猪不同泌乳期乳汁Exosome中microRNA转录组的鉴定和表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳汁是哺乳动物新生儿最重要的营养和被动免疫来源,富含多种免疫成分,能够满足婴幼儿大脑发育、生长以及健康免疫系统的各种需求。动物体液中的microRNA (miRNA)通常被选择性地包裹在exosome中。Exosome是由很多种类的细胞所分泌的一种带膜囊泡,这些exosome中的miRNAs能够被主动地定向输送到受体细胞,并调节靶基因的表达和受体细胞的功能。本研究中,利用原子力显微镜(Atomic force microscope, AFM)证实猪乳汁中大量存在exosome的基础上,构建了约克夏猪整个泌乳期内(从初生到28日龄)6个不同泌乳阶段(出生后0、3、7、14、21和28d)乳汁exosome small RNA文库,以出生后0d和3d的乳汁作为初乳,其他日龄的乳汁作为常乳进行对比性分析,用高通量测序的方法分析和注解了初乳(0d和3d)和常乳(7、14、21和28d)exosome中的miRNA表达谱,筛选与免疫密切相关的miRNA,分析其在不同环境下的耐受(稳定)性;对免疫相关的miRNA在仅初乳和仅常乳喂养的仔猪体内的差异表达进行研究,通过仔猪活体模型研究以评估其在仔猪生长发育及免疫系统形成过程中的功能。结果表明:
     以超高速离心的方法从猪乳汁中分离到含量较丰富的exosome。通过AFM在纳米水平观察到猪乳汁中exosome平均宽度约100nm,高度约12nm。
     Small RNA文库中没有检测到18S和28S核糖体RNA,但大量存在长度小于300nt的small RNAso Illumina Genome Analyzer Ⅱ(GA Ⅱ)高通量测序结果表明,猪乳汁exosome中存在丰富的miRNAs,绝大部分(91.97±3.18%)可“定位”(即可map到猪基因组序列中)的读数长度在21-24nt之间,其中,长度为22nt的读数达到(67.93±4.81)%。长度为23nt的读数占(15.92±2.27)%,24nt占(4.71±1.65)%,21nt占(3.42±1.77)%。这些读数的长度都是典型的Dicer酶加工产物的长度,符合miRNA的基本结构特征。
     高通量测序数据的生物信息学分析表明,在8个猪乳汁exosome small RNA文库中共检测到180种pre-miRNAs。其中,140种(77.78%)是已知的猪pre-miRNAs,另外40种(22.22%)是新发现的猪pre-miRNAs。新发现的40种猪pre-miRNAs全部与miRBase18.0中已报道的人pre-miRNAs具有同源性,并能够被定位到猪基因组上。这180种pre-miRNAs共可编码237种成熟miRNAs,对应234种特异性]niRNAs。
     基于Pathway Central Database (SABiosciences, MD, USA)的注解,在niRBase(Version18.0)数据库中注册的1527种已知人的pre-miRNAs中,存在84种(5.50%)与淋巴细胞和其他免疫细胞功能相关的免疫性pre-miRNAs。以此为基础的比对结果表明,本研究的8个猪乳汁exosomesmall RNA文库中,共检测到58种(69.05%)存在并富集于各阶段猪乳汁exosome的miRNA文库中(P<10-16,χ2test)。并且,各个泌乳阶段与免疫相关的pre-miRNAs在总乳汁exosome miRNA文库中的比例都超过了30%,极显著地高于人miRNA文库中免疫性相关pre-miRNAs5.50%的比例。此外,在出生后前3天的初乳中,与免疫相关的pre-miRNAs均达到52种以上,显著地高于常乳(P<0.05)。进入常乳期后,则降低到40种左右,这暗示着乳汁在仔猪免疫系统功能中发挥着重要功能。
     在乳汁exosome的miRNA转录本中,绝大多数miRNAs转录子来自于很少几种miRNAs。在234种特异性miRNAs中,以reads数计算,表达水平最高的前10种miRNAs的含量超过总量的87.25%。6个泌乳阶段里表达水平最高的前10种高丰度miRNAs一共包括有13种特异性miRNAs。其中有7种miRNAs (miR-148a-3p, miR-182-5p, miR-200c-3p, miR-25-3p, miR-30a-5p, miR-30d-5p和miR-574-3p)在6个泌乳阶段miRNA文库里的表达量都排在前10位,它们在不同的免疫和病理状态下承担着重要的功能。另外6种miRNAs(let-7a-1-5p, miR-30c-2-5p and-1-5p, miR-191-5p, miR-375-3p, miR-21-5p和miR-27b-3p)至少在某一个泌乳阶段的miRNA文库里的表达量位于前10位,它们也无一例外地都和不同的免疫与病理学反应相关。
     猪乳汁exosome中miRNA的表达谱呈现典型的泌乳特异性模式,初乳和常乳间存在明显差异,表现为免疫相关miRNA在初乳中的含量显著高于常乳。定量分析结果表明,13种在6个泌乳阶段里表达量最高的与免疫相关的高丰度miRNAs中,除miR-148a-3p外,其它12种特异性miRNAs在初乳中的表达量都高于常乳,而在6个阶段里所有高丰度miRNAs中表达水平都为最高的niR-148a-3p的表达量则是随着泌乳期而增加。这些免疫相关的miRNAs都会功能性地靶向编码细胞活素和其它免疫调节蛋白,以及免疫反应信号通路上的其它组分等特异性转录本而行使其免疫调控功能。
     与外源添加的秀丽隐杆线虫(C. elegans)特异性miRNAs (cel-lin-4-5p, cel-miR-2-3p和cel-miR-39-5p)和拟南芥(Arabidopsis thaliana)特异性miRNA (ath-miR-159a-3p)相比,5种内源性乳汁exosome来源的高表达:niRNAs (miR-148a-3p, miR-30c-5p, miR-574-3p, miR-21-5p和miR-27b-3p)对不同的极端理化条件(低温、高温、低pH、反复冻融、外源RNA酶等)都表现出较强的抗降解能力,说明乳汁exosome中的miRNAs是以一种非常稳定的状态存在,可以保护其在不同极端条件下免受内源性RNA酶的降解。
     不同乳汁饲喂实验表明,仅初乳和仅常乳喂养的仔猪,其血清中的7种代表性血液循环代谢生化指示物的含量在两组仔猪血清中相近,没有发生显著性变化(P>0.05)。但13种特异性免疫相关的高丰度miRNAs在不同饲喂组间的血清表达量呈现出明显的差异。表现为:在只喂初乳的仔猪中,除了miR-148a-3p外的其它12种miRNAs的血清表达量都显著地高于只饲喂常乳的仔猪。而miR-148a-3p的表达量在饲喂常乳组仔猪血清中的表达量则显著地高于饲喂初乳组
     (P<0.05)。仔猪血清中各免疫相关高丰度miRNAs的总体表达趋势与之前乳汁实验中关于初乳和常乳中13种免疫相关高丰度miRNAs的表达规律一致。这些猪乳exosome中与免疫相关的miRNA可能是通过消化道而直接进入仔猪的体内发挥其调控功能,从而潜在影响着仔猪免疫系统的发育。
     上述研究结果为深入研究乳汁在婴儿免疫系统发育过程中的重要功能提供了动物模型基础数据,证明猪是人类泌乳医学和免疫疾病研究理想的模式生物。
To newborn mammals, breast milk is the primary source of nutrition and immune. Breast milk is rich in immunological components, can meet all the requirements of brain development, growth and immunology system. MicroRNAs (miRNAs) are widely exist in various kinds of body fluids and tissues, and are selectively packaged inside the exosomes. Exosome is a type of membrane vesicles, secreted by many kinds of cell types. These miRNAs packaged in exosomes could be actively delivered into the recipient cells, and regulate the expression of target genes and the function of recipient cells. In this study, exosomes are confirmed to present in Yorkshire breast milk observating with atomic force microscope (AFM), and we constructed8milk exosomal small RNA libraries from6typical time points (0day,3days,7days,14days,21days and28days after birth) across the entire lactation period (from newborn to28days after birth). The breast milk of0day and3days after birth were classed into colostrum, and the others were mature milk. Utilizing the method of deep sequencing, the expression profiles of these lactation-related exosomal miRNAs in porcine milk were analyzed,we screened mmune-related miRNAs are present and enriched in breast milk exosomes and are generally resistant to relatively harsh conditions. These immune-related miRNAs are present in higher numbers in the colostrum compared with the mature milk or the blood of colostrum-only fed piglets compared with the mature milk-only fed piglets. Taken together, We got the following results:
     By the method of high speed ultracentrifugation, we isolated abundant of exosome-like vesicles from porcine breast milk. The morphology and size of exosomes were observed by (AFM at the nanometer-scale. The size of these exosome-like vesicles following normal distribution, and the average width was approximate100nm and the height was about12nm. All the morphological characters of these exosome-like vesicles from porcine breast milk were similar with the reported exosomes in human saliva and breast milk.
     No18S and28S ribosomal RNA were found in the milk exosomes, but contain large number of small RNAs that were below300nt in length. Eight small RNA libraries were subjected to single-end sequencing in36nt reads using an Illumina Genome Analyzer Ⅱ. The analysis of sequencing data confirmed the enrichment of miRNAs in porcine breast milk exosomes. Of these mappable reads in the eight libraries, the overwhelming majority are21-24nt in length (91.97±3.18%). More than half of the reads are22nt in length (67.93±4.81%), followed by23nt (15.92±2.27%),24nt (4.71±1.65%), and21nt (3.42±1.77%), which are typical sizes of Dicer-processed products, confirming the presence of miRNAs in milk exosomes.
     The bioinformatics pipeline for miRNA discovery and expression profiling discovered180pre-miRNAs in the8exosomal small RNA libraries, of which140(77.78%) are known porcine pre-miRNAs and40are novel porcine pre-miRNAs. All of these40novel porcine pre-miRNAs are homologous to human pre-miRNAs deposited in miRBase18.0and could be mapped to the pig genome. These180pre-miRNAs encode237mature miRNAs, corresponding to234unique miRNAs.
     Based on the annotation of the Pathway Central Database (SABiosciences, MD, USA), among these1527known human pre-miRNAs,84(5.50%) are immune-related pre-miRNAs.Out of these84immune-related pre-miRNAs,58(69.05%) are present and enriched in each milk exosomal miRNA library (P<10-16,χ2test). And in the8porcine milk exosomal miRNA libraries, the immune-related pre-miRNAs account for more than30%of the total pre-miRNAs, which was significantly higher than5.5%, the percentage in the human miRNA library. In the colostrum libraries (0day and3days after borth), there are more than52immune-related pre-miRNAs, significantly higher than40, the number of immune-related pre-miRNAs in the mature milk libraries (P<0.05).The enrichment of immune-related pre-miRNAs in the milk exosome suggested the important role of milk in the development of immune system.
     In the breast milk exosomal miRNA transcriptome, the majority of abundant miRNAs are from few miRNAs. The top10unique miRNAs with the highest expression level account for more than87.25%, by total counts, of all the234unique miRNAs. The unified set of top10unique miRNAs over six lactation stages corresponds to13kinds of unique miRNAs. Among these13miRNAs,7miRNAs (miR-148a-3p, miR-182-5p, miR-200c-3p, miR-25-3p, miR-30a-5p, miR-30d-5p, and miR-574-3p) are present in the top10miRNAs in all six libraries, which suggests essential roles in various immune and pathological conditions. The other6miRNAs (let-7a-1-5p, miR-30c-2-5p and-1-5p, miR-191-5p, miR-375-3p, miR-21-5p, and miR-27b-3p), which are present in the top10miRNAs in at least one of the6lactation stages, are all related to various immune and pathological responses.
     The miRNA expression profiles show typical lactation-specific pattern. The immune-related miRNAs exist in the colostrum are significantly higher than those in the mature milk. By quantitative analyzing, apart from miR-148a-3p, almost all the other12unique immune-related miRNAs exhibited higher abundances in the early lactation periods (0and3days) than in the later lactation periods (7,14,21and28days). And the expression level of miR-148a-3p, the top ranking miRNA across6lactation stages by counts, increased throughout the entire porcine lactation stage.All of these immune-related miRNAs have been shown to functionally target specific transcripts encoding cytokines, other immunological regulatory proteins, and immune response signaling pathway components.
     When the milk was subjected to various harsh conditions (low temperature, high temperature, low pH, multiple freeze-thaw cycles, and exogenous RNase), the exogenous synthetic worm-specific C. elegans miRNAs (cel-lin-4-5p, cel-miR-2-3p and cel-miR-39-5p) and Arabidopsis thaliana miRNA (ath-miR-159a-3p) were sharply degraded. However, the5endogenous breast milk exosome-derived high expression miRNAs (miR-148a-3p, miR-30c-5p, miR-574-3p, miR-21-5p and miR-27b-3p) exhibited resistance to degradation and high stability to harsh conditions. These results suggest that milk-derived miRNAs are selectively packaged into exosomes and exist in a remarkable stable form that is protected from endogenous RNase activity across various harsh conditions.
     After feeding with different milk, the colostrum-only and mature milk-only fed piglets have similar levels of7representing circulating metabolic indicators in their serum (P>0.05). Nonetheless, the expression level of the above13immune-related abundant miRNAs in the serum changed significantly. Out of the13immune-related mRNAs, apart from miR-148a-3p, all the other12miRNAs exhibited higher abundance in the colostrum-fed piglets compared with the mature milk-fed piglets (P<0.01). And the expression level of miR-148a-3p was significantly higher in the mature milk-fed piglets (P<0.05). The expression pattern of above mentioned immune-related miRNAs in the serum of piglets kept the same trend as the results in the porcine colostrum and mature milk. It is reasonable to hypothesis that these immune-related exosomal miRNAs in breast milk may be transferred into the piglet body via the digestive tract under the protection of exosomes.
     The results in this study provide basic information for further research of the important roles of breast milk in the development of infant's immune system. The study also proved that pig can be used as an ideal model for studying human lactation medicine and immune diseases.
引文
[1]Lee EY, Choi DY, Kim DK et al. Gram-positive bacteria produce membrane vesicles: Proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles[J]. Proteomics.2009,9(24):5425-5436.
    [2]Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and archaea:a conserved yet underappreciated aspect of microbial life[J]. Infection and immunity.2012,80(6): 1948-1957.
    [3]Van der Pol E, Boing AN, Harrison P et al. Classification, functions, and clinical relevance of extracellular vesicles[J]. Pharmacological Reviews.2012,64(3):676-705.
    [4]Gyorgy B, Szabo TG, Pasztoi M et al. Membrane vesicles, current state-of-the-art:emerging role of extracellular vesicles[J]. Cellular and Molecular Life Sciences.2011,68(16):2667-2688.
    [5]Conde-Vancells J, Rodriguez-Suarez E, Embade N et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes[J]. Journal of proteome research.2008, 7(12):5157-5166.
    [6]Zwaal R, Comfurius P, Bevers E. Surface exposure of phosphatidylserine in pathological cells[J]. Cellular and Molecular Life Sciences CMLS.2005,62(9):971-988.
    [7]Frey B, Gaipl U S. The immune functions of phosphatidylserine in membranes of dying cells and microvesicles[C]//Seminars in immunopathology. Springer-Verlag,2011,33(5):497-516.
    [8]Zwaal RF, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells[J]. Blood.1997,89(4):1121-1132.
    [9]Thery C, Zitvogel L, Amigorena S. Exosomes:composition, biogenesis and function[J]. Nature Reviews Immunology.2002,2(8):569-579.
    [10]Flaumenhaft R. Formation and fate of platelet microparticles[J]. Blood Cells, Molecules, and Diseases.2006,36(2):182-187.
    [11]Safaei R, Larson BJ, Cheng TC et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells[J]. Molecular cancer therapeutics.2005,4(10):1595-1604.
    [12]Shedden K, Xie XT, Chandaroy P et al. Expulsion of small molecules in vesicles shed by cancer cells association with gene expression and chemosensitivity profiles[J]. Cancer research.2003, 63(15):4331-4337.
    [13]Tesselaar M, Romijn F, Van Der Linden I et al. Microparticle-associated tissue factor activity:a link between cancer and thrombosis?[J]. Journal of Thrombosis and Haemostasis.2007,5(3): 520-527.
    [14]Zwicker JI, Liebman HA, Neuberg D et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy[J].Clinical Cancer Research. 2009,15(22):6830-6840.
    [15]Langer F, Spath B, Haubold K et al. Tissue factor procoagulant activity of plasma microparticles in patients with cancer-associated disseminated intravascular coagulation[J].Annals of hematology.2008,87(6):451-457.
    [16]Berckmans RJ, Nieuwland R, Tak PP et al. Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor Ⅶ-dependent mechanism[J]. Arthritis & Rheumatism.2002,46(11):2857-2866.
    [17]Knijff-Dutmer E, Koerts J, Nieuwland R et al. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis[J]. Arthritis & Rheumatism.2002,46(6): 1498-1503.
    [18]Yuana Y, Oosterkamp T, Bahatyrova S et al. Atomic force microscopy:a novel approach to the detection of nanosized blood microparticles[J]. Journal of Thrombosis and Haemostasis.2010, 8(2):315-323.
    [19]Dragovic RA, Gardiner C, Brooks AS et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis[J]. Nanomedicine:Nanotechnology, Biology and Medicine. 2011,7(6):780-788.
    [20]Van Der Pol E, Hoekstra A, Sturk A et al. Optical and non-optical methods for detection and characterization of microparticles and exosomes[J]. Journal of Thrombosis and Haemostasis. 2010,8(12):2596-2607.
    [21]Chargaff E, West R. The biological significance of the thromboplastic protein of blood[J]. Journal of Biological Chemistry.1946,166(1):189-197.
    [22]Wolf P. The nature and significance of platelet products in human plasma[J]. British journal of haematology.1967,13(3):269-288.
    [23]Dalton AJ. Microvesicles and vesicles of multivesicular bodies versus "virus-like" particles[J]. Journal of the National Cancer Institute.1975,54(5):1137-1148.
    [24]Johnstone RM, Adam M, Hammond J et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. Journal of Biological Chemistry.1987,262(19):9412-9420.
    [25]Johnstone R, Bianchini A, Teng K. Reticulocyte maturation and exosome release:transferrin receptor containing exosomes shows multiple plasma membrane functions[J]. Blood.1989, 74(5):1844-1851.
    [26]Johnstone R, Mathew A, Mason A et al. Exosome formation during maturation of mammalian and avian reticulocytes:evidence that exosome release is a major route for externalization of obsolete membrane proteins[J]. Journal of cellular physiology.1991,147(1):27-36.
    [27]Grdisa M, Mathew A, Johnstone R. Expression and loss of the transferrin receptor in growing and differentiating HD3 cells[J]. Journal of cellular physiology.1993,155(2):349-357.
    [28]Le Pecq J-B. Dexosomes as a therapeutic cancer vaccine:from bench to bedside[J]. Blood Cells, Molecules, and Diseases.2005,35(2):129-135.
    [29]Stegmayr B, Ronquist G. Promotive effect on human sperm progressive motility by prostasomes[J]. Urological research.1982,10(5):253-257.
    [30]Tanimura A, McGregor D H, Anderson H C. Matrix vesicles in atherosclerotic calcification[C]//Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, NY). Royal Society of Medicine,1983, 172(2):173-177.
    [31]Fischer von Mollard G, Mignery GA, Baumert M et al. rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles[J]. Proceedings of the National Academy of Sciences. 1990,87(5):1988-1992.
    [32]Heijnen HF, Schiel AE, Fijnheer R et al. Activated Platelets Release Two Types of Membrane Vesicles:Microvesicles by Surface Shedding and Exosomes Derived From Exocytosis of Multivesicular Bodies and -Granules[J]. Blood.1999,94(11):3791-3799.
    [33]Nieuwland R, Berckmans RJ, McGregor S et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis[J]. Blood.2000,95(3):930-935.
    [34]Lasser C, Alikhani VS, Ekstrom K et al. Human saliva, plasma and breast milk exosomes contain RNA:uptake by macrophages[J]. Journal of translational medicine.2011,9(1):9.
    [35]Vlassov AV, Magdaleno S, Setterquist R et al. Exosomes:current knowledge of their composition. biological functions, and diagnostic and therapeutic potentials[J]. Biochimica et Biophysica Acta (BBA)-General Subjects.2012,1820(7):940-948.
    [36]Keller S, Rupp C, Stoeck A et al. CD24 is a marker of exosomes secreted into urine and amniotic fluid[J]. Kidney international.2007,72(9):1095-1102.
    [37]Pisitkun T, Shen R-F, Knepper MA. Identification and proteomic profiling of exosomes in human urine[J]. Proceedings of the National Academy of Sciences of the United States of America. 2004,101(36):13368-13373.
    [38]Miranda KC, Bond DT, McKee M et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease[J]. Kidney international.2010,78(2):191-199.
    [39]Berckmans RJ, Sturk A, van Tienen LM et al. Cell-derived vesicles exposing coagulant tissue factor in saliva[J]. Blood.2011,117(11):3172-3180.
    [40]Street JM, Barran PE, Mackay CL et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid[J]. J Transl Med.2012,10(1):1-7.
    [41]Berckmans RJ, Nieuwland R, Kraan MC et al. Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes[J]. Arthritis Res Ther.2005,7(3): R536-R544.
    [42]Zhang H-G, Liu C, Su K et al. A membrane form of TNF-a presented by exosomes delays T cell activation-induced cell death[J]. The Journal of Immunology.2006,176(12):7385-7393.
    [43]Kosaka N, Izumi H, Sekine K et al. microRNA as a new immune-regulatory agent in breast milk[J]. Silence.2010,1(1):1-8.
    [44]Chen X, Gao C, Li H et al. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products[J]. Cell Research. 2010,20(10):1128-1137.
    [45]Hata T, Murakami K, Nakatani H et al. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs[J]. Biochemical and biophysical research communications.2010, 396(2):528-533.
    [46]Zhou Q, Li M, Wang X et al. Immune-related microRNAs are abundant in breast milk exosomes[J]. International journal of biological sciences.2012,8(1):118-123.
    [47]Admyre C, Johansson SM, Qazi KR et al. Exosomes with immune modulatory features are present in human breast milk[J]. The Journal of Immunology.2007,179(3):1969-1978.
    [48]Weber JA, Baxter DH, Zhang S et al. The microRNA spectrum in 12 body fluids[J]. Clinical chemistry.2010,56(11):1733-1741.
    [49]Salzer U, Zhu R, Luten M et al. Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin[J]. Transfusion.2008,48(3):451-462.
    [50]Bernimoulin M, Waters E, Foy M et al. Differential stimulation of monocytic cells results in distinct populations of microparticles[J]. Journal of Thrombosis and Haemostasis.2009,7(6): 1019-1028.
    [51]Jimenez JJ, Jy W, Mauro LM et al. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis[J]. Thrombosis research.2003,109(4): 175-180.
    [52]Valenti R, Huber V, Filipazzi P et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-p-mediated suppressive activity on T lymphocytes[J]. Cancer research.2006,66(18):9290-9298.
    [53]Skog J, Wtirdinger T, van Rijn S et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers[J]. Nature cell biology.2008, 10(12):1470-1476.
    [54]Piccin A, Murphy WG, Smith OP. Circulating microparticles:pathophysiology and clinical implications[J]. Blood reviews.2007,21(3):157-171.
    [55]Salzer U, Hinterdorfer P, Hunger U et al. Ca++-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin[J]. Blood.2002,99(7): 2569-2577.
    [56]Connor DE, Exner T, Ma D et al. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib[J]. Thrombosis & Haemostasis.2010,103(5):1044-1052.
    [57]Perez-Pujol S, Marker PH, Key NS. Platelet microparticles are heterogeneous and highly dependent on the activation mechanism:studies using a new digital flow cytometer[J]. Cytometry Part A.2007,71(1):38-45.
    [58]Ayers L, Kohler M, Harrison P et al. Measurement of circulating cell-derived microparticles by flow cytometry:sources of variability within the assay[J]. Thrombosis research.2011,127(4): 370-377.
    [59]Lasser C, Eldh M, L6tvall J. Isolation and characterization of RNA-containing exosomes[J]. Journal of visualized experiments:JoVE.2012, (59):e3037.
    [60]Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses[J]. Nature Reviews Immunology.2009,9(8):581-593.
    [61]Taylor DD, Gercel-Taylor C. Exosomes/microvesicles:mediators of cancer-associated immunosuppressive microenvironments[C]//Seminars in immunopathology. Springer-Verlag, 2011,33(5):441-454.
    [62]Savina A, Furlan M, Vidal M et al. Exosome release is regulated by a calcium-dependent mechanism in K562 cells[J]. Journal of Biological Chemistry.2003,278(22):20083-20090.
    [63]Lamparski HG, Metha-Damani A, Yao J-Y et al. Production and characterization of clinical grade exosomes derived from dendritic cells[J]. Journal of immunological methods.2002,270(2): 211-226.
    [64]Yuana Y, Osanto S, Bertina RM. Use of immuno-magnetic beads for direct capture of nanosized microparticles from plasma[J]. Blood Coagulation & Fibrinolysis.2012,23(3):244-250.
    [65]Zeelenberg IS, Ostrowski M, Krumeich S et al. Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses[J]. Cancer research.2008,68(4): 1228-1235.
    [66]Yuana Y, Bertina RM, Osanto S. Pre-analytical and analytical issues in the analysis of blood microparticles[J]. Thrombosis and haemostasis.2011,105(3):396-408.
    [67]Aras O, Shet A, Bach RR et al. Induction of microparticle-and cell-associated intravascular tissue factor in human endotoxemia[J]. Blood.2004,103(12):4545-4553.
    [68]Van Der Pol E, van Gemert M, Sturk A et al. Single vs. swarm detection of microparticles and exosomes by flow cytometry[J]. Journal of Thrombosis and Haemostasis.2012,10(5): 919-930.
    [69]Nomura S, Shouzu A, Taomoto K et al. Assessment of an ELISA kit for platelet-derived microparticles by joint research at many institutes in Japan[J]. Journal of atherosclerosis and thrombosis.2009,16(6):878-887.
    [70]Del Conde I, Shrimpton CN, Thiagarajan P et al. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation[J]. Blood.2005,106(5): 1604-1611.
    [71]Siedlecki CA, Wen Wang I, Higashi JM et al. Platelet-derived microparticles on synthetic surfaces observed by atomic force microscopy and fluorescence microscopy[J]. Biomaterials. 1999,20(16):1521-1529.
    [72]Baran J, Baj-Krzyworzeka M, Weglarczyk K et al. Circulating tumour-derived microvesicles in plasma of gastric cancer patients[J]. Cancer Immunology, Immunotherapy.2010,59(6): 841-850.
    [73]Gyorgy B, Modos K, Pallinger E et al. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters[J]. Blood. 2011,117(4):e39-e48.
    [74]Sharma S, Rasool HI, Palanisamy V et al. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy[J]. ACS nano.2010,4(4):1921-1926.
    [75]Ashcroft B, de Sonneville J, Yuana Y et al. Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics[J]. Biomedical microdevices.2012,14(4):641-649.
    [76]Van der Vlist EJ, Nolte EN, Stoorvogel W et al. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry[J]. Nature protocols.2012,7(7):1311-1326.
    [77]Hoen EN, van der Vlist EJ, Aalberts M et al. Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles[J]. Nanomedicine:Nanotechnology, Biology and Medicine.2012,8(5):712-720.
    [78]Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles:artefacts no more[J]. Trends in cell biology.2009,19(2):43-51.
    [79]Beyer C, Pisetsky DS. The role of microparticles in the pathogenesis of rheumatic diseases[J]. Nature Reviews Rheumatology.2009,6(1):21-29.
    [80]Mathivanan S, Ji H, Simpson RJ. Exosomes:extracellular organelles important in intercellular communication[J]. Journal of proteomics.2010,73(10):1907-1920.
    [81]Caby M-P, Lankar D, Vincendeau-Scherrer C et al. Exosomal-like vesicles are present in human blood plasma[J]. International immunology.2005,17(7):879-887.
    [82]Keller S, Sanderson MP. Stoeck A et al. Exosomes:from biogenesis and secretion to biological function[J]. Immunology letters.2006,107(2):102-108.
    [83]Vella LJ, Greenwood DL, Cappai R et al. Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid[J]. Veterinary immunology and immunopathology.2008,124(3): 385-393.
    [84]Wubbolts R, Leckie RS, Veenhuizen PT et al. Proteomic and Biochemical Analyses of Human B Cell-derived Exosomes POTENTIAL IMPLICATIONS FOR THEIR FUNCTION AND MULTIVESICULAR BODY FORMATION[J]. Journal of Biological Chemistry.2003,278(13): 10963-10972.
    [85]Simons M, Raposo G. Exosomes-vesicular carriers for intercellular communication[J]. Current opinion in cell biology.2009,21(4):575-581.
    [86]Bobrie A, Colombo M, Raposo G et al. Exosome secretion:molecular mechanisms and roles in immune responses[J]. Traffic.2011,12(12):1659-1668.
    [87]Chaput N, Thery C. Exosomes:immune properties and potential clinical implementations[C]//Seminars in immunopathology. Springer-Verlag,2011,33(5):419-440.
    [88]Record M, Subra C, Silvente-Poirot S et al. Exosomes as intercellular signalosomes and pharmacological effectors[J]. Biochemical pharmacology.2011,81(10):1171-1182.
    [89]Marzesco A-M, Janich P, Wilsch-Brauninger M et al. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells[J]. Journal of cell science.2005,118(13):2849-2858.
    [90]Michelet X, Djeddi A, Legouis R. Developmental and cellular functions of the ESCRT machinery in pluricellular organisms[J]. Biology of the Cell.2010,102(3):191-202.
    [91]Babst M. A protein's final ESCRT[J]. Traffic.2005,6(1):2-9.
    [92]Buschow SI, Liefhebber JM, Wubbolts R et al. Exosomes contain ubiquitinated proteins[J]. Blood Cells, Molecules, and Diseases.2005,35(3):398-403.
    [93]Buschow SI, Van Niel G, Pols MS et al. MHC II in Dendritic Cells is Targeted to Lysosomes or T Cell-Induced Exosomes Via Distinct Multivesicular Body Pathways[J]. Traffic.2009,10(10): 1528-1542.
    [94]Trajkovic K, Hsu C, Chiantia S et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes[J]. Science.2008,319(5867):1244-1247.
    [95]Marsh M, van Meer G. No ESCRTs for exosomes[J]. Science.2008,319(5867):1191-1192.
    [96]White IJ, Bailey LM, Aghakhani MR et al. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation[J]. The EMBO journal.2005,25(1): 1-12.
    [97]Booth AM, Fang Y, Fallon JK et al. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane[J]. The Journal of cell biology.2006,172(6):923-935.
    [98]Fang Y, Wu N, Gan X et al. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes[J]. PLoS biology.2007,5(6):1267-1283.
    [99]Bang C. Thum T. Exosomes:New players in cell-cell communication[J]. The International Journal of Biochemistry & Cell Biology,2012,44(11):2060-2064.
    [100]Barry OP, Pratico D, Savani RC et al. Modulation of monocyte-endothelial cell interactions by platelet microparticles[J]. Journal of Clinical Investigation.1998,102(1):136-144.
    [101]Parolini I, Federici C, Raggi C et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells[J]. Journal of Biological Chemistry.2009,284(49):34211-34222.
    [102]Segura E, Guerin C, Hogg N et al. CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo[J]. The Journal of Immunology.2007,179(3):1489-1496.
    [103]Morelli AE, Larregina AT, Shufesky WJ et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells[J]. Blood.2004,104(10):3257-3266.
    [104]Fitzner D, Schnaars M, van Rossum D et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis[J]. Journal of cell science.2011,124(3): 447-458.
    [105]Turiak L, Misjak P, Szabo TG et al. Proteomic characterization of thymocyte-derived microvesicles and apoptotic bodies in BALB/c mice[J]. Journal of proteomics.2011,74(10): 2025-2033.
    [106]Hristov M, Erl W, Linder S et al. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro[J]. Blood.2004, 104(9):2761-2766.
    [107]Thery C, Boussac M, Veron P et al. Proteomic analysis of dendritic cell-derived exosomes:a secreted subcellular compartment distinct from apoptotic vesicles[J]. The Journal of Immunology.2001,166(12):7309-7318.
    [108]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. British journal of cancer.1972,26(4):239-257.
    [109]Bilyy RO, Shkandina T, Tomin A et al. Macrophages discriminate glycosylation patterns of apoptotic cell-derived microparticles[J]. Journal of Biological Chemistry.2012,287(1): 496-503.
    [110]Yang C, Mwaikambo BR, Zhu T et al. Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.2008,294(2): R467-R476.
    [111]Wysoczynski M, Ratajczak MZ. Lung cancer secreted microvesicles:underappreciated modulators of microenvironment in expanding tumors[J]. International Journal of Cancer.2009, 125(7):1595-1603.
    [112]Mostefai H, Andriantsitohaina R, Martinez M. Plasma membrane microparticles in angiogenesis: role in ischemic diseases and in cancer[J]. Physiological research.2008,57(3):311-320.
    [113]Kim HK, Song KS, Chung JH et al. Platelet microparticles induce angiogenesis in vitro[J]. British journal of haematology.2004,124(3):376-384.
    [114]Brill A, Dashevsky O, Rivo J et al. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization[J]. Cardiovascular research.2005,67(1):30-38.
    [115]Boulanger CM, Tedgui A. Dying for attention:microparticles and angiogenesis[J]. Cardiovascular research.2005,67(1):1-3.
    [116]Bonavia R, Inda M, Vandenberg S et al. EGFRvⅢ promotes glioma angiogenesis and growth through the NF-κB, interleukin-8 pathway[J]. Oncogene.2011,31(36):4054-4066.
    [117]Bussolati B, Grange C, Camussi G. Tumor exploits alternative strategies to achieve vascularization[J]. The FASEB Journal.2011,25(9):2874-2882.
    [118]Taraboletti G, D'Ascenzo S, Borsotti P et al. Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells[J]. The American journal of pathology.2002,160(2):673-680.
    [119]Janowska-Wieczorek A, Wysoczynski M, Kijowski J et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer[J]. International Journal of Cancer. 2005,113(5):752-760.
    [120]Janowska-Wieczorek A, Marquez-Curtis LA, Wysoczynski M et al. Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells[J]. Transfusion. 2006,46(7):1199-1209.
    [121]Peinado H, Aleckovic M, Lavotshkin S et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET[J]. Nature medicine.2012, 18(6):883-891.
    [122]Sheldon H, Heikamp E, Turley H et al. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes[J]. Blood.2010,116(13):2385-2394.
    [123]Bebawy M, Combes V, Lee E et al. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells[J]. Leukemia.2009,23(9):1643-1649.
    [124]Mause SF, von Hundelshausen P, Zernecke A et al. Platelet microparticles a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium[J]. Arteriosclerosis, thrombosis, and vascular biology.2005,25(7):1512-1518.
    [125]Wieckowski EU, Visus C, Szajnik M et al. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes[J]. The Journal of Immunology.2009,183(6):3720-3730.
    [126]Bach RR. Tissue factor encryption[J]. Arteriosclerosis, thrombosis, and vascular biology.2006, 26(3):456-461.
    [127]Simak J, Holada K, Vostal JG. Release of annexin V-binding membrane microparticles from cultured human umbilical vein endothelial cells after treatment with camptothecin[J]. BMC cell biology.2002,3(1):11-21.
    [128]Sabatier F, Roux V, Anfosso F et al. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity[J]. Blood.2002,99(11): 3962-3970.
    [129]Brodsky SV, Malinowski K, Golightly M et al. Plasminogen activator inhibitor-1 promotes formation of endothelial microparticles with procoagulant potential[J]. Circulation.2002, 106(18):2372-2378.
    [130]Henriksson CE, Klingenberg O, Ovstebo R et al. Discrepancy between tissue factor activity and tissue factor expression in endotoxin-induced monocytes is associated with apoptosis and necrosis[J]. THROMBOSIS AND HAEMOSTASIS-STUTTGART.2005,94(6):1236-1244.
    [131]Giesen PL, Rauch U, Bohrmann B et al. Blood-borne tissue factor:another view of thrombosis[J]. Proceedings of the National Academy of Sciences.1999,96(5):2311-2315.
    [132]Versteeg HH, Ruf W. Tissue factor coagulant function is enhanced by protein-disulfide isomerase independent of oxidoreductase activity[J]. Journal of Biological Chemistry.2007, 282(35):25416-25424.
    [133]Nieuwland R, Berckmans RJ, Rotteveel-Eijkman RC et al. Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant[J]. Circulation. 1997,96(10):3534-3541.
    [134]Biro E, Sturk-Maquelin K, Vogel G et al. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner[J]. Journal of Thrombosis and Haemostasis.2003,1(12):2561-2568.
    [135]Davila M, Amirkhosravi A, Coll E et al. Tissue factor-bearing microparticles derived from tumor cells:impact on coagulation activation[J]. Journal of Thrombosis and Haemostasis.2008, 6(9):1517-1524.
    [136]Van den Goor JM, Saxby BK, Tijssen JG et al. Improvement of cognitive test performance in patients undergoing primary CABG and other CPB-assisted cardiac procedures[J]. Perfusion. 2008,23(5):267-273.
    [137]Baj-Krzyworzeka M, Szatanek R, Weglarczyk K et al. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes[J]. Cancer Immunology, Immunotherapy.2006,55(7):808-818.
    [138]Baj-Krzyworzeka M, Baran J, Weglarczyk K,et al. Tumour-derived microvesicles (TMV) mimic the effect of tumour cells on monocyte subpopulations[J]. Anticancer research.2010, 30(9):3515-3519.
    [139]Herrmann M, Voll RE, Zoller OM et al. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus[J]. Arthritis & Rheumatism.1998,41(7):1241-1250.
    [140]Lima LG, Chammas R, Monteiro RQ et al. Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner[J]. Cancer letters.2009,283(2):168-175.
    [141]Boing AN, Hau CM, Sturk A et al. Platelet microparticles contain active caspase 3[J]. Platelets. 2008,19(2):96-103.
    [142]Altieri SL, Khan ANH, Tomasi TB. Exosomes from plasmacytoma cells as a tumor vaccine[J]. Journal of Immunotherapy.2004,27(4):282-288.
    [143]Baglio SR, Pegtel DM, Baldini N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy[J]. Frontiers in Physiology.2012,3:1-11.
    [144]Kim S-H, Lechman ER, Bianco N et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis[J]. The Journal of Immunology.2005, 174(10):6440-6448.
    [145]Chaput N, Flament C, Viaud S et al. Dendritic cell derived-exosomes:biology and clinical implementations[J]. Journal of leukocyte biology.2006,80(3):471-478.
    [146]Dvorak H, Quay S, Orenstein N et al. Tumor shedding and coagulation[J]. Science.1981, 212(4497):923-924.
    [147]Uno K, Homma S, Satoh T et al. Tissue factor expression as a possible determinant of thromboembolism in ovarian cancer[J]. British journal of cancer.2007,96(2):290-295.
    [148]Carr JM, Dvorak AM, Dvorak HF. Circulating membrane vesicles in leukemic blood[J]. Cancer research.1985,45(11 Part 2):5944-5951.
    [149]Saman S, Kim W, Raya M et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease[J]. Journal of Biological Chemistry.2012,287(6):3842-3849.
    [150]Mitchell PJ, Welton J, Staffurth J et al. Can urinary exosomes act as treatment response markers in prostate cancer[J]. J Transl Med.2009,7(4):1-13
    [151]Li J, Sherman-Baust CA, Tsai-Turton M et al. Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer[J]. BMC cancer.2009,9(1):244-255.
    [152]Conde-Vancells J, Rodriguez-Suarez E, Gonzalez E et al. Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples[J]. PROTEOMICS-Clinical Applications. 2010,4(4):416-425.
    [153]Choi DS, Park JO, Jang SC et al. Proteomic analysis of microvesicles derived from human colorectal cancer ascites[J]. Proteomics.2011,11(13):2745-2751.
    [154]Babiker AA, Magnusson PU, Ronquist G et al. Mapping pro- and antiangiogenic factors on the surface of prostasomes of normal and malignant cell origin[J]. The Prostate.2010,70(8): 834-847.
    [155]Tavoosidana G, Ronquist G, Darmanis S et al. Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer[J]. Proceedings of the National Academy of Sciences.2011,108(21):8809-8814.
    [156]Rodriguez A, Griffiths-Jones S, Ashurst JL et al. Identification of mammalian microRNA host genes and transcription units[J]. Genome research.2004,14(10a):1902-1910.
    [157]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell.2004,116(2): 281-297.
    [158]Kim VN. MicroRNA biogenesis:coordinated cropping and dicing[J]. Nature reviews Molecular cell biology.2005,6(5):376-385.
    [159]Baek D, Villen J, Shin C et al. The impact of microRNAs on protein output[J]. Nature.2008, 455(7209):64-71.
    [160]Selbach M, Schwanhausser B, Thierfelder N et al. Widespread changes in protein synthesis induced by microRNAs[J]. Nature.2008,455(7209):58-63.
    [161]Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation:microRNAs can up-regulate translation[J]. Science.2007,318(5858):1931-1934.
    [162]Kim DH, Saetrom P, Snove O et al. MicroRNA-directed transcriptional gene silencing in mammalian cells[J]. Proceedings of the National Academy of Sciences.2008,105(42): 16230-16235.
    [163]Lagos-Quintana M, Rauhut R, Yalcin A et al. Identification of tissue-specific microRNAs from mouse[J]. Current Biology.2002,12(9):735-739.
    [164]Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans[J]. Science Signaling.2001,294(5543):862-864.
    [165]Chen X, Ba Y, Ma L et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Research.2008,18(10):997-1006.
    [166]Valadi H, Ekstrom K, Bossios A et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nature cell biology.2007,9(6): 654-659.
    [167]Zhang Y, Liu D, Chen X et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration[J]. Molecular cell.2010,39(1):133-144.
    [168]Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells[J]. Nature communications.2011,2:282-292.
    [169]Kosaka N, Iguchi H, Yoshioka Y et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells[J]. Journal of Biological Chemistry.2010,285(23):17442-17452.
    [170]Turchinovich A, Weiz L, Langheinz A et al. Characterization of extracellular circulating microRNA[J]. Nucleic acids research.2011,39(16):7223-7233.
    [171]Arroyo JD, Chevillet JR, Kroh EM et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma[J]. Proceedings of the National Academy of Sciences.2011,108(12):5003-5008.
    [172]Ambros V. The functions of animal microRNAs[J]. Nature.2004,431(7006):350-355.
    [173]Croce CM, Calin GA. miRNAs, cancer, and stem cell division[J]. Cell.2005,122(1):6-7.
    [174]Chim SS, Shing TK, Hung EC et al. Detection and characterization of placental microRNAs in maternal plasma[J]. Clinical chemistry.2008,54(3):482-490.
    [175]Lawrie CH, Gal S, Dunlop HM et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma[J]. British journal of haematology.2008,141(5):672-675.
    [176]Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proceedings of the National Academy of Sciences.2008,105(30): 10513-10518.
    [177]Hanke M, Hoefig K, Merz H et al. A robust methodology to study urine microRNA as tumor marker:microRNA-126 and microRNA-182 are related to urinary bladder cancer[J]. Urologic oncology.2010,28(6):655-661.
    [178]Park NJ, Zhou H, Elashoff D et al. Salivary microRNA:discovery, characterization, and clinical utility for oral cancer detection[J]. Clinical Cancer Research.2009,15(17):5473-5477.
    [179]Hunter MP, Ismail N. Zhang X et al. Detection of microRNA expression in human peripheral blood microvesicles[J]. PLoS One.2008,3(11):e3694.
    [180]Chen X, Liang H, Zhang J et al. Horizontal transfer of microRNAs:molecular mechanisms and clinical applications[J]. Protein & cell.2012,3(1):28-37.
    [181]Vickers KC, Palmisano BT, Shoucri BM et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins[J]. Nature cell biology.2011,13(4): 423-433.
    [182]Wang K, Zhang S, Weber J et al. Export of microRNAs and microRNA-protective protein by mammalian cells[J]. Nucleic acids research.2010,38(20):7248-7259.
    [183]Winter J, Jung S, Keller S et al. Many roads to maturity:microRNA biogenesis pathways and their regulation[J]. Nature cell biology.2009,11(3):228-234.
    [184]Pegtel DM, Cosmopoulos K, Thorley-Lawson DA et al. Functional delivery of viral miRNAs via exosomes[J]. Proceedings of the National Academy of Sciences.2010,107(14):6328-6333.
    [185]Montecalvo A, Larregina AT, Shufesky WJ et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes[J]. Blood.2012,119(3):756-766.
    [186]Hergenreider E, Heydt S, Treguer K et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs[J]. Nature cell biology.2012,14(3):249-256.
    [187]Xin H, Li Y, Buller B et al. Exosome-Mediated Transfer of miR-133b from Multipotent Mesenchymal Stromal Cells to Neural Cells Contributes to Neurite Outgrowth[J]. Stem Cells. 2012,30(7):1556-1564.
    [188]Kogure T, Lin WL, Yan IK et al. Intercellular nanovesicle-mediated microRNA transfer:A mechanism of environmental modulation of hepatocellular cancer cell growth[J]. Hepatology. 2011,54(4):1237-1248.
    [189]Chen X, Liang H, Zhang J, et al. Secreted microRNAs:a new form of intercellular communication[J]. Trends in cell biology,2012,22(3):125-132.
    [190]Gibbings DJ, Ciaudo C, Erhardt M et al. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity[J]. Nature cell biology.2009,11(9): 1143-1149.
    [191]Wehling M. Translational medicine:can it really facilitate the transition of research "from bench to bedside"?[J]. European journal of clinical pharmacology.2006,62(2):91-95.
    [192]Jackson DB. Serum-based microRNAs:are we blinded by potential?[J]. Proceedings of the National Academy of Sciences.2009,106(1):E5.
    [193]Etheridge A, Lee I, Hood L et al. Extracellular microRNA:a new source of biomarkers[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis.2011,717(1): 85-90.
    [194]Grady WM, Tewari M. The next thing in prognostic molecular markers:microRNA signatures of cancer[J]. Gut.2010,59(6):706-708.
    [195]Kota J, Chivukula RR, O'Donnell KA et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model[J]. Cell.2009,137(6):1005-1017.
    [196]Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs[J]. Nature Reviews Genetics.2007,8(2):93-103.
    [197]Xiao C, Rajewsky K. MicroRNA control in the immune system:basic principles[J]. Cell.2009, 136(1):26-36.
    [198]Gardner PP, Vinther J. Mutation of miRNA target sequences during human evolution[J]. Trends in Genetics.2008,24(6):262-265.
    [199]Ventura A, Young AG, Winslow MM et al. Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17-92 Family of miRNA Clusters[J]. Cell.2008,132(5): 875-886.
    [200]Tili E, Michaille J-J, Calin GA. Expression and function of micro RNAs in immune cells during normal or disease state[J]. International journal of medical sciences.2008,5(2):73-79.
    [201]Zhang L, Hou D, Chen X et al. Exogenous plant MIR 168a specifically targets mammalian LDLRAP1:evidence of cross-kingdom regulation by microRNA[J]. Cell Research.2011,22(1): 107-126.
    [202]Palanisamy V, Sharma S, Deshpande A et al. Nanostructural and transcriptomic analyses of human saliva derived exosomes[J]. PLoS One.2010,5(1):e8577.
    [203]Li M, Xia Y, Gu Y et al. MicroRNAome of porcine pre-and postnatal development[J]. PLoS One.2010,5(7):e11541.
    [204]Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method[J]. Nature protocols.2008,3(6):1101-1108.
    [205]Li M, Liu Y, Wang T et al. Repertoire of porcine microRNAs in adult ovary and testis by deep sequencing[J]. International journal of biological sciences.2011,7(7):1045-1055.
    [206]Berezikov E. Evolution of microRNA diversity and regulation in animals[J]. Nature Reviews Genetics.2011,12(12):846-860.
    [207]Bartel DP. MicroRNAs:target recognition and regulatory functions[J]. Cell.2009,136(2): 215-233.
    [208]Lefevre CM, Sharp JA, Nicholas KR. Evolution of lactation:ancient origin and extreme adaptations of the lactation system[J]. Annual review of genomics and human genetics.2010, 11:219-238.
    [209]Petherick A. Development:mother's milk:a rich opportunity [J]. Nature.2010,468(7327): S5-S7.
    [210]Goldman AS. The immune system in human milk and the developing infant[J]. Breastfeeding Medicine.2007,2(4):195-204.
    [211]O'Hara AJ, Vahrson W, Dittmer DP. Gene alteration and precursor and mature microRNA transcription changes contribute to the miRNA signature of primary effusion lymphoma[J]. Blood.2008,111(4):2347-2353.
    [212]Lujambio A, Calin GA, Villanueva A et al. A microRNA DNA methylation signature for human cancer metastasis[J]. Proceedings of the National Academy of Sciences.2008,105(36): 13556-13561.
    [213]Takagi S, Nakajima M, Mohri T et al. Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4[J]. Journal of Biological Chemistry.2008,283(15):9674-9680.
    [214]Li J, Donath S, Li Y et al. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway[J]. PLoS genetics.2010,6(1):e1000795.
    [215]Gaziel-Sovran A, Segura MF, Di Micco R et al. miR-30b/30d Regulation of GalNAc Transferases Enhances Invasion and Immunosuppression during Metastasis[J]. Cancer cell. 2011,20(1):104-118.
    [216]Honeycutt K, Chen Z, Koster M et al. Deregulated minichromosomal maintenance protein MCM7 contributes to oncogene driven tumorigenesis[J]. Oncogene.2006,25(29):4027-4032.
    [217]Kuhn AR, Schlauch K, Lao R et al. MicroRNA expression in human airway smooth muscle cells:role of miR-25 in regulation of airway smooth muscle phenotype[J]. American journal of respiratory cell and molecular biology.2010,42(4):506-513.
    [218]Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease[J]. Cell.2008, 133(2):217-222.
    [219]Malumbres R, Sarosiek KA, Cubedo E et al. Differentiation stage-specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas[J]. Blood.2009,113(16): 3754-3764.
    [220]Gregory PA, Bert AG, Paterson EL et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J]. Nature cell biology.2008,10(5): 593-601.
    [221]Park S-M, Gaur AB, Lengyel E et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2[J]. Genes & development.2008,22(7):894-907.
    [222]Brabletz T, Jung A, Hlubek F et al. Negative regulation of CD4 expression in T cells by the transcriptional repressor ZEB[J]. International immunology.1999,11(10):1701-1708.
    [223]Meng F, Henson R, Wehbe-Janek H et al. The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes[J]. Journal of Biological Chemistry.2007,282(11):8256-8264.
    [224]Stittrich A-B, Haftmann C, Sgouroudis E et al. The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes[J]. Nature immunology.2010, 11(11):1057-1062.
    [225]Volinia S, Calin GA, Liu C-G et al. A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proceedings of the National Academy of Sciences of the United States of America.2006,103(7):2257-2261.
    [226]Xi Y, Formentini A, Chien M et al. Prognostic values of microRNAs in colorectal cancer[J]. Biomarker insights.2006,1:113-121.
    [227]Elyakim E, Sitbon E, Faerman A et al. hsa-miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy [J]. Cancer research.2010,70(20):8077-8087.
    [228]Biton M, Levin A, Slyper M et al. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk[J]. Nature immunology.2011,12(3):239-246.
    [229]Sheedy FJ, Palsson-McDermott E, Hennessy EJ et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21[J]. Nature immunology.2009,11(2):141-147.
    [230]Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression[J]. The Journal of Immunology.2009,182(8): 4994-5002.
    [231]Jennewein C, von Knethen A, Schmid T et al. MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor y (PPARy) mRNA destabilization[J]. Journal of Biological Chemistry.2010,285(16):11846-11853.
    [232]Duursma AM, Kedde M, Schrier M et al. miR-148 targets human DNMT3b protein coding region[J]. Rna.2008,14(5):872-877.
    [233]O'Connell RM, Rao DS, Chaudhuri AA et al. Physiological and pathological roles for microRNAs in the immune system[J]. Nature Reviews Immunology.2010,10(2):111-122.
    [234]Willenbrock H, Salomon J, Sokilde R et al. Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing[J]. Rna.2009,15(11):2028-2034.
    [235]Motameny S, Wolters S, Nurnberg P et al. Next generation sequencing of miRNAs-strategies, resources and methods[J]. Genes.2010,1(1):70-84.
    [236]Milenkovic D, Deval C, Gouranton E et al. Modulation of miRNA expression by dietary polyphenols in apoE deficient mice:a new mechanism of the action of polyphenols[J]. PLoS One.2012,7(1):e29837.
    [237]Dawson H. A comparative assessment of the pig, mouse, and human genomes:structural and functional analysis of genes involved in immunity. In:The Minipig in Biomedical Research. Boca Raton, FL:CRC Press; 2011:321-341.
    [238]Meurens F, Summerfield A, Nauwynck H et al. The pig:a model for human infectious diseases[J]. Trends in microbiology.2012,20(1):50-57.
    [239]Fujita Y, Kojima K, Ohhashi R et al. MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression[J]. Journal of Biological Chemistry.2010,285(25):19076-19084.
    [240]Murata T, Takayama K, Katayama S et al. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression[J]. Prostate cancer and prostatic diseases.2010,13(4):356-361.
    [241]Guo S-L, Peng Z, Yang X et al. miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells[J]. International journal of biological sciences.2011,7(5):567-574.
    [242]Xu Q. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1[J]. Journal of Molecular Cell Biology.2013,5(1): 3-13.
    [243]Chen Y, Song Y, Wang Z et al. Altered expression of MiR-148a and MiR-152 in gastrointestinal cancers and its clinical significance[J]. Journal of Gastrointestinal Surgery.2010,14(7): 1170-1179.
    [244]Hummel R, Watson DI, Smith C et al. Mir-148a improves response to chemotherapy in sensitive and resistant oesophageal adenocarcinoma and squamous cell carcinoma cells[J]. Journal of Gastrointestinal Surgery.2011,15(3):429-438.
    [245]Liu X, Zhan Z, Xu L et al. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIa[J]. The Journal of Immunology.2010. 185(12):7244-7251.
    [246]Turner ML, Schnorfeil FM, Brocker T. MicroRNAs regulate dendritic cell differentiation and function[J]. The Journal of Immunology.2011,187(8):3911-3917.
    [247]Herrmann TL, Morita CT, Lee K et al. Calmodulin kinase II regulates the maturation and antigen presentation of human dendritic cells[J]. Journal of leukocyte biology.2005,78(6): 1397-1407.
    [248]Zhang J, Ying Z-z, Tang Z-1 et al. MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene[J]. Journal of Biological Chemistry.2012,287(25):21093-21101.
    [249]Izumi H, Kosaka N, Shimizu T, et al. Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions[J].Journal of dairy science,2012,95(9):4831-4841.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700