高速机床主轴内置式双面在线动平衡装置及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速加工技术作为一种先进、实用的制造技术,正成为制造业的主流,并以其独特的优点得到了世界各国的普遍关注,具有强大的生命力和广阔的应用前景。由于高速主轴的转速很高,即使微小的动不平衡量,也会产生很大的离心力,引发振动,进而对机床的可靠性、使用寿命、加工精度等方面产生不利影响。因此,动平衡是高速、高精密数控机床生产、制造过程中必须解决的一个基本问题,其优劣程度直接决定机床的工作性能和使用寿命,对高速机床产品的质量产生巨大影响。
     机床主轴在线动平衡技术具有避免频繁开关机试重,提高平衡效率和精度,同时可根据机床加工工况的改变而对不平衡量实施自动平衡等优点。因此在线动平衡具有其它平衡方法不可替代的优势。是高速、高精密数控机床和加工中心首选的平衡方式。
     本文以主轴系统动力学等相关理论知识为基础,以实现高速机床主轴系统高精度在线动平衡为目的,围绕机床主轴系统动力学建模及仿真,不平衡振动信号的提取,内置式在线动平衡装置及其控制系统的开发,实验效果及误差分析,双面在线动平衡在柔性主轴上的拓展应用等关键问题开展研究。论文主要内容包括以下几个方面:
     (1)机床主轴动力学建模及其仿真。以转子动力学理论为基础,建立高速机床主轴系统动力学数学模型,运用Labview语言设计系统仿真程序。通过系统仿真对机床主轴动力学特性进行初步分析,给出双平面影响系数以及不平衡校正量沿主轴轴向分布规律等曲线。讨论了最佳校正面的选取、不平衡量大小选取等相关问题。提出一种基于系统影响系数相位差的最佳校正面的选取方法。
     (2)机床主轴不平衡振动信号的提取。测量主轴径向振动信号并准确地提取不平衡振动信号是实施不平衡振动控制的前提。为提高主轴不平衡振动信号提取的精度,本课题提出首先分离出主轴测点处的形状误差,然后采用经验模态分解与最小二乘拟合相结合的基频信号提取方法。论文采用理论研究与仿真分析相结合的方法,分别从数理统计法在主轴形状误差分离中的应用,最小二乘法对主轴基频振动信号的拟合及其效果分析,经验模态分解及其自适应滤波原理等方面开展研究。为提高经验模态分解的滤波效果,课题提出采用相关函数对信号中异常事件进行处理的方法。文中分析表明,方法的综合应用能够有效地提高不平衡振动信号的提取精度。
     (3)双面在线动平衡装置及其控制系统设计。针对高速机床主轴的结构特点,提出一种气动盘式在线动平衡装置的结构理念,并针对装置的功能实现、整体结构、硬件控制系统、关键部件的设计或选取等方面开展研究。根据系统的功能要求,采用Labview与Matlab语言混合编程技术,针对信号采集、信号分析与处理、平衡试重、自动监控系统、控制信号输出等方面展开设计研究。
     (4)实验数据及平衡误差分析。为检验所设计的双面在线动平衡系统的实用性,课题针对平衡盘定位精度、影响系数测算及动平衡效果等方面开展实验研究。并从测量误差、平衡盘位置调整误差、平衡盘固有不平衡量误差、平衡盘与主轴的配合间隙、平衡盘质量分布误差、传感器安装误差等方面分析各种误差对系统平衡精度的影响,并提出一定的改进措施。
     (5)当工作转速接近或者高于转子系统第一阶临界转速时,应当按照柔性转子来对待。考虑到课题所设计双面在线动平衡系统的通用性,课题在对柔性转子动平衡方法进行分析的基础上,提出一种用于在线动平衡的自适应增益调度控制法。并在理论分析的基础上通过仿真及实验对该方法的平衡效果进行验证。
     论文整体从实际应用出发,开展高速机床主轴双面在线动平衡关键技术的研究,论文在不平衡振动信号的提取、动平衡装置及其控制系统的开发等方面取得了一定的阶段性成果。然而,由于系统的复杂性,系统在某些方面的研究还需要进一步完善或改进。
High speed processing technology, an advanced and practical manufacturingtechnology, is becoming the mainstream in manufacturing industry. With uniqueadvantages, it acquires the wordwide attention and gets stronger vitality and broaderapplication prospect. Because of the very high speed of the spindle, even tiny dynamicunbalance will cause huge centrifugal force and induce vibration of the spindle, whichwill subsequently influence the reliability, the service life, the working accuracy, etc.of the machine tool. Therefore, dynamic balance is an essential problem that must besolved in the manufacturing process of high speed, high accuracy CNC (computernumerical control) machine tool. The quality of dynamic balance will directlydetermine the work performance and service life of the high speed machine tool, andgreatly influence its quality.
     Avoiding frequently turning on and off the machine to adjust weights, thetechnology of online dynamic balance on machine tool spindle also has advantages inimproving balance efficiency and accuracy as well as producing automatic balance onimbalance according to the change of working condition. Therefore, the technology isincomparable and has become the first choice in high speed and high accuracy CNCmachine tool manufacturing center.
     This thesis is based on the spindle system dynamics and the related theory andaimed to realize the precisely online dynamic balance of high speed machine toolspindle system. The author carried out the research on the following key problems:the dynamics modeling and simulation of the spindle system, the extracting ofunbalance vibration signal, the development of built-in online dynamic balance deviceand its control system, the analysis of experimental effect and error, the application ofdouble-face online dynamic balance on flexible spindle, etc. The main contents of thethesis as follows:
     (1) The dynamics modeling and simulation of machine tool spindle. Based onrotor dynamics theory, the dynamic mathematical model of the spindle system wasestablished and the system simulation programs were designed by Labview. Spindledynamic characteristics were analyzed preliminarily by the application of simulationprograms, and the axial distribution curve of the double-face influence coefficient anddynamic unbalance adjustment value were proposed. The selection of the idealadjustment face and unbalance adjustment value were discussed. The selectingmethod of the ideal adjustment face based on the phase difference of system influencecoefficient was put forward in the thesis.
     (2) The extraction of unbalance vibration signal of the machine tool spindle. To measure and correctly extract the radial unbalance vibration signal of spindle is theprecondition of dynamic balance. In order to improve the extracting precision ofunbalance vibration signal, a new method was put forward in the project. Theprocessing of the method was to extract the form error of monitoring points on spindlefirst, and then to combine EMD (Empirical Mode Decomposition) and least squaremethod to extract fundamental frequency signal. The correlative study issues includedthe application of mathematical statistics in the spindle form error extraction, thetheory of fitting fundamental frequency with least square method and the practicaleffect analysis, the principle of EMD and its filtering, etc. The theory analysiscombining with simulation was adopted in the project. To improve the filtering effectof EMD method, the correlation function was employed to eliminate abnormal eventsin the original signal. The analysis showed that the signal extracting accuracy ofunbalance vibration was effectively improved by adopting these methodssynthetically.
     (3) The design of double-face online dynamic balance device and its controlsystem. According to the structure characteristics of high-speed spindle, a kind ofpneumatic online dynamic balance device was designed. The realization of the devicefunction, the overall structure, the hardware control system, the design or selection ofthe key parts, etc. were studied in the paper. Based on the requirement of the systemfunction, the mixed programming technology combining Matlab with Labview wasadopted to develop software control system. The software function included signalacquisition, signal analysis and processing, weight test, automatic monitoring andcontrolling, the control signal output, etc.
     (4) The analysis of experimental data and balance error. To examine thepracticality of double-face online dynamic balance system designed in the project,experimental researches were executed on location accuracy of balance disc, themeasure and calculation of influence coefficient and dynamic balance effect. The keyerrors and their influence on system balance accuracy were analyzed, such as themeasurement error, balance disc position adjustment error and inherent unbalancevalue error, the fit clearance between balance disc and spindle, the balance discquality distribution error, sensor installation error, etc. Some measures forimprovement were also put forward.
     (5) The rotor should be taken as flexible when work speed is close to or beyondthe first critical speed of rotation. Considering the generality of the double-face onlinedynamic balance system designed in the project, an adaptive gain dispatcher's controlmethod applied in online dynamic balance was put forward based on the analysis ofdynamic model and balance method of flexible rotor. The dynamic balance effect of the method was proved by simulation and experiment analysis on the basis oftheoretical analysis.
     The paper was based on practical application, and the research was carried outon double-face online dynamic balance for high-speed spindle and its keytechnologies. The correlative research has achieved its tentative goals respectively inthe extraction of unbalance vibration signal, the development of dynamic balancedevice and its controlling system, etc. However, because of the complexity of thesystem, further research or improvement of some aspects are still necessary.
引文
[1]孟杰.高速电主轴动力学分析与实验研究[D].重庆:重庆大学机械工程学院,2008.
    [2]左敦稳.现代加工技术[M].高速电主轴动力学分析与实验研究[D].北京:北京航空航天大学出版社,2005.
    [3] http:∥www.Grindingcontrol.com/products-services-balancing-systems.shtml.
    [4] http:∥www.lord.com/Products-and-Solutions/Vibration-and-Motion-Control/Balancing-Systms.xml.
    [5] Zhou S Y,Shi J J.Active Balancing and Vibration Control of Rotating Machinery:ASurvey[J].The Shock and Vibration Digest,2001,33(4):361-371.
    [6] Zverev A,Eun I U,Chung W J,et al.Simulation of Spindle Units Running on RollingBearings[J].International Journal of Advanced Manufacturing Technology,2003,21:889-895.
    [7] Tiwari M,Gupta K.Effect of Radial Internal Clearance of a Ball Bearing in the Dynamics of aBalanced Horizontal Rotor[J].Journal Sound and Vibration,2000,238(5):723-756.
    [8] Lee Y S,Lee C W.Modeling and Vibration Analysis of Misaligned Rotor-ball BearingSystems[J].Journal of Sound and Vibration,1999,224(l):17-32.
    [9] Alfares M,Elsharkawy A A.Effects of Grinding Forces on the Vibration of Grinding MachineSpindle System[J]. Journal of Machine Tools and Manufacture,2000,40(14):2003-2030.
    [10] Wang K W,Shin Y C,Chen C H.On the Natural Frequencies of High Speed Spindles withAngular Contact Bearings[J].Journal of Mechanical Engineering Science,1991,205:147-154.
    [11] Shin Y C.Bearing Non-linearity and Stability Analysis in High Speed Machining[J].Journalof Engineering for Industry,1992,114:23-30.
    [12] Chen C H,Wang K W.An Integrated Approach Toward the Modeling and Dynamic Analysisof High Speed Spindles,Part l,System Model[J].Journal of Vibration and Acoustics,1994,116(4):506-513.
    [13] Chen C H,Wang K W.Integrated approach toward the dynamic analysis of high-speedspindles: part II-Dynamics under moving end load[J].Vibration of Rotating Systems,1993,12(60):347-354,
    [14] Kim S M,Lee S K.Prediction of thermo-elastic behavior in a spindle bearing systemconsidering bearing surrounding[sJ].International Journal of Machine Tools&Manufacture,2001,41(6):320-335
    [15] Li H Q,Shin Y C.Analysis of Bearing Configuration Effects on High Speed Spindles Usingan Integrated Dynamic Thermo-mechanical Spindle Model[J].International Journal ofMachine Tools&Manufacture,2004,44:347-364.
    [16] Kim S M,Lee S K,Lee K J.Effect of Bearing Surroundings on the High-SpeedSpindle-Bearing Compliance[J]. International Journal of Advanced ManufacturingTechnology,2002,19:551-557.
    [17] Kim S M,Lee K J,Lee S K.Effect of Bearing Supporting Structure on the High-SpeedSpindle Bearing Compliance[J].International Journal of Machine Tools&Manufacture,2002,42:365-373.
    [18] Chatterjee S. Spindle Deflections in High-speed Machine Tools: Modeling andSimulation[J].International Journal of Advanced Manufacturing Technology,1996,11(4):232-239.
    [19] Spur G等.主轴—轴承系统的计算:利用结构修正法确定静态和动态性能[J].国外轴承,1991,4:6-11.
    [20] J drzejewski J,Kowal Z,Kwasny W,et al.High-speed Precise Machine Tools Spindle UnitsImproving[J].Materials Processing Technology,2005,162-163:615-621.
    [21] Wang W R,Chang C N.Dynamic Analysis and Design of a Machine Tool Spindle-BearingSystem[J].Vibration and Acoustics,1994,116:280-285.
    [22] Renshaw A A. Vibration considerations in foil-bearing design. Journal of Applied Mechanics,Trans. ASME1999,66(2):432-438
    [23] Fayolle P, Childs D W. Rotor dynamic evaluation of a roughened-land hybrid bearing. Journalof Tribology, Trans. ASME1999,121(1):133-138
    [24] Yhland E.A Linear Theory of Vibrations Caused by Ball Bearings with Form ErrorsOperating at Moderate Speed[J].J. Tribol,1992,114:348-359.
    [25] Chen C H,Wang K W.An Integrated Approach Toward the Modeling and DynamicAnalysis of High Speed Spindles,Part2: Dynamics Under Moving End Load [J].Journal ofVibration and Acoustics,1994,116(4):514-522.
    [26] Tsutsumi M,Chung I S,Murakami Y,et al.Dynamic Characteristics of Spindle-bearingSystem in Machine Tools:2nd Report Mathematical Expression of Spindle-bearing Systemand Its Application[J].Bulletin of JSME,1985,28(244):2460-2466.
    [27] Jorgensen B R,Shin Y C.Dynamics of Machine Tool Spindle/Bearing Systems underThermal Growth[J].Tribology,1997,119(10):875-882.
    [28] Korolev E G.Motor/Spindles for NC Machine Tools[J].Soviet Engineering Research,1986,6(12):60-62.
    [29] Frederickson P, Grimes D. Optimizing Motor Technology for SpindleApplications[J].Motion System Design,2004,46(11):24-32.
    [30] Jorgensen B R.Dynamics of Spindle-bearing System at High Speed including Cutting Loadeffects[J].Manufacturing Science and Engineering,1998,120(2):387-394.
    [31]丁长安.高速角接触球轴承——轴系统静、动态性能分析[D].洛阳工学院硕士学位论文,1987.
    [32]陈全兵,张锡昌,周锦国.超高速角接触球轴承——轴系统动态分析[J].洛阳工学院学报,1999,20:42-45.
    [33]蔡英,黄国庆,刘建清,等.机床高速主轴系统的动力学特性[J].江南大学学报(自然科学版),2003,3:256-292.
    [34]蒋兴奇.主轴轴承热特性及对速度和动力学性能影响的研究[D].浙江大学博士学位论文,2001.
    [35]李松生,杨柳欣,王华兵.高速电主轴轴系转子动力学特性分析[J].轴承,2002,2:15-17.
    [36]李松生,崔钦华,杨柳欣等.精密高刚度高速电主轴[J].轴承,2004,3:13-15.
    [37]吴隆.高速铣床电主轴系统的特性与分析[J].机械制造,2004,474:34-35.
    [38]胡志刚,徐诚,王永娟.有限元-迭代法在电主轴轴系转子动静特性分析中的应用[J].机械科学与技术,2003,22(6):917-922.
    [39]钱木,蒋书运.高速磨削用电主轴结构动态优选设计[J].中国机械工程,2005,16:864-868.
    [40]张世珍,刘炳业,范晋伟等.电主轴设计的几个关键问题[J].制造技术与机床,2005,8:50-53.
    [41]宋德儒,吴玉厚,张坷.高速精密实验磨床电主轴振动特性的实验研究[J].机械工程与自动化,2005,4:46-48.
    [42]郭大庆,吴玉厚,张珂等.陶瓷轴承电主轴系统的特性与分析[J].机械与电子,2005,7:77-78.
    [43]钱木.高速机床主轴动态特性分析[D].东南大学硕士学位论文,2005.
    [44]朱金虎,翁世修,蒋书运.高频电主轴临界转速计算及其影响参数分析[J].机械设计与研究,2005,21(1):28-30.
    [45]蒋书运.高速电主轴动态设计方法[J].功能部件,2004,5:54-57.
    [46]吕浪,熊万里,黄红武,等.超高速磨削SPWM电主轴系统机电耦合振动的瞬态特性研究[J].密制造与自动化,2006,1:13-16.
    [47]刘健,潘双夏,杨克己,等.整系数数字滤波器在动平衡机测量系统中的应用研究[J].机床与液压,2005,2:119-121.
    [48]吴少波,陆秋海.积分型数字跟踪滤波法及其在转子动平衡中的应用[J].北京:工程力学,2003,2:76-79.
    [49]郑建彬,田春仿.基于离散小波变换的动平衡机不平衡量提取算法研究[J].测控技术,2002,21(8):21-24.
    [50]台宪清,胡旭晓,杨克己.自适应FIR滤波器在转子动平衡检测系统中的应用研究[J].组合机床与自动化加工技术,2003,2:44-46.
    [51]王延博,康凤霞.振型波特曲线理论及其在轴系现场动平衡中的应用[J].机械强度,2006,(1):155-158.
    [52]瞿诗霞,胡立德.电机动平衡过程中转子转速测试系统[J].传感器与微系统,2006,(2):44-46.
    [53]王四季,廖明夫.转子现场动平衡技术研究[J].机械科学与技术,2005,(12):1510-1514.
    [54]顾晃.汽轮发电机组的振动与平衡[M].北京:中国水利水电出版社,1989:121-173.
    [55]刘正士,陈心昭.转子动平衡的相对系数法及其在动态信号分析仪上的实现[J].机械强度,1994,16(4):53-57.
    [56]孙宝东.高速转子自动平衡技术的研究[D].哈尔滨:哈尔滨工业大学,1995.
    [57] Bishop R E D,Parkinson A G.On the Use of Balancing Machines for Flexible Rotors[J].Journal of Engineering for Industry,1972,94:561-576.
    [58] Kellenberger W.Should a Flexible Rotor Be Balanced in N or (N plus2) Planes [J].Journalof Engineering for Industry,1972,94(2):548-560.
    [59] Saito S,Azuma T.Balancing of Flexible Rotors by the Complex Modal Method [J].Journalof Vibration Acoustics Stress and Reliability in Design,1983,105(1):94-100.
    [60]徐宾刚.转子平衡的信息原理与实践[D].西安:西安交通大学,2000.
    [61]屈梁生,邱海.全息动平衡技术:原理与实践[J].中国机械工程,1998,9(1):60-63.
    [62]徐宾刚,屈梁生.非对称转子的全息动平衡技术[J].西安交通大学学报,2000,34(3):60-65.
    [63] Goodman T P.A Least-Squares Method for Computing Balance Corrections [J].Journal ofEngineering for Industry,1964(8):273-279.
    [64] Lund J W,Tonneson J.Analysis and Experiments in Multi-plane Balancing of FlexibleRotors [J].Journal of Engineering for Industry,1972,94:233-242.
    [65] Foiles W C,Allaire P E,Gunter E J.Min-Max Optimum Flexible Rotor Balancing Comparedto Weighted Least Squares[C].The7th International Conference on Vibrations in RotatingMachinery,2000:141-148.
    [66] Li G,Lin Z,Untaroiu C.Balancing of High-Speed Rotating Machinery Using ConvexOptimization.Proceedings of the IEEE Conference on Decision and Control,2003,4:4351-4356.
    [67]王晓升.考虑平衡质量受限时最小二乘影响系数法的改进[J].西安交通大学学报,1998,32(11):76-80.
    [68]康凯宁,王培俊.挠性转子动平衡时最大残余振动的极小化研究[J].机械强度,1996,18(3):1-5.
    [69]朱向阳,钟秉林.具有上界约束的挠性转子最优平衡质量计算[J].机械工程学报,1999,35(3):34-36.
    [70]勾新刚,张大卫,曾子平.遗传算法在转子影响系数平衡法中的应用[J].机械设计,2002,19(7):32-34.
    [71]章璟璇,唐云冰,罗贵火.最小二乘影响系数法的优化改进[J].南京航空航天大学学报,2005,37(1):110-113.
    [72] Parkinson A G,Darlow M S,Smalley A J.An Introduction to a Unified Approach to FlexibleRotor Balancing[C].The Gas Turbine Conference and Exhibit and Solar Energy Conference,1979:1-14.
    [73] Parkinson A G,Darlow M S,Smalley A J.A Theoretical Introduction to the Development ofa Unified Approach to Flexible Rotor Balancing[J].Jounal of Sound and Vibration,1980,68:489-506.
    [74]朱晓东.新型动平衡方法研究[D].杭州:浙江大学,1996.
    [75]唐一科,顾乾坤.软支承动平衡机的CAB技术研究[J].中国机械工程,1994,5(7):63-64.
    [76]唐一科,顾乾坤.现场转子双面动平衡的单双试重组合测试法[J].重庆大学学报,1993,6(5):92-96.
    [77]唐一科.用振幅测量原理研究机器刚性转子现场双面动平衡问题的新方法[J].重庆大学学报,1989,27(4):46-54.
    [78]周安石,刘希杰.德国的动平衡机技术航天出国考察技术报告.1992.
    [79] Nan Jung Electric Co.,Ltd.[2011-8-6].http://www.balancingmachine.com.
    [80] Vis A A G,Susanin U I.Automatic Balancing of Rotors by the Application of Servo SystemsMoscow[J].Izdatel'stvo Nauka,1974:177-172.
    [81] Smalley A J,Baldwin R M.Spray Automated Balancing of Rotors:Concerpty and InitialFeasibility Study[J].Journal of Engineering for Gas Turbines and Power,1989,111(4):659-665.
    [82]叶能安,余汝生.动平衡原理与动平衡机[M].武汉:华中工学院出版社,1985.
    [83]周保堂,贺世正,王宇等.在线自动平衡的平衡头研究[J].石油化工设备技术,1994,15(3):42-45.
    [84]沈明.气体介质的砂轮动平衡装置的研制[J].磨床与磨削,1997(3):25-27.
    [85]胡国平.电机转子动平衡数控去重技术的研究与实现[D].浙江:浙江大学,2004.
    [86]汪希萱,曾胜.电磁式在线自动平衡系统及其动平衡方法研究[J].热能动力工程,2003,18(1):53-59.
    [87]陶利民.转子高精度动平衡测试与自动平衡技术研究[D].湖南:国防科技大学工学,2006.
    [88]贺世正.释放液体式自动平衡头的研究[J].浙江大学学报,2001,35(4):418-419.
    [89]三轮修二,下村玄.旋转机械的平衡[M].北京:机械工业出版社,1992:23-30.
    [90]中华人民共和国国家标准. GB9239-88.
    [91]郑文纬,吴克坚.机械原理[M].第七版.北京:高等教育出版社,1997,377-380.
    [92] Zhou S.Modeling Estimation and Active Balancing of Speed Varying Rotor System[M]. AnnArbor:University of Michigan.2001:15-16.
    [93]伍良生,杨勇,周大帅.机床主轴径向回转误差的测试与研究[J].机械设计与制造,2009(1):107-109.
    [94] Donaldson R R. A Simple Method for Separating Spindle Error from Test BallRoundness[J].Ann CIRP,1972,21:125-126.
    [95] Gao W,Stato E,Ohnuma T,et al. Roundness and Spindle Error Measurement by AngularThree-probe Method[J].Journal of the Japan society of Precision Engineering,2002(9):1195-1199.
    [96]伍良生,魏源迁,李剑峰,等.高速磨削中的快速现场动平衡技术[J].金刚石与磨料磨具工程,2004,140(2):10-13.
    [97] Parkinson A G, Schneider H. Balancing of flexible rotors—some considerations on modalconvergence. In:Proc.5th International Conf. on Rotor Dynamics, IFToMM, Germany, Sept.1998:653—663
    [98] Huang N E,Zheng S,Long S R,et al.The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis. Proc.R.Soc.Lond.A,1998(454):903-995.
    [99] Huang N E, Shen Z, Long S R.A new view of nonlinear water waves: the hilbert spectrum.[J]Ann Rev Fluid Mech,1999,34:417~457
    [100] Zhao J P. Improvement of the Mirror Extending in Empirical Mode Decomposition Methodand the Technology for Eliminating Frequency Mixing[J]. High Technology Letters,2002,8(3):40-47.
    [101]赵进平.异常事件对EMD方法的影响及其解决方法研究[J].青岛海洋大学学报,2001,6:805-814.
    [102] Boudraa A O, Cexus J C. EMD-Based Signal Filtering[J]. IEEE Transaction onInstrumentation and Measurement,2007,56(6):2196-2202.
    [103]钟一谔,何衍宗.转子动力学[M].北京:清华大学出版社,1987:11.
    [104]胡兵.变速转子系统主动平衡的自适应控制[D].上海:上海交通大学,2008.
    [105] Kim Y D.Automatic Modal Balancing of Flexible Rotors During Operation By Using aSingle Balancing Head[D].Korea:Korea Advanced Institute of Science and Technology,1985.
    [106] Dyer S W,Ni J.Adaptive Influence-Coefficient Control of Single-Plane Active BalancingSystems for Rotating Machinery[J].Journal of Manufacturing Science and Engineering,2001,123(2):291-298.
    [107] Zhou S,Shi J.Imbalance Estimation for Speed-Varying Rigid Rotor Using Time-VaryingObserver[J]. Journal of Dynamic Systems,Measurement,and Control,2001,123:637-644.
    [108] Shin K K,Ni J.Adaptive Control of Active Balancing Systems for Speed-Varying RotorsUsing Feedforward Gain Adaptation Technique[J]. Journal of Dynamic Systems,Measurement,and Control,2001,123:346-352.
    [109] Shin K K, Ni J. Adaptive Control of Multi-Plane Active Balancing Systems forSpeed-Varying Rotors[J].Journal of Dynamic Systems,Measurement and Control,2003,125:372-381.
    [110] K. Green,A.R. Champneys,N.J. Lieven.Bifurcation analysis of an automatic dynamicbalancing mechanism for eccentric rotors[J]. Journal of Sound and Vibration.2006,291(4):861–881

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700