹丹.纤维布及高强钢绞线网加固钢筋混凝十梁的试验研究[D].兰州理工大学2008
    [63]陈丽莹,高日.二次受力下CFRP(?)固混凝土结构抗弯承载力计算方法[J].北方交通大学学报,2003,27(1):80-83
    [64]贺学军,周朝阳,杨晓华等CFRP加固钢筋混凝土梁滞后应变计算方法[J].哈尔滨工业大学学报,2009,41(8):123-127
    [65]王文炜.FRP加固混凝土结构技术及应用[M].北京:中国建筑工业出版社,2007
    [66]张永军,竺百川.纤维加固混凝土构件的承载力分析[J].山西建筑,2007,33(22):84-85
    [67]孙静,杜宜军.经卸载后加固RC梁的滞后应变影响分析[J].水利与建筑工程学报,2006,4(1):30-31,36
    [68]中华人民共和国国家标准.工程结构可靠性设计统一标准GB50153-2008.北京:中国建筑工业出版社,2009
    [69]Freudenthal A.M. The Safety of Structures [J]. Transaction, ASCE,1947,112:125-159
    [70]Cornell C A. A Probability based Structural Code [J]. Journal of the American Concrete Institute,1969,66(12):974-985
    [71]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996
    [72]Hasofer A M, Lind N C. Exact and Invariant Second-moment Format [J]. Journal of the Engineering Mechanics,1974,100(1):111-121
    [73]Rackwitz R, Fiessler B. Structural Reliability under Combined Random Load Sequences [J]. Computers and Structures,1978,9(5):489-494
    [74]Breitung K. Asymptotic Approximations for Multinormal Integrals [J]. Journal of Engineering Mechanics,1984,110(3):357-366
    [75]Tvedt L. Distribution of Quadratic Forms in Normal Space-Application to Structural Reliability [J]. Journal of Engineering Mechanics,1990,116(6):1183-1197
    [76]Der Kiureghan A, Lin H Z, Hwang S. J. Second-order reliability approximations [J]. Joural of Engineering Mechanicas,2003,113(8):1208-1225
    [77]贡金鑫.陈晓宝,赵国藩.结构可靠度分析的Gauss-Hermite积分方法[J].上海交通大学学报.2002,36(11):1625-1629
    [78]Naess, B. J. Leira, O. Batsevych. System reliability analysis by enhanced Monte-Carto simulation [J]. Structural Safety,2009,31:349-355
    [79]S K Au, Z J Cao, Y Wang. Implementing advanced Monte-Carlo simulation under spreadsheet environment [J]. Structural Safety,2010,32:281-292
    [80]Hao Zhang, Robert L. Interval Monte-Carlo methods for structural reliability [J]. Structural Safety,2010,32:183-190
    [81]Joao B Cardoso, Joao R De Almeida, Jose M Dias and Pedro G.. Coelho. Structural reliability analysis using Monte-Carlo simulation and neural networks [J]. Advances in Engineering Software.2008,39(6):505-513
    [82]Claudio M Rocco S. A rule induction approach to improve Monte-Carlo system reliability assessment [J]. Reliability Engineering & System Safety,2003,82(1):85-92
    [83]Engeleund S, Rackwitz R. A Benchmark Study on Importance Sampling Techniques in Structural Reliability [J]. Structural Safety,1993,12(4):255-276
    [84]Luca Campioni, Paolo Vestrucci. Monte-Carlo importance sampling optimization for system reliability application [J]. Annals of Nuclear Energy,2004,31(9):1005-1025
    [85]Henri P Gavin, Siu Chung Ya. High-order limit state functions in the response surface method for structural reliability analysis [J]. Structural Safety,2008,30:162-179
    [86]Sang Hoon Lee, Byung Man Kwak. Reponse surface augmented moment method for efficient reliability analysis [J]. Structural Safety,2006,28:261-272
    [87]Irfan Kaymaz, Chris A Mcmahon. Areponse surface method based on weighted regression for structural reliability analysis [J]. Probabilistic Engineering Mechanics,2005.20(1):11-17
    [88]Jin Cheng, Q S Li. Ru-cheng Xiao.Anew artificial neural network-based response surface method for structural reliability analysis [J]. Probabilistic Engineering Mechanics, 2008.23(1):51-63
    [89]Gomes H M, Awruch A M. Comparision of response surface nad neural network with other methods for structural reliability analysis [J]. Structural Safety.2004,26:49-67
    [90]Plevris N, Triantafillou T.C, Veneziano D. Reliability of RC Members Strengthened with CFRP Laminates [J]. ASCE. Journal of Structural Engineering.1995,121(7):1037-1044
    [91]Atadero R.A, Karbhari V.M. Probabilistic Based Design for FRP Strengthening of Reinforced Concrete [J]. The 7th International Symposium Fiber-Reinforcement for Concrete Structures, Kansas City, Missouri, USA.2005
    [92]高仲学,杨威CFRP布加固钢筋混凝土梁可靠性分析[J].土木建筑与环境工程,2011,33(6):36-43
    [93]卢少微,谢怀勤Monte Carlo去模拟CFRP(?)固梁的抗弯可靠度[J].武汉理工大学学报,2005,27(12):45-48
    [94]卢少微.谢怀勤CFRP加固RC梁抗弯可靠度设计方法研究[J].应用基础与工程科学学报,2007,15(4):517-523
    [95]卢少微.谢怀勤CFRP加固RC梁的模糊随机可靠度数值模拟[J].应用力学学报.2009.26(1):181-185
    [96]陈爽,覃荷瑛,李德华CFRP加固钢筋混凝土梁的可靠度分析[J].中外公路,2011,32(2):196-199
    [97]张勇.CFRP加固钢筋混凝十梁可靠度分析[J].吉林建筑工程学院学报,2012,29(2):17-19
    [98]杨勇新.碳纤维布加固混凝土梁的可靠度分析[J].建筑结构学报,2008(S2):88-91
    [99]向志虎.碳纤维布加固构件的可靠度与全过程质量控制研究[D].武汉大学,2004
    [100]朱剑俊.碳纤维加固钢筋混凝土受弯构件研究及其可靠性分析[D].浙江工业大学,2003
    [101]杨建江,何宁.碳纤维布用于钢筋混凝土构件抗弯加固的研究及可靠度分析[C].第十三届全国结构工程学术会议论文集(第Ⅰ册):清华大学出版社、《工程力学》杂志社,2004
    [102]何政,黄永春.应用Monte Carlo-JC去评估FRP加固RC梁受弯承载力可靠度[J].复合材料学报,2007,24(1):116-121
    [103]杨威,王文炜.基于可靠度的CFRP布材料分项系数的确定[J].工业建筑,2009(S2):92-96
    [104]中华人民共和国国家标准.普通混凝土力学性能试验方法标准GB/T 50081-2002[S].北京:建筑工业出版社,2003
    [105]中华人民共和国国家标准.金属材料拉伸试验GB/T 228.1-2010[S].北京:建筑工业出版社,2010
    [106]李同林,殷绥域.弹塑性力学[M].武汉:中国地质大学出版社.2006
    [107]中华人民共和国国家标准.混凝十结构设计规范GB50010-2002[S].北京:中国建筑工业出版社.2002
    [108]中华人民共和国国家标准.建筑结构可靠度设计统一标准GB50068-2001[S].北京:中国建筑工业出版社,2001
    [109]贡金鑫,魏巍巍.工程结构可靠性设计原理[M].北京:机械工业出版社,2007
    [110]贡金鑫.工程结构可靠度计算方法[M].大连:大连理工大学出版社,2003
    [111]中华人民共和国国家标准.建筑结构荷载规范GB50009-2001(2006年版)[S].北京:中国建筑工业出版社,2006
    [112]中华人民共和国国家标准.定向纤维增强塑料拉伸性能试验方法GB/T3354-1999[S].北京:中国建筑工业出版社,1999
    [113]庄楚强,吴亚森.应用数理统计基础[M].广州:华南理工大学出版社,1992
    [114]张思俊,吴世伟,甘峰等.结构可靠度分析中随机变量分布函数的拟合检验[M].河海大学科技情报室,1986
    [115]岳清瑞,曹劲松,杨勇新等.碳纤维布标准检测方法中试件尺寸影响的试验研究[J].工业建筑,2005,35(8):1-4
    [116]朱虹,张继文,郑建春.碳纤维布的力学性能检验及施工质量验收[J].建筑技术,2004,35(12):938-939
    [117]何世华.碳纤维布力学性能指标取值探讨[J].工业建筑,2012,42(5):119-121
    [118]罗苓隆,赵敏,胥春先等.碳纤维布测试方法研究[J].四川建筑科学研究,2004,30(3):98-10
    [119]中华人民共和国国家标准.建筑结构加固工程施工质量验收规范GB50550-2010[S].北京:中国建筑工业出版社.2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700