土坯房屋基本力学和抗震性能的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前在我国大部分村镇地区,还存在着相当数量的土坯房屋。但这些房屋设计、施工等方面的规范、技术研究却严重滞后。很多土坯房屋主要由当地工匠根据经验建造,质量参差不齐,缺乏可靠性。这导致其在地震中往往受到较为严重的破坏,直接危害了当地居民的生命和财产安全。在国家“十一五”科技支撑计划重点项目2006BAJ06B03支持下,为研究和提高土坯房屋的基本力学和抗震性能,本文从单块土坯的制作及抗压强度、土坯砌体的力学性能、土坯墙体的抗震性能以及土坯房屋的整体抗震性能这四方面着手,分别通过试验研究、理论分析和数值计算等多种研究手段,得到了一些可供参考的研究成果,其主要内容概括如下:
     (1)土坯立面单轴抗压试验表明,细粒含量、干密度和试件高宽比对土坯的抗压强度有不同程度的影响。细粒含量的增加也会导致干燥后的土坯试件体积收缩率单调增加。收缩率过大时,收缩裂缝会降低其抗压强度。本文制作的土坯体积收缩率小且强度较高,这表明添加合理比例的建筑中砂对天然细粒土进行物理改性后得到的土料适宜制作生土土坯。
     (2)土坯砌体的单调、反复抗压试验和单调抗剪试验表明,其破坏形态与普通砌体相似,受压时出现沿中部竖向裂缝的劈裂破坏,受剪时出现沿泥浆与土坯接触面的剪切粘结破坏。抗压试验表明,泥浆和土坯强度比对土坯砌体的强度和应力-应变关系有一定影响。与单调加载相比,反复受压试验结果的离散性明显降低,但卸载后的残余变形导致其峰值应变显著增加,与普通砌体差异明显。抗剪试验表明,土坯砌体抗剪强度随泥浆抗压强度的增加而单调增加;荷载-位移曲线的下降呈现脆性特征。
     (3)通过平面内拟静力试验研究了实体土坯墙和不同开洞形式土坯墙的抗震性能。研究表明,土坯墙体试件的破坏形态与砌体墙相似,为剪压破坏和剪摩破坏。竖向应力和高宽比对极限荷载及刚度均有不同程度的影响。开洞后,土坯墙体的承载力、刚度及耗能能力均下降明显,但延性有所提高。建立了以剪摩公式为基础的土坯墙体承载力公式,计算结果与试验数据吻合良好。
     (4)平面内拟静力试验研究表明,土坯墙的荷载-位移曲线及骨架曲线上升段呈一定线性特征,但卸载后却有较大残余变形,与砌体墙差异显著。考虑了初始竖向应力对残余变形的影响,对土坯砌体割线模量进行修正,建立了基于弹性深梁理论的土坯实体墙刚度计算公式。并对洞口两侧墙肢上下端节点的半刚性转动刚度系数进行修正,建立了土坯开洞墙刚度的计算公式。结果表明,该计算方法与试验结果吻合较好。
     (5)通过振动台试验研究了土坯房屋模型在不同地震波及地震强度下的动力特性、破坏形态和抗震性能。研究表明,单层土坯模型的自振频率在15Hz-20Hz之间,阻尼比在4%-10%之间。土坯模型的破坏形态与砌体房屋相似,为沿墙体砌筑灰缝的阶梯、水平状裂缝和沿墙体交接处的竖向裂缝破坏。模型的整体变形能力较好,层间位移角在1/50以下时未见开裂;层间位移角为1/30-1/20时,模型开裂严重但仍未倒塌。基于土坯材料的塑性特征,提出了基于墙体罕遇地震作用下承载力的土坯房屋一阶段抗震设计方法。
Nowadays, there are lots of adobe buildings spread in small towns and villages of China. However, the technical standards of construction and design on theses adobe buildings are less developed. In general, adobe buildings are empirically constructed by local workers, and the qualities of them are unreliable. For this reason, they are heavily damaged in earthquakes, and the safety of peoples'lives and properties is threatened. Based on the National Technical R&D Program2006BAJ06B03, in order to research and develop the mechanical properties and seismic performance of adobe buildings, this thesis presents a study on the mechanical properties of adobe block and masonry and seismic behavior of adobe walls and house by experiments, theorical analyses and numerical computation. The conclusions are summarized as follows:
     (1) The results of axial compressive test show that the compressive strength of adobe block is influenced by fine grain content, dry density and aspect ratio. The increased of fine grain content also increases volumetric shrinkage ratio. The interal cracks caused by high volumetric shrinkage ratio probably decreased the compressive strength of adobe. In tests, adobe samples have low volumetric shrinkage ratio, no obvious cracks and high strength. It shows that physical modification of soil materials by mixing fine grained soil and sand is a good way to make adobes.
     (2) The results of monotonic and cyclic compressive tests and monotonic shear tests conducted on adobe prisms showed that the failure behavior of adobe prisms is similar to that of the plain clay and concrete masonry. The prisms under compression were predominately failed by splitting with vertical cracks. The failure mode of prisms under shear was shear bonding failure along the interface between adobe and soil mortar. The results of compressive tests show that the strength and stress-strain relations are influenced by the ratio of adobe and mortar strength. Under cyclic loads, the dispersing of the experimental results is effectively reduced, but the peak strain is increased heavily by residual strain. This character is different with the plain masonry. The results of shear tests show that shear strength increases with the increase of mortar strength; the descending part of load-displacement curve behaves brittle.
     (3) A series of pseudo-static tests on adobe solid walls and walls with different openings in plane were conducted to investigate the seismic performance of adobe walls. The results show that the failure modes of adobe walls which are similar to that of plain masonry are compression-shear and friction-shear failures. The ultimate strength and stiffness of adobe walls are influenced by vertical stress and aspect ratio. The strength, stiffness and energy dissipation of walls with openings are significantly reduced contrast to solid walls, but the ductility is improved. The formula of calculating bearing capacity is established with friction-shear equation. The calculated results agree well with the experimental data.
     (4) The results of in-plane pseudo-static tests of adobe walls show that the load-displacement curves and envelops curves in loading process behave linearly, but obvious residual deformations are found after unloaded. This character is different with the plain masonry. Based on the existing methods of calculation of in-plane stiffness, a revised elastic deep-beam method is presented to calculate adobe solid wall by introducing secan(?) modulus in view of initial vertical stress. Based on the revised rotational stiffness of adobe wall piers and secant modulus in view of initial vertical stress, a method calculating adobe walls with openings is presented. The results agree well with the experimental data.
     (5) An adobe house model was constructed to investigate the dynamic properties, failure patterns and seismic performance of adobe building by shaking table test. The results show that the natural frequency and damping ratio of single-story adobe model is15Hz-20Hz and4%-10%respectively. The failure behavior of model is similar to that of plain masonry.The ladder, horizonotal cracks found in walls and the vertical cracks found in connections of walls are the major crack patterns in tests. The deformability of model is better than that of plain masonry. When the story drift ratio was1/50, no cracks were found. When the story drift ratio was up to1/30-1/20, serious cracks were found, but the model was still not collapse. Based on the plasticity of adobe, a seismic design method for adobe building is presented.
引文
[1]刘叙杰.中国古代建筑史[M].北京:中国建筑工业出版社,2009.
    [2]王其钧.华夏营造-中国古代建筑史[M].北京:中国建筑工业出版社,2009.
    [3]李允稣.华夏意匠-中国古典建筑设计原理分析[M].天津:天津大学出版社,2005.
    [4]王晓华.生土建筑的生命机制[M].北京:中国建筑工业出版社,2010.
    [5][美]琳恩·伊丽莎白,卡萨德勒·亚当斯.新乡土建筑-当代天然建造方法[M].吴春苑译,北京:机械工业出版社,2005.
    [6]荆其敏.生土建筑[J].建筑学报,1994,5:43-47.
    [7]冶金建筑科学研究院西北黄土建筑研究组.西北黄土建筑调查[J].建筑学报,1957,12:10-27.
    [8]段松廷.土坯与丽江民间建筑[J].小城镇建设,1987,5:20.
    [9]李玉英.新疆生土建筑的研究-以吐鲁番为例[D].新疆:新疆大学,2007.
    [10]林嘉书.土楼-凝固的音乐和立体的诗篇[M].上海:上海人民出版社,2006.
    [11]王建卫.既有村镇生土结构房屋承重土坯墙体加固试验研究[D].西安:长安大学,2011.
    [12]常卫华.村镇生土住宅结构现状研究[J].建筑结构,2010,40(4):375-378.
    [13]葛学礼等.村镇地震灾害与抗震减灾措施[J].工程质量,2005,12:671-674
    [14]杨玉成等.1996年2月3日云南丽江7.0级地震丽江县城震害统计和损失评估[J].地震工程和工程振动,1996,16(1):19-29.
    [15]王亚勇等.新疆巴楚M6.8房屋震害及经验总结[J].地震工程和工程振动,2003,23(2):172-175.
    [16]石玉成等.2003甘肃民乐-山丹6.1、5.8级地震震害特点及启示[J].世界地震工程,2006,22(3):95-101.
    [17]Mahmoud R. Maheri, Farzad Naeim and etc. Performance of adobe residential buildings in the 2003 bam, iran, earthquake[J]. Earthquake Spectra,2005,21(S1):S337-S344.
    [18]Fabio Taucer, John E. Alarcon, Emily So.2007 August 15 magnitude 7.9 near the coast of Central Peru:analysis and filed mission report [J]. Bull Earthquake Eng,2009,7(1):1-70.
    [19]潘兴庆等.云南宁洱6.4级地震农村居民传统房屋震害分析[J].四川建筑科学研究,2007,33(S):21-25.
    [20]李钢等.汶川地震村镇建筑结构震害调查与分析[J].大连理工大学学报,2009,49(5):724-730.
    [21]李诫撰,王海燕注译,袁牧审定.营造法式[M].武汉:华中科技大学出版社,2011.
    [22]戴居正.土坯砖性质的初步报告[J].东南大学学报自然科学版,1957,1:31-32.
    [23]江苏省建设厅科学研究所,江苏省建设厅勘察设计院.改进土坯性能试验的初步总结[J].中国建材,1965,3:29-33.
    [24]王峻.黄土地区农村民房生土建筑墙体材料抗震性能试验研究[J].西北地震学报,2005,27(2):158-162.
    [25]石坚等.夯土建筑土料工程特性的试验研究[J].四川建筑科学研究,2006,32(4):86-87.
    [26]王毅红等.生土结构的土料受压及受剪性能试验研究[J].西安科技大学学报,2006,26(4):469-472.
    [27]陶忠等.云南农村民居土坯墙单块土坯力学特性试验研究[J].工程抗震与加固改造,2008,30(1):99-104.
    [28]陈嘉.改性土体材料及土坯砌体的受压力学性能研究[D].新疆:新疆大学,2009.
    [29]赵成.改性土坯砌体抗压强度试验研究[D].新疆:新疆大学,2010.
    [30]刘军等.狗尾草对加筋土坯力学性能的影响[J].沈阳建筑大学学报自然科学版,2010,26(4):720-723.
    [31]陶忠等.土坯中添加松针对其力学性能影响的试验研究[J].世界地震工程,2011,27(3):180-186.
    [32]王琴.生土材料的改性研究[D].重庆:重庆大学材料科学与工程学院,2009.
    [33]刘军等.固化剂掺量对生土墙体材料性能的影响[J].沈阳建筑大学学报自然科学版,2010,26(3):517-521.
    [34]王立久等.生土活化胶凝材料的制备及性能研究[J].新型建筑材料,2010,10:83-86.
    [35]Alfred B. Ngowi. Improving the traditional earth construction:a case study of Botswana[J]. Construction and Building Materials,1997,11(1):1-7.
    [36]Khosrow Ghavami, Romildo D. Toledo Filho, b Normando P. Barbosa. Behaviour of composite soil reinforced with natural fibers[J]. Cement and Concrete Composites,1999,21(1):39-48.
    [37]A. Meshba, J. C. Morel, P. Walker. Development of a direct tensile test for compacted earth blocks reinforce with natural fibers[J]. Journal of Materials in Civil engineering,2004,16(1):95-98.
    [38]M. achenza, L. Fenu. On earth stabilization with natural polymers for earth masonry construction[J]. Materials and Structures,2006,39(285):21-27.
    [39]Sukru Yetgin, Ozlem Cavdar and Ahmet Cavdar. The effects of the fiber contents on the mechanic properties of the adobes[J]. Construction and Building Materials, 2008,22(3):222-227.
    [40]B. R. T. Vilane. Assessment of stabilisation of adobes by confined compression tests[J]. Biosystems engineering,2010,106(4):551-558.
    [41]Paula Vega, Andres Juan, M. Ignacio Guerra and etc. Mechanical characterization of traditional adobes from the north of Spain[J]. Construction and Building Materials, 2010,25(7):3020-3023.
    [42]Kafescioglu R, Guerdal E, Guner A and Akman M.S. Adobe blocks stabilzed with gypsum. Appropriate Building Materials for Low Cost Housing:African Region, Proceedings of a Symposium [C]. E.&F. N. Spon, London, Engl,1983.
    [43]P. J Walker. Strength, Durability and Shrinkage Characteristics of Cement Stabilised Soil blocks[J]. Cement and Concrete Composites,1995,17(4):301-310.
    [44]R. Bahar, M. Benazzoug, S. Kenai. Performance of compacted cement-stabilised soil [J]. Cement and concrete composite,2004,26(7):811-820.
    [45]M. Carmen Jimenez Delgado and Ignacio Canas Guerrero. Earth building in spain. Construction and Building Materials,2006,20(9):679-690.
    [46]C. H. Kouakou and J. C. Morel. Strength and elasto-plastic properties of non-industrial building materials manu factured with clay as a natural binder[J]. Applied Clay Science, 2009,44(1-2):27-34.
    [47]Quintilio Piattoni, Enrico Quagliarini and Stefano Lenci. Experimental analysis and modeling of the mechanical behaviour of earthen bricks[J]. Construction and Building Materials,2011,25(4):2067-2075.
    [48]ASTM. Masonry test methods and specifications for the building industry[M].4th ed. Philadephia:ASTM,2001.
    [49]Jean-Claude Morel, Abalo Pkla, Peter Walker. Compressive testing of compressed earth blocks[J]. Construction and Building Materials,2007,21(2):303-309.
    [50]四川省住房和城乡建设厅.砌体基本力学性能试验方法标准GB/T50129-2011[M].北京:中国建筑工业出版社,2011.
    [51]B. V. Veenkatarama Reddy, Ch. V. Uday Vyas. Influence of shear bond strength on compressive strength and stress-strain characteristics of masonry [J]. Materials and Structures,2008,41(10):1697-1712.
    [52]Standards Association of Australian. SAA masonry code AS3700[M]. Sydendy:Standards Association of Australian,1988.
    [53]黄金胜等.云南农村民居生土建筑土坯砌体的力学性能试验研究[J].工程抗震与加固改造,2008,30(1):94-98.
    [54]阿肯江·呼托提等.土坯砌体抗压强度试验研究[J].河海大学学报自然科学版,2011,39(3):290-295.
    [55]曹耿,阿肯江·呼托提.土坯砌体单轴受压应力应变曲线试验研究[J].低温建筑技术,2011,6:86-88.
    [56]P.J Walker. Bond characteristics of earth block masonry[J]. Journal of Materials in Civil engineering,1999,11(3):249-256.
    [57]P. J Walker. Strength and erosion characteristics of earth blocks and earth block masonry[J]. Journal of Materials in Civil engineering,2004,16(4):497-506.
    [58]B. V. Veenkatarama Reddy, Ajay Gupta. Strength and elastic properties of stabilized mud block masonry using cement-soil mortars[J]. Journal of Materials in Civil engineering,2006,18(3):472-476.
    [59]B. V. Veenkatarama Reddy and et al. Influence of joint thickness and mortar-block elastic properties on the strength and stresses developed in soil-cement block masonry [J]. Journal of Materials in Civil engineering,2009,21(10):535-542.
    [60]C. Jayasinghe, R. S. Mallawawarachchi. Flexural strength of compressed stabilized earth masonry materials[J]. Materials and Design,2009,30(9):3859-3868.
    [61]王生荣,曹凯.黄土土坯墙墙体抗剪强度的试验研究[J].工程抗震,1987,3:31-35.
    [62]焦春节等.土坯墙体抗剪承载力的改性试验研究[J].世界地震工程,2010,26(1):94-98.
    [63]胡昕等.石膏-土坯墙民居试验研究与工程实践[J].四川建筑科学研究,2010,36(2):181-183.
    [64]曹耿.土坯砌体墙抗震性能研究[D].新疆:新疆大学,2011.
    [65]J. Bariola, M. A. Sozen, M. Eeri. Seismic tests of adobe walls[J]. Earthquake spectra,1990,6(1):37-56.
    [66]D. Torrealva, C. Cerron and Y. Espinoza. Shear and out of plane bending strength of adobe walls externally reinforced with polypropylene grids [C]. The 14th world conference on Earthquake Engineering, Beijing,2008.
    [67]Enrico Quagliarini and et al. Mechanical properties of adobe walls in a Roman Repulican domus at Suasa[J]. Journal of Cultural Heritage,11 (2010):130-137.
    [68]Lutfullah Turanli and Afsin Saritas. Strengthening the structural behavior of adobe walls through the use of plaster reinforcement mesh[J]. Construction and building materials, 2011,25 (4):1747-1752.
    [69]于文等.新疆喀什老城区生土房屋模型振动台试验研究[J].工程抗震与加固改造,2007,29(3):24-29.
    [70]宋崇阳.生土结构农房抗震试验研究[D].西安:西安建筑科技大学,2011.
    [71]Blondet M., Torrealva D., Ginocchio F., Vargas J., Velasquez J.. Seismic reinforcement of adobe houses using external polymer mesh. The 8th US National Conference on Earthquake Engineering 2006 [C]. Earthquake Engineering Research Institute,499,14th Street, Suite 320, Oakland, CA 94612-1934, United States,2006.
    [72]Blondet M., Vargas J. and et al. A human development approach for the construction of safe and healthy adobe houses in seismic areas. The 14th world conference on Earthquake Engineering, Beijing,2008[C].
    [73]A. San Bartolome, D. Quiun and L. Zegarra. Performance of reinforced adobe houses in Pisco, Peru earthquake. The 14th world conference on Earthquake Engineering, Beijing, 2008 [C].
    [74]Julio Rojas, Hugo Ferrer and Julio Cuenca S. Dynamic behavior of adobe houses in centeral Mexico. The 14th world conference on Earthquake Engineering, Beijing,2008[C].
    [75]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.建筑抗震设计规范GB50011-2010[M].北京:中国建筑工业出版社,2010.
    [76]中华人民共和国住房和城乡建设部.镇(乡)村建筑抗震技术规程JGJ161-2008[M].北京:中国建筑工业出版社,2008.
    [77]Hanifi Binici, Orhan Aksogan, Mehmet Nuri Bodur and etc. Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials[J]. Construction and Building Materials,2007,21(4):901-906.
    [78]Degirmenci, Nurhayat. The using of waste phosphogypsum and natural gypsum in adobe stabilization [J]. Construction and Building Materials,2008,22(6):1220-1224.
    [79]C. D. F. Rogers, I. J. Smalley. The adobe reaction and the use of loess mud in construction[J]. Engineering Geology,1995,40 (3-4):137-138.
    [80]中华人民共和国国家标准,土的工程分类标准(GB/T 50245-2007)[M].北京:中国计划出版社,2008.
    [81]中华人民共和国国家标准,土工试验方法标准(GB/T 50123-1999)[M].北京:中国计划出版社,1999.
    [82]李德荣,黎海南,陈丙午.甘肃农村土墙承重平房抗震性能的试验研究[J].工程抗震,1987,9:14-19.
    [83]W. Scott McNary and Daniel P. Abrams. Mechanics of masonry in compression [J]. Journal of Structural Engineering,1985,111(4):857-870.
    [84]Hendry A. W.. Structural masonry[M], Macmillan, London,1990.
    [85]Hendry A. W.. Structural brickwork[M], Macmillan, London,1981.
    [86]王毅红,卜永红,刘挺.生土结构房屋的承重土坯墙体抗震性能试验研究[J].土木工程学报,2010,43:526-530.
    [87]中华人民共和国国家标准,建筑结构荷载规范(GB 50009-2001)[M].北京:中国建筑工业出版社,2002.
    [88]钱稼如,江枣,纪晓东.高轴压比钢管混凝土剪力墙抗震性能试验研究[J].建筑结构学报,2010,31(7):40-48.
    [89]张微敬,钱稼如,陈康等.竖向分布钢筋单排连接的预制剪力墙抗震性能试验[J].建筑结构,2011,41(2):12-15.
    [90]施楚贤,周海兵.配筋砌体剪力墙的抗震性能[J].建筑结构学报,1997,18(6):32-39.
    [91]Masonry Standards Joints Committee (MSJC). Building code requirements for masonry structures, ACI530-05/ASCE 5-05/TMS402-05[M]. Amreican Concrete Institute, Structural Engineering Institute of American Society of Civil Enginners and The masonry Society,2005.
    [92]Army, Navy and Air Force. Seismic design for buildings[M]. Tri-Service Manual TM5-89-10,USA,1973.
    [93]Benjamin J. R., Williams H. A.. Behaviour of one-storey brick shear walls [J]. Journal of Structural Division, ASCE,1954,4:84.
    [94]Dercho A. T., Schultz D. M., Fintel M.. Analysis and design of small reinforced concrete buildings for earthquake forces [M]. Portland Cement Association, Chicago, USA,1974.
    [95]Schneider R. R., Dickey W. L.. Reinforced masonry design [M]. Prentice Hall Inc.,1994.
    [96]M. Qamaruddin. In-plane stiffness of shear walls with openings [J]. Building and Environment,1999,34(2):109-127.
    [97]Brandow G. E. and et al.. Design of reinforced masonry structures [M]. Concrete and Masonry Association, Citrus Heights,Calif,1997.
    [98]Lindebug M. R. and Baradar M.. Seismic design of building structures [M]. Professional Publications Inc., Belmont, Calif,2001.
    [99]A. Neuenhofer. Lateral stiffness of shear walls with openings [J]. Journal of Structural Engineering,2006,132(11):1846-1851.
    [100]Gere J. M. and Timoshenko S. P.. Mechanics of materials [M]. Chapman and Hall Ltd. London, England,1991.
    [101]Ekwueme C.. Design of masonry piers [M]. Masonry Chronicles, Concrete Masonry Association of California and Nevada, USA,2002.
    [102]Federal Emergency Managment Agency (FEMA). Prestandard and Comentary for the Seismic Rehabilitation of Buildings, FEMA356[M]. American Society of Civil Engineers and T Federal Emergency Managment Agency, Washington D. C.,2000.
    [103]S.R. Balasubramanian, K. Balaji Rao and et. al. An improved method for estimation of elastic lateral stiffness of brick masonry shear walls with openings [J]. Journal of Civil Engineering, KSCE,2011,15(2):281-293.
    [104]冯建国,易文宗. 多孔砖墙在平面内的侧向变形和刚度[J].西安冶金建筑学院院报,1987,4:71-82.
    [105]巴荣光.砌体结构地震剪力的简化计算[J].建筑结构学报,1989,6:50-56.
    [106]童岳生,童润家.带洞砖墙侧移刚度计算的等效单杆法[J].建筑结构学报,1994,15(4):46-52.
    [107]汪颖富.对小开洞墙片侧移刚度计算的改进[J].建筑结构,1996,9:71-82.
    [108]施楚贤.砌体结构[M].中国建筑工业出版社,第二版,北京,2008.
    [109]Qamaruddin M., Al-Oraimi S., Hago A. W.. Mathematical model for lateral stiffness of shear walls with openings[C]. Proceedings of seventh north american masonry conference, University of NotreDame, South Bend, Indiana, U. S. A.,1996.
    [110]Qamaruddin M., Mauroof A. L. M.. A new model for lateral stiffness of shear walls with openings [J]. Journal of Structural Engineering, SERC,1998,25(2):103-107.
    [111]S. R. Balasubramanian, K. Balaji Rao. Simple method for estimation of in-plane lateral stiffness of unreinforced brick masonry walls with openings[C]. Proceedings of 8th international seminar on structural masonry, Istanbul, Turkey,2008.
    [112]S. R. Balasubramanian, K.Balaji Rao. Lateral load analysis of brick masonry walls using improved stiffness coefficients[C]. Proceedings of international conference on innovative and smart structural systems for sustainable habitat, Coimbatore, Tamil Nadu, India,2008.
    [113]S. R. Balasubramanian and et. al. Stiffness of brick masonry shear walls with opening parametric study and probabilistic analysis[C]. Proceedings of national conference on recent advances in structural engineering, Anantapur, Andra Pradesh, India,2008.
    [114]朱伯龙.砌体结构设计原理[M].同济大学出版社,上海,1991.
    [115]中华人民共和国国家标准,砌体结构设计规范(GB 50003-2011)[M].北京:中国建筑工业出版社,2011.
    [116]申世元.农村木构架承重土坯围护墙结构振动台试验研究[D].北京:中国建筑科学研究院,2006.
    [117]于文.新疆喀什生土房屋模型振动台试验研究[D].北京:中国建筑科学研究院,2007.
    [118]Blondet M. and et. Al. Seismic reinforcement of adobe houses using external polymer mesh[C].8th US National Conference on Earthquake Engineering, San Francisco, CA, United states,2006.
    [119]Tolles E. Leroy, Webster Frederick A.. Getty resrearch on the seismic retrofit of historic adobe buildings [C].8th US National Conference on Earthquake Engineering, San Francisco, CA, United states,2006.
    [120]Samali B., Dowling D. M., Li J.. Dynamic testing and analysis of adobe-mudbrick structure [J]. Austrilian Journal of Structural Engineering 2008,8(1):63-75.
    [121]Samali B. and et. Al. Seismic capacity comparison between square and circular plan adobe construction [C].12th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC12, Hong kong,2011.
    [122]Joshua Macabuag, Ramesh Guragain, Subhamoy Bhattacharya. Seismic retrofitting of non-engineered masonry in rural Nepal. [J]. Structures and buildings 2012,165(SB6): 273-286.
    [123]Charleson Andrew, Blondet Marcial. Seismic reinforcement for adobe houses with straps from used car ties [J]. Earthquake Spectra 2012,28(2):511-530.
    [124](美)萨布尼斯著朱世杰译.结构模型和试验技术[M].中国铁道出版社,北京,1989.
    [125]王娴明.建筑结构试验[M].清华大学出版社,北京,1988.
    [126](日)大崎顺彦著田琪译.地震动的谱分析入门[M].地震出版社,北京,2008.
    [127]李国强,李杰.工程结构动力检测理论与应用[M].科学出版社,北京,2002.
    [128]周燕.砖木结构1/4模型振动台试验与理论研究[D].西安:西安建筑科技大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700