人肝癌细胞SMMC-7721过表达N-乙酰氨基葡萄糖转移酶V对整合蛋白β1的N-糖链结构、蛋白稳定性及其功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞内糖蛋白的糖链在内质网和高尔基体中通过糖基转移酶和糖苷酶加工而形成。其中N-乙酰氨基葡萄糖转移酶(N-acetylglucosaminyltransferase,GnT)是一组催化N-糖链生成的加工酶类,主要催化N-糖链由高甘露糖型经杂合型向复杂型过渡并形成外围天线结构。根据加工产物的不同,可将N-乙酰氨基葡萄糖转移酶分为六种,分别为GnT-Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ。如果这些糖基转移酶缺失或过表达,就会造成具有重要功能的糖蛋白糖链改变,进而影响其功能。
     糖蛋白糖链最常见的变化是N-糖链分子量大小和分支数变化。N-糖链分支数增加,往往归因于N-乙酰氨基葡萄糖转移酶Ⅴ(GnT-Ⅴ)的过表达。GnT-Ⅴ是分布在高尔基体中的合成糖蛋白N-糖链分支结构的关键酶,将GlcNAc基团转移至N-糖链核心α1,6臂的α-甘露糖上,催化形成N-糖链的GlcNAcβ1,6分支结构。GnT-Ⅴ加工众多糖蛋白,其中很多膜蛋白是细胞表面的粘附分子,GnT-Ⅴ过表达引起细胞表面粘附分子糖链改变,GlcNAcβ1,6分支增加。已有大量报道由GnT-Ⅴ引起的细胞表面粘附分子糖链GlcNAcβ1,6分支增加与肿瘤细胞侵袭和迁移密切相关。又有研究发现GnT-Ⅴ有一种与糖基转移酶酶活性无关的功能,就是可引起肿瘤血管生成,而血管生成是肿瘤发展及转移过程关键的一步。这些研究结果提示我们:GnT-Ⅴ参与细胞恶性转化、肿瘤转移的机制是多方面的。
     我们前期实验用GnT-Ⅴ转染7721细胞,观察到一个值得注意的现象,就是细胞重要的粘附分子整合蛋白β1的蛋白表达与Mock(pcDNA3/7721)细胞相比显著增高。GnT-Ⅴ是糖链加工的酶,关于影响细胞表面粘附分子的蛋白含量方面鲜有报道。为了探讨肿瘤细胞中GnT-Ⅴ影响细胞恶性程度的分子机制,研究GnT-Ⅴ的糖基转移酶催化活性与细胞表面粘附分子表达改变的关系,根据文献,我们构建GnT-Ⅴ的C末端去除六个氨基酸序列cDNA的重组质粒pcDNA3-ΔcGnT-Ⅴ,ΔcGnT-Ⅴ含有几乎完整的蛋白结构区域而无酶活性,将其转染至7721细胞;将GnT-Ⅴ全长表达质粒(pcDNA3-wtGnT-Ⅴ)和空载体(pcDNA3)同时分别转入7721细胞,并对筛得三株稳转细胞进行鉴定,已确定外源性ΔcGnT-Ⅴ或GnT-Ⅴ的cDNA在7721细胞中表达,三株稳转细胞分别用Δc-7721(ΔcGnT-Ⅴ/7721)细胞,wt-7721(wtGnT-Ⅴ/7721)细胞,Mock(pcDNA3/7721)细胞表示。
     首先检测了Mock,wt-7721,Δc-7721细胞中整合蛋白β1亚基的表达。与Mock细胞相比,wt-7721细胞中整合蛋白β1的表达比Mock细胞的高2.4倍左右(主要是成熟型β1增加);Δc-7721中整合蛋白β1的表达比Mock细胞的明显降低。然后用实时荧光定量PCR方法及RT-PCR方法检测了Mock细胞,wt-7721细胞,Δc-7721细胞中整合蛋白β1亚基的mRNA水平,两种方法结果均显示整合蛋白β1亚基的mRNA水平无显著差别。进一步确认了GnT-Ⅴ过表达对整合蛋白β1亚基的调节机制是在转录后水平。应用同位素脉冲追踪实验(Pulse-chase),分析了整合蛋白β1的稳定性。结果证明,wt-7721细胞中整合蛋白β1亚基降解变慢,半衰期16小时左右;而Δc-7721细胞中的整合蛋白β1亚基半衰期不到3小时;Mock细胞中的整合蛋白β1亚基半衰期10小时左右。凝集素IP实验结果表明:wt-7721细胞中整合蛋白β1的N-糖链呈多天线且GlcNAcβ1,6分支增加;Δc-7721细胞中整合蛋白β1的N-糖链呈高甘露糖型。wt-7721细胞中整合蛋白β1的N-糖链GlcNAcβ1,6分支增加与其蛋白的稳定性增加一致,说明整合蛋白β1的N-糖链GlcNAcβ1,6分支可延长其蛋白的半寿期:Δc-7721细胞由于ΔcGnT-Ⅴ的转入使内源性GnT-Ⅴ的酶活性降低,导致整合蛋白β1的N-糖链不能进一步加工成熟,其携带的N-糖链停留在高甘露糖型的不成熟状态,然后被蛋白酶体降解。上述实验结果表明GnT-Ⅴ对整合蛋白β1的上调是由于N-糖链GlcNAcβ1,6分支加强其蛋白的稳定性,与GnT-Ⅴ的催化活性密切相关。Δc-7721由于缺少GnT-Ⅴ活性,导致其整合蛋白β1的稳定性下降。
     为了阐明糖基转移酶的过表达使细胞膜上粘附分子蛋白糖链结构类型的改变是否能够调节信号转导强度,从而影响细胞的生物学行为,本文进一步研究了N-糖链分支数改变的整合蛋白β1对其介导的信号分子表达及磷酸化水平变化及其对肝癌细胞侵袭、迁移及抗凋亡能力的影响。结果发现,wt-7721中GnT-Ⅴ的过表达导致细胞迁移与侵袭能力增强是由于整合蛋白β1介导细胞—ECM相互作用,FAK蛋白激酶活性被持续激活;PTEN的蛋白水平降低也能刺激PI3-K/Akt途径,增加抗凋亡能力。过表达无催化活性的ΔcGnT8-Ⅴ的Δc-7721细胞PTEN的蛋白水
    平明显上调,而FAK蛋白激酶活性、PI3-K/Akt途径被抑制,细胞侵袭与迁移能力下降很多,这可能为今后的分子干预治疗寻找新的靶分子提供研究基础。
Malignant behaviors in transformed cells and human tumors such as migration and invasion are highly associated with the significant increase of asparagine-linked glycans (N-glycans) containing GlcNAcβ1,6 branching. The β1-6 branching of carbohydrates is the result of β1-6 N-acetylglucosaminyltransferase V , a trans Golgi enzyme encoded by the Mgat5 (mannoside acetylglucosaminyltransferase 5) gene, which adds N-acetylglucosamine (GlcNAc) to the mannose of the trimannosyl core in a β1-6 linkage. Results from recent studies showed the expression of β1,6-GlcNAc branched N-linked oligosaccharides in human mammary, colon, hepatic, and glial tumors and confirm the notion that the GlcNAcβ1,6 branched structure acquires the properties of cancer invasion and metastasis. Therefore, GnT-V was taken as one of the most important glycosyltransferases in tumor growth and metastasis . Integrins are composed of a and β subunits, which are all major carriers of N-glycans .Changes in N-glycans of these integrins have the key effects on cell-cell and cell-extracellular matrix (ECM) interactions.
    Reportedly, the minimal catalytic domain of GnT-V was existed in its carboxyl -terminus, and deletion of as few as 4-8 amino acids from its carboxyl-terminus destroys its catalytic activity .In this study, an enzymatic inactive mutant of GnT-V (AcGnT-V) was constructed. Positive (pcDNA-wtGnT-V or pcDNA3-AcGnT-V) and negative (empty vector) clones were selected, and transfectants with higher expression levels of wt- or Ac- GnT-V were used for the experiments described herein. The transfectants from pcDNA3, pcDNA3-wtGnT-V and pcDNA3-AcGnT-V were designated as Mock, wt-7721 and Ac-7721 cells, respectively. We investigated the integrin β1 expression pattern in the Mock, wt-7721 and Ac-7721 cells. Our results showed that integrin β1 was increased in wt-7721 cells compared with Mock cells, while decreased in Ac-7721 cells .Integrin β1 in AcGnT-V transfectants (Ac-7721) showed attenuation of the number of GlcNAcβ1,6 branching, whereas those in
    wtGnT-V transfectants (wt-7721) presented a GlcNAcβ1,6-rich pattern. High integrin β1 expression was observed in wt-7721 compared with Mock cells ( 7721 cell transfected with the vector pcDNA3), while transfection of AcGnT-V decreased the integrin β1, despite of no significant changes on integrin β1 mRNA level in these cell lines. Pulse-chase experiment showed that Integrin β1 in Ac-7721 was prone to quick degradation and its half-life was less than 3 h, on the contrary, the alleviating degradation of β1 subunit was observed in wt-7721 where the β1 subunit half-life was about 16 h, meanwhile, the degradation rate of β1 subunit in Mock cells was in between, about 10h.
    More effective in promoting cell migration toward fibronectin and invasion through Matrigel was observed in wt-7721 while this was almost suppressed in Ac-7721. In wt-7721 cells, the total level of PKB and FAK did not change, but the levels of p-PKB Ser473,p-GSK3-β Ser9 and p-FAK were significantly increased; On the contrary,in Ac-7721 cells, the levels of p-PKB Ser473, p-GSK3-p- Ser9 and p-FAK levels were markedly decreased.Our results suggest that the addition of GlcNAcβ1,6 branching caused more fully glycosylated mature form on integrin piand inhibited β1 protein degradation; on the other hand,changes in N-linked glycosylation caused by A cGnT-V directed degradation of β1 integrin and subsequently inhibited cell migration and invasion. Glycosylation caused by GnT-V directs integrin β1 stability and more delivery to plasma membrane, subsequently promotes FN-based cell migration and invasion. Thus, our findings support the notion that GnT-V up-regulates β1 integrin preferably through enhancing its half-life in the enzymatic activity-dependent manner.
引文
[1] Sutherlin ME, Nishimori I, Caffrey T, Bennett EP, Hassan H, Mandel U, Mack D, Iwamura T, Clausen H, Hollingsworth MA. Expression of three UDP-N-acetyl-alpha-D-galactosamine: polypeptide GalNAc N-acetylgalactosaminyltransferases in adenocarcinoma cell lines [J]. Cancer Res, 1997, 57:4744-4748.
    
    [2] Fukuta K, Abe R, Yokomatsu T, Minowa MT,Takeuchi M, Asanagi M, Makino T. The widespread effect of beta 1,4-galactosyltransferase on N-glycan processing[J].Arch Biochem Biophys,2001,392: 79-86.
    
    [3] Fukuda M. Possible roles of tumor-associated carbohydrate antigens [J].CancerRes,1996,56:2237-2244.
    
    [4] Kannagi R. Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer[J]. Glycoconj J, 1997 14 :577-584.
    
    [5] Matsuo I, Ito Y. Synthesis of an octamannosyled glycan chain, the key oligosaccharide structure in ER-associated degradation[J]. Carbohydr Res, 2003, 338:2163-2168.
    
    [6] Gridley JJ, Osborn HMI: Recent advances in the construction of P-D-mannose and β-D-mannosamine linkage [J]. J Chem Soc Perkin Trans 1, 2000, 10:1471-1491.
    
    [7] Zhang Y, Zhang XY,Liu F,Qi HL,Chen HL.The role of terminal sugar residues of surface glycans in the metastatic potential of human hepatocarcinoma[J].J Cancer Res Clin Oncol, 2002,128:617-620.
    
    [8] Ito H, Hiraiwa N, Akamatsu S, Tachikawa T, Kasai Y, Akiyama S, Ito K, Takagi H, Kannagi R. Altered mRNA expression of specific molecular species of fucosyl- and sialyl-transferases in human colorectal cancer tissues[J]. Int J Cancer, 1997, 71 : 556- 564.
    
    [9] Alverez K, Haswell C, St Clair M, Perng GS, Shorebah M, Pierce M, Fregien N. Sequences of the mouse N-acetylglucosaminyltransferase V (Mgat5) mRNA and an mRNA expressed by an Mgat5-deficient cell line [J]. Glycobiology, 2002, 12(7):389-394.
    
    [10] Chen, L, Zhang, W, Fregien, N, Pierce, M. The her-2/neu oncogene stimulates the transcription of N-acetylglucosaminyl transferase V and expression of its cell surface oligosaccharide products[J]. Oncogene, 1998, 17:2087-2093.
    
    [11] Yanagi M, Aoyagi Y, Suda T, Mita Y, Asakura H. N-Acetylglucosaminyltransferase V as a possible aid for the evaluation of tumor invasiveness in patients with hepatocellular carcinoma[J]. Journal of Gastroenterol Hepatology, 2001, 16(11): 1282-1289.
    
    [12] Ito Y, Miyoshi E, Sakon M, Takeda T, Noda K,Tsujimoto M, Ito S, Honda H, Takemura F, Wakasa K, Monden M, Matsuura N, Taniguchi N. Elevated expression of UDP-N-acetylglucosamine: alphamannoside beta 1,6 N-acetylglucosaminyltransferase is an early event in hepatocarcinogenesis[J].Int J Cancer , 2001,91: 631-637.
    
    [13] Couldrey C, Green JE.Metastases: the glycan connection[J]. Breast Cancer Research ,2000, 2(5):321-323.
    
    [14] Howe A, Aplin AE, Alahari SK, Juliano RL. Integrin signaling and cell growth control[J]. Curr Opin Cell Biol, 1998, 10: 220-231.
    
    [15] Giancotti FG , Ruoslahti E. Integrin signaling[J]. Science, 1999, 285: 1028-1032.
    
    [16] Harris ES, Mclntyre TM, Prescott SM, Zimmerman GA. The leukocyte integrins[J]. J Biol Chem, 2000, 275: 23409-23412.
    
    [17] Zheng MZ,Fang H, Hakomori S. Functional Role of N-Glycosylation in a5pl Integrin Receptor [J]. J Biol Chem, 1994, 269:12325-12331.
    
    [18] Guo HB, Lee I, Kamar M, Akiyama SK, Pierce M. Aberrant N-glycosylation of betal integrin causes reduced alpha5betal integrin clustering and stimulates cell migration[J]. Cancer Research, 2002, 62(23):6837-6845.
    
    [19] Saito T, Miyoshi E, Sasai K, Nakano N, Eguchi H, Honke K, Taniguchi N.A secreted type of β 1,6-N-acetylglucosaminyltransferase-V (GnT-V) induces tumor angiogenesis without mediation of glycosylation[J]. J Biol Chem, 2002, 277: 17002-17008.
    
    [20] Guo HB, Zhang Y, Chen HL. Relationship between metastasis-associated phenotypes and N-glycan structure of surface glycoproteins in human hepatocarcinoma cells [J]. J Cancer Res Clin Oncol, 2001, 127: 231-236.
    
    [21] Wang LY, Chen KL, Su JM, Jin JW, Chen HL, Zha XL. GnT-V overexpression in human hepatocarcinoma cells affects its migration and expression of cell adhesion molecules[J]. Shi Yan Sheng Wu Xue Bao, 2001, 34(3):219-225.
    
    [22] Korczak B, Le T, Elowe S, Datti A, Dennis JW. Minimal catalytic domain of N-acetylglucosaminyltransferase V [J]. Glycobiology, 2000, 10: 595-599,.
    [1] Miyoshi E, Nishikawa A, Ihara Y, Gu J, Sugiyama T, Hayashi N, Fusamoto H, Kamada T, Taniguchi N. N-acetylglucosaminyltransferase Ⅲ and Ⅴ messenger RNA levels in LEC rats during hepatocarcinogenesis [J]. Cancer Res, 1993, 53: 3899-3902.
    [2] Kleane R, Berger EC. The molucular and cell biology of glycosyl transferase [J]. Biochem Biophys Acta, 1993, 1154: 283-325.
    [3] Nishikawa A, Gu JG, Taniguchi N. Determination of N-acetylglucosaminyl transferase Ⅲ, Ⅳ and Ⅴ in normal and hepatoma tissue of rats[J]. Biochimi Biophys Acta, 1990, 1035: 313-318.
    [4] Cummings RD, Komfeld S. Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins[J]. J Biol Chem, 1982, 257: 11230-11234.
    [5] Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS. Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis [J]. Science,1987, 236:582-585.
    
    [6] Pierce M, Arango J. Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri- and tetraantennary glycopeptides containing [GlcNAc-beta (l,6)Man-alpha (1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells[J]. J Biol Chem, 1986,261: 10772-10777.
    
    [7] Demetriou M, Nabi IR, Coppolino M, Dedhar S, Dennis JW. Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V [J]. J Cell Biol,1995, 130:383-392.
    
    [8] Kang R, Saito H, Ihara Y, Miyoshi E, Koyama N, Sheng Y, Taniguchi N. Transcriptional regulation of the N-acetylglucosaminyltransferase V gene in human bile duct carcinoma cells (HuCC-T1) is mediated by Ets-l[J]. J Biol Chem,1996, 271: 26706-26712.
    
    [9] Yamamoto H, Swoger J, Greene S, Saito T, Hurh J, Sweeley C, Leestma J, Mkrdichian E, Cerullo L, Nishikawa A, Ihara Y, Taniguchi N, Moskal JR. Betal,6-N-acetylglucosamine-bearing N-glycans in human gliomas: Implications for a role in regulating invasivity[J]. Cancer Res, 2000, 60:134-142.
    
    [10] Pochec E, Litynska A, Amoresano A, Casbarra A. Glycosylation profile of integrin alpha 3 beta 1 changes with melanoma progression [J]. Biochim Biophys Acta, 2003, 1643: 113-123.
    
    [11] Guo HB, Zhang Y,Chen HL. Relationship between metastasis-associated phenotypes and N-glycan structure of surface glycoproteins in human hepatocarcinoma cells [J]. J Cancer Res Clin Oncol, 2001, 127: 231-236.
    
    [12] Sasai K, Ikeda Y, Tsuda T, Ihara H, Korekane H, Shiota K, Taniguchi N. The Critical Role of the Stem Region as a Functional Domain Responsible for the Oligomerization and Golgi Localization of N-Acetylglucosaminyltransferase V [J] .J Biol Chem, 2000, 276:759-765.
    
    [13] Korczak, B., Le, T., Elowe, S., Datti, A., and Dennis, J. W. Minimal catalytic domain of N-acetylglucosaminyltransferase V [J]. Glycobiology, 2000,10: 595-599.
    
    [14] Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A Laboratory Mannual [ M ] . New York: Cold Spring Harbour Press, 1989:2nd ed.
    
    [15] Guo HB, Liu F, Chen HL. Increased susceptibility to apoptosis of human hepatocarcinoma cells transfected with antisense N-acetylglucosaminyltransferase V cDNA [J]. Biochem Biophys Res Commun, 1999, 264: 509-517.
    
    [16] Shibuya N, Goldstein IJ, Van Damme EJ,Peumans WJ. Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb [J]. J Biol Chem, 1988,263:728-734.
    
    [17] Ihara S, Miyoshi E, Ko JH, Murata K, Nakahara S, Honke K, Dickson RB, Lin CY,Taniguchi N. Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1-6 GlcNAc branching[J]. J Biol Chem, 2002, 277: 16960-16967.
    
    [18] Guo HB, Lee I, Kamar M, Akiyama SK,Pierce M. Aberrant N-glycosylation of beta1 integrin causes reduced alpha5betal integrin clustering and stimulates cell migration [J]. Cancer Res, 2002, 62: 6837-6845.
    
    [19] Heino J, Ignotz RA, Hemler ME, Crouse C, Massague J. Regulation of cell adhesion receptors by transforming growth factor-p. Concomitant regulation of integrins that share a common β1 subunit [J]. J Biol Chem, 1989, 264: 380-388.
    
    [20] Bellis SL, Newman E, Friedman EA. Steps in integrin β1-chain glycosylation mediated by TGFβ1 signaling through Ras[J]. J Cell Physiol, 1999, 181: 33-44.
    
    [21] Yan Z, Chen M, Perucho M, Friedman E. Oncogenic Ki-ras but not oncogenic Ha-ras blocks integrin β1-chain maturation in colon epithelial cells [J]. J Biol Chem, 1997, 272: 30928-30936.
    
    [22] Gu J, Taniguchi N. Regulation of integrin functions by N-glycans [J]. Glycoconj J, 2004, 21:9-15.
    
    [23] Schluter OM, Xu W, Malenka RC. Alternative N-terminal domains of PSD-95 and SAP97 govern activity-dependent regulation of synaptic AMPA receptor function [J] .Neuron, 2006,51(1):99-111.
    
    [24] Ogawara K, Kuldo JM, Oosterhuis K, Kroesen BJ, Rots MG, Trautwein C, Kimura T, Haisma HJ, Molema G. Functional inhibition of NF-kappaB signal transduction in alphavbeta3 integrin expressing endothelial cells by using RGD-PEG-modified adenovirus with a mutant IkappaB gene[J]. Arthritis Res Ther. 2006;8(1):R32. Epub 2006 Jan 13.
    [1] Guo HB, Lee I, Kamar M, Akiyama SK, Pierce M. Aberrant N-glycosylation of betal integrin causes reduced alpha5betal integrin clustering and stimulates cell migration [J]. CancerRes, 2002, 62: 6837-6845.
    [2] Guo P, Zhang Y, Zhao JH, Wang LY, Guo HB, Zhang XY, Chen HL. Regulation on the expression and N-glycosylation of integrins by N-acetylglucosaminyltransferase V [J]. Biochem Biophys Res Commun, 2003, 310: 619-626.
    [3] Ihara S, Miyoshi E, Ko JH, Murata K, Nakahara S, Honke K, Dickson RB, Lin CY, Taniguchi N. Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1-6 GlcNAc branching[J]. J Biol Chem, 2002, 277: 16960-16967.
    [4] Yoshida Y, Tokunaga F, Chiba T, Iwai K, Tanaka K, Tai T. Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains[J]. J Biol Chem, 2003, 278: 43877-43884.
    [5] Parodi AJ. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation [J]. Biochem J, 2000, 348: 1-13.
    [6] Helenius A, Aebi M. Intracellular functions of N-linked glycans[J]. Science, 2001,291:2364-2369.
    
    [7] Wujek P, Kida E, Walus M, Wisniewski KE, Golabek AA. N-glycosylation is crucial for folding, trafficking, and stability of human tripeptidyl-peptidase I [J]. J Biol Chem,2004, 279:12827-12839.
    
    [8] Hernandez-Pigeon H, Laurent G, Humbert O, Salles B, Lautier D. Degadration of mismatch repair hMutSalpha heterodimer by the ubiquitin-proteasome pathway[J]. FEBS Lett, 2004, 562 (1-3):40-44.
    
    [9] Moss L, Prakobpholm A, Wiedmann TW, Fisher SJ, Damsky CH. Glycosylation of human trophoblast integrins is stage and cell-type specific[J]. Glycobiology, 1994,4: 567-575.
    
    [10] Kim LT, Ishiharam S, Lee CC. Akiyama SK, Yamada KM, Grinnell F. Altered glycosylation and cell surface expression of beta 1 integrin receptors during keratinocyte activation[J]. J Cell Sci,1992, 103: 743-753.
    
    [11] Veiga SS, Chammas R, Cella N, Brentani RR. Glycosylation of beta-1 integrins in B16-F10 mouse melanoma cells as determinant of differential binding and acquisition of biological activity [J]. Int J Cancer, 1995, 61:420-424.
    
    [12] Yan Z, Chen M, Perucho M, Friedman E. Oncogenic Ki-ras but not oncogenic Ha-ras blocks integrin betal-chain maturation in colon epithelial cells [J]. J Biol Chem, 1997, 272:30928-30936.
    
    [13] Howe A, Aplin AE, Alahari SK, Juliano RL. Integrin signaling and cell growth control [J]. Curr Opin Cell Biol, 1998, 10: 220-231.
    
    [14] Marques C, Pereira P, Taylor A, Liang JN, Reddy VN, Szweda LI, Shang F.Ubiquitin-dependent lysosomal degradation of the HNE-modified proteins in lens epithelial cells[J]. Faseb J, 2004,18 (12):1424-1426.
    
    [15] Gu J and Taniguchi N. Regulation of integrin functions by N-glycans [J]. Glycoconj J,2004, 21: 9-15.
    
    [16] Leppa S, Heino J, Jalkanen M. Increased glycosylation of beta 1 integrins affects the interaction of transformed S115 mammary epithelial cells with laminin-1[J]. Cell Growth Differ, 1995, 6: 853-861.
    
    [17] Ringeard S, Harb J, Gautier F, Menanteau J, Meflah K. Altered glycosylation of alpha(s) beta 1 integrins from rat colon carcinoma cells decreases their interaction with fibronectin [J]. J Cell Biochem, 1996,62: 40-49.
    
    [18] Semel AC, Seales EC, Singhal A, Eklund EA, Colley KJ, Bellis SL. Hyposialylation of integrins stimulates the activity of myeloid fibronectin receptors [J]. J Biol Chem, 2002, 277:32830-32836.
    
    [19] Dennis JW,Granovsky M,Warren CE. Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis [J]. Bioessays, 1999,21: 412-421.
    
    [20] Heino J, Ignotz RA, Hemler ME, Crouse C, Massague J. Regulation of cell adhesion receptors by transforming growth factor-p. Concomitant regulation of integrins that share a common β1 subunit [J]. J Biol Chem, 1989, 264: 380-388.
    
    [21] Shibuya N, Goldstein IJ, Van Damme EJ, Peumans WJ. Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb [J]. J Biol Chem, 1988,263: 728-734.
    
    [22] Buck TM. Eledge J , Skach WR. Evidence for stabilization of aquaporin-2 folding mutants by N-linked glycosylation in endoplasmic reticulum [J].Am J Physiol Cell Physiol, 2004,287:C1292-C1299.
    
    [23] Welchman RL, Gordon C, Mayer RJ. Ubiquitin and ubiquitin-like proteins as multifunctional signals [J]. Nat Rev Mol Cell Biol, 2005, 6 (8):599-609.
    
    [24] Ihara S, Miyoshi E, Nakahara S, Sakiyama H, Ihara H, Akinaga A, Honke K, Dickson RB, Lin CY. Taniguchi N. Addition of beta1-6 GlcNAc branching to the oligosaccharide attached to Asn 772 in the serine protease domain of matriptase plays a pivotal role in its stability and resistance against trypsin [J]. Glycobiology,2004,14: 139-146.
    
    [25] Ito Y, Akinaga A, Yamanaka K, Nakagawa T, Kondo A, Dickson R,Lin CY, Miyauchi A, Taniguchi N, Miyoshi E. Co-expression of matriptase and N-acetylglucosaminyltransferase V in thyroid cancer tissues—its possible role in prolonged stability in vivo by aberrant glycosylation [J].Glycobiology, 2006, 16:368-374.
    
    [23] Nivedita M, Sharmistha S, Thirumalai NC,Ramya and Avadhesha S. N-linked oligosaccharides as outfitters for glycoprotein folding, form and function [J].TRENDS in Biochemical Sciences,2006,31: 156-163.
    
    [24] Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI. U box proteins as a new family of ubiquitin-protein ligases [J]. J Biol Chem, 2001, 276 (35):33111-33120.
    
    [28] Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, Ito Y, Matsuoka K, Yoshida M, Tanaka K, Tai T. E3 ubiquitin ligase that recognizes sugar chains[J]. Nature, 2002, 418:438-442.
    [29] Yoshida Y, Adachi E, Fukiya K, Iwai K, Tanaka K. Glycoprotein-specific ubiquitin ligases recognize N-glycans in unfolded substrates[J]. EMBO Rep, 2005, 6: 239-244.
    [1] Lukashev ME, Werb Z. ECM signalling: orchestrating cell behaviour and misbehaviour[J]. Trends Cell Biol, 1998, 8: 437-441.
    
    [2] Giancotti FG, Ruoslahti E. Integrin signaling[J]. Science 1999, 285: 1028-1032.
    
    [3] Assoian, R.K. Anchorage-dependent cell cycle progression[J]. J Cell Biol ,1997, 136:1-4.
    
    [4] Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis[J]. J Cell Biol, 1994, 124: 619-626.
    
    [5] Schwartz MA. Integrin signaling revisited [J]. Trends Cell Biol, 2001, 11: 466-470.
    
    [6] Richardson A, Parsons J T.Signaling transduction through integrins,a central role for focal adhesion kinase? [J]. BioEssay, 1995,17:229-236.
    
    [7] Hanks S K, Polte T R.Signalling through focal adhension kinase[J]. BioEssay, 1997,19:137-145.
    
    [8] Richardson A, Malik RK, Hildebrand JD, Parsons JT. Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation[J]. Mol Cell Biol, 1997, 17: 6906-6914.
    
    [9] Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD: FAK integrates growth-factor and integrin signals to promote cell migration[J]. Nat Cell Biol, 2000, 2:249-256.
    
    [10] Myers MP,Stolarov JP,Eng C,Li J,Wang SI.P-TEN,the tumor suppressor from human 10q23,is a dual-specificity phosphatase[J].Proc Natl Acad Sci USA,1997,94:9052-9057.
    
    [11] Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer [J]. Science, 1997, 275:1943-1947.
    
    [12] Salvesen HB, Stefansson I, Kalvenes MB, Das S, Akslen LA. Loss of PTEN expression is associated with metastatic disease in patients with endometrial carcinoma [J].Cancer,2002, 94:2185-2191.
    
    [13] Pastorino JG,Tafani M,Farber JL.Tumor necrosis factor induces phosphorylation and translocation of BAD through a phosphatidylinositide-3-OH kinase-dependent pathway[J].J Biol Chem, 1999,274:19411 -19416.
    
    [14] Frisch S,Reed J C.Regulation of cell death protease caspase-9 by phosphorylation[J].Science,1998,282:1318-1321.
    
    [15] Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase[J]. Proc Natl Acad Sci USA, 1998, 95:11211-11216.
    
    [16] Zheng MZ,Fang H, Hakomori S. Functional Role of N-Glycosylation in a5β1 Integrin Receptor[J]. J Biol Chem, 1994, 269:12325-12331.
    
    [17] Yamamoto H, Swoger J, Greene S, Saito T, Hurh J, Sweeley C, Leestma J, Mkrdichian E, Cerullo L, Nishikawa A, Ihara Y, Taniguchi N, Moskal JR. Betal,6-N-acetylglucosamine-bearing N-glycans in human gliomas: Implications for a role in regulating invasivity[J]. Cancer Res, 2000, 60:134-142.
    
    [18] Liu YK, Nemoto A, Feng Y, Uemura T. The binding ability to matrix proteins and the inhibitory effects on cell adhesion of synthetic peptides derived from a conserved sequence of integrins[J].J Biochem, 1997,121: 961-968.
    
    [19] Guo HB, Lee I, Kamar M, Akiyama SK, Pierce M. Aberrant N-glycosylation of betal integrin causes reduced alpha5 betal integrin clustering and stimulates cell migration [J]. Cancer Res, 2002, 62: 6837-6845.
    
    [20] Giancotti FG. Complexity and specificity of integrin signaling[J]. Nat Cell Biol, 2000, 2:E13-E14.
    
    [21] Schwartz MA. Integrin signaling revisited[J]. Trends Cell Biol, 2001, 11(12):466-470.
    
    [22] Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: a hard Akt to follow[J]. Trends Biochem Sci, 2001, 26 (11):657-664.
    
    [23] Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk[J]. Nat Rev Mol Cell Biol, 2001, 2(11):793-805.
    
    [24] Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy [J]. Cell Signal, 2002, 14 (5):381-395.
    
    [25] Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E, Slingerland JM. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest [J]. Nat Med, 2002, 8(10):1153-1160.
    
    [26] Gates RE,King LE J,Hanks SK.Potential role for focal adhesion kinase in migrating and proliferating keratinocytes near epidermal wounds and in culture[J].Cell Grow Diff ,1994,5:891-899.
    
    [27] Alrutz MA, Isberg RR: Involvement of focal adhesion kinase in invasin-mediated uptake[J], Proc Natl Acad Sci USA, 1998,95: 13658-13663.
    
    [28] Schlaepfer DD, Mitra SK, Ilic D. Control of motile and invasive cell phenotypes by focal adhesion kinase[J]. Biochimica et Biophysica Acta , 2004,1692 : 77- 102.
    
    [29] Arnaout MA, Goodman SL, Xiong JP. Coming to grips with integrin binding to ligands [J]. Curr Opin Cell Biol, 2002, 14: 641-651.
    
    [30] Schlaepfer DD and Mitra SK.Multiple connections link FAK to cell motility and invasion[J]. Current Opinion in Genetics & Development, 2004, 14:92-101.
    
    [31] Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD: FAK integrates growth-factor and integrin signals to promote cell migration[J]. Nat Cell Biol, 2000, 2:249-256.
    
    [32] Chen HC, Appeddu PA, Isoda H, Guan JL. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase[J]. J Biol Chem, 1996, 271 (42):26329-26334.
    
    [33] Alessi DR, Cohen P. Mechanism of activation and function of protein kinase B[J]. Curr Opin Genet Dev, 1998, 8: 55-62.
    
    [34] Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M, Cron P, Cohen P, Lucocq JM, Hemmings BA. Role of translocation in the activation and function of protein kinase B[J]. J Biol Chem, 1997, 272: 31515-31524.
    
    [35] Lynch ED, Ostermeyer EA, Lee MK, Arena JF, Ji H, Dann J, Swisshelm K, Suchard D, MacLeod PM, Kvinnsland S, Gjertsen BT, Heimdal K, Lubs H, Moller P, King MC. Inherited mutations in PTEN that are associated with breast cancer, cowden disease, and juvenile polyposis[J]. Am J Hum Genet, 1997, 61 (6):1254-1260.
    
    [36] Bonneau D, Longy M. Mutations of the human PTEN gene [J]. Hum Mutat,2000, 16 (2): 109-122.
    
    [37] Hemmings BA. PtdIns (3,4,5)P3 gets its message across[J]. Science, 1997, 277: 534.
    
    [38] Datta K, Franke TF, Chan TO, Makris A, Yang SI, Kaplan DR, Morrison DK, Golemis EA, Tsichlis PN. AH/PH domain-mediated interaction between Akt molecules and its potential role in Akt regulation [J]. Mol Cell Biol, 1995, 15: 2304-2310.
    
    [39] Hu TH, Huang CC, Lin PR, Chang HW, Ger LP, Lin YW, Changchien CS, Lee CM, Tai MH. Expression and prognostic role of tumor suppressor gene PTEN/MMACl/TEPl in hepatocellular carcinoma [J]. Cancer, 2003, 97 (8): 1929-1940.
    
    [40] Yao YJ, Ping XL, Zhang H, Chen FF, Lee PK, Ahsan H, Chen CJ, Lee PH, Peacocke M, Santella RM, Tsou HC. PTEN/MMAC1 mutations in hepatocellular carcinomas [J]. Oncogene, 1999, 18 (20):3181-3185.
    [1] Brockhausen I, Narashimhan I, Schachter H. The biosynthesis of highly branched N-glycan: studies on the sequential pathway and functional role of N-acetylglucosaminyl transferase Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Ⅴ [J]. Biochimie,1988, 70: 1521-1533.
    [2] Kudo T, Ikehara Y, Togayachi A, Morozumi K, Watanabe M, Nakamura M, Nishihara S, Narimatsu H. Up-regulation of a set of glycosyltransferase genes in human colorectal cancer[J]. Lab Invest. 1998, 78: 797-811.
    [3] Dickson RB, Lin CY, Taniguchi N. Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1-6 GlcNAc branching[J]. J Biol Chem, 2002, 277: 16960-16967.
    [4] Taniguchi N, Miyoshi E, Ko JH, Ikeda Y, Ihara Y. Implication of N-acetyl-glucosaminyltransferases Ⅲ and Ⅴ in cancer: gene regulation and signaling mechanism[J]. Biochim Biophys Acta, 1999, 1455: 287-300.
    [5] Guo HB, Liu F, Zhao JH, Chen HL. Down-regulation of N-acetylglucosaminyl transferase V by tumorigenesis-or metastasissuppressor gene and its relation to metastatic potential of human hepatocarcinoma cells [J]. J Cell Biochem, 2000, 79: 370-385.
    [6] Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS. Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis[J]. Science, 1987, 236: 582-585.
    [7] Fernandes B, Sagman U, Auger M. β 1,6 branched oligosaccharides as a marker of tumor progression in human breast and neoplasia[J]. Cancer Res, 1991, 51: 718-723.
    [8] Yao M, Zhou DP, Jiang SM. Elevated activity of N-acetylglucosaminyltransferase V in human hepatocellular carcinoma[J]. J Cancer Clin Oncol, 1998, 124: 27-30.
    [9] Murata K, Miyoshi E, Kameyama M, Ishikawa O, Kabuto T, Sasaki Y, Hiratsuka M, Ohigashi H, Ishiguro S, Ito S, Honda H, Takemura F, Taniguchi N, Imaoka S. Expression of N-acetylglucosaminyltransferase V in colorectal cancer correlates with metastasis and poor prognosis [J]. Clin Cancer Res, 2000, 6: 1772-1777.
    [10] Korczak B, Le T, Elowe S, Datti A, Dennis JW. Minimal catalytic domain of N-acetylglucosaminyltransferase V[J]. Glycobiology, 2000, 10: 595-599.
    [11] Sasai K, Ikeda Y, Tsuda T, Ihara H, Korekane H, Shiota K, Taniguchi N. The Critical Role of the Stem Region as a Functional Domain Responsible for the Oligomerization and Golgi Localization of N-Acetylglucosaminyltransferase V[J]. J Biol Chem, 2001, 276: 759-765.
    [12] Saito T, Miyoshi E, Sasai K, Nakano N, Eguchi H, Honke K, Taniguchi N. A secreted type of β 1, 6-N-acetylglucosaminyltransferase-V (GnT-V) induces tumor angiogenesis without mediation of glycosylation[J]. J Biol Chem, 2002, 277: 17002-17008.
    [13] 汤钊猷.肝癌转移复发的基础与临床[M].上海:上海科学教育出版社,2003:166-167.
    [14] Gu J, Nishikawa A, Tsuruoka N, Ohno M, Yamaguchi N, Kangawa K, Taniguchi N, Purification and characterization of UDP-N-acetylglucosamine: alpha-6-D-mannoside beta 1-6Nacetylglucosaminyltransferase(N-acetylglucosaminyltransferase V) from a human lung cancer cell line[J]. J Biochem, 1993, 113: 614-619.
    [15] Barillari G, Albonici L, Franzese O, Modesti A, Liberati F, Barillari P, Ensoli B, Manzari V, Santeusanio G. The basic residues of placenta growth factor type 2 retrieve sequestered angiogenic factors into a soluble form: implications for tumor angiogenesis[J]. Am J Pathol, 1998, 152: 1161-1166.
    [16] Kang, R. , Saito, H. , Ihara, Y. , Miyoshi, E. , Koyama, N. , Sheng, Y. , and Taniguchi, N. Transcriptional regulation of the N-acetylglucosaminyltransferase V gene in human bile duct carcinoma cells (HuCC-T1) is mediated by Ets-1[J]. J Biol Chem, 1996, 271: 26706-26712.
    [17] Ko JH, Miyoshi E, Noda K, Ekuni A, Kang R, Ikeda Y, Taniguchi N. Regulation of the GnT-V promoter by transcription factor Ets-1 in various cancer cell lines [J]. J Biol Chem, 1999, 274: 22941-22948.
    [18] Handerson T, Pawelek JM. Betal, 6-branched oligosaccharides and coarse vesicles: a common, pervasive phenotype in melanoma and other human cancers[J]. Cancer Res, 2003,63(17):5363-5369.
    
    [19] Demetriou M, Nabi IR, Coppolino M, Dedhar S, Dennis JW. Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V[J]. J Cell Biol,1995, 130:383-392
    [1] Dwek RA. Glycobiology "towards understanding the function of sugars" [J]. Biochem Soc Trans, 1995, 23: 1 - 25.
    
    [2] Taylor ME, Drickamer K. In Introduction to Glycobiology [ M ] .England: Oxford University Press, 2003 : 15-109.
    
    [3] Varki A. Biological roles of oligosaccharides: All of the theories are correct[J]. Glycobiology, 1993, 3: 97 - 130.
    
    [4] Helenius A. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum[J]. Mol Biol Cell,1994,5: 253 - 265.
    
    [5] Hurtley SM,Helenius A. Protein oligomerization in the endoplasmic reticulum[J]. Annu Rev Cell Biol,1989,5: 277 - 307.
    
    [6] Zheng MZ,Fang H, Hakomori S. Functional Role of N-Glycosylation in a5 3 1 Integrin Receptor[J]. J Biol Chem, 1994,269:12325-12331.
    
    [7] Wujek P, Kida E, Walus M, Wisniewski KE, Golabek AA. N-glycosylation is crucial for folding, trafficking, and stability of human tripeptidyl-peptidase I[J]. J Biol Chem, 2004,279:12827 - 12839.
    
    [8] Suzuki, T. Kitajima K, Inoue S, Inoue Y. N-glycosylation/deglycosylation as a mechanism for the post-translational modification/remodification of proteins[J]. Glycoconj J,1995,12:183 - 193.
    
    [9] Taylor SC, Thibault P, Tessier DC, Bergeron JJ, Thomas DY. Glycopeptide specificity of the secretory protein folding sensor UDP-glucose glycoprotein:glucosyltransferase[J]. EMBO Rep, 2003, 4:405-411.
    
    [10] Ruoslahti E. Integrin signaling and matrix assembly [J]. Tumour Biol,1996,17: 117- 124.
    
    [11] Asada M, Furukawa K, Segawa K, Endo T, Kobata A. Increased expression of highly branched N-glycans at cell surface is correlated with the malignant phenotypes of mouse tumor cells[J]. Cancer Res, 1997, 57:1073 - 1080.
    
    [12] Guo HB, Lee I, Kamar M, Akiyama SK, Pierce M. Aberrant N-glycosylation of betal integrin causes reduced alpha5betal integrin clustering and stimulates cell migration[J]. Cancer Res, 2002,62:6837 - 6845.
    [13] Isaji T, Gu J, Nishiuchi R, Zhao Y, Takahashi M, Miyoshi E, Honke K, Sekiguchi K, Taniguchi N. Introduction of bisecting GlcNAc into integrin alpha 5 beta 1 reduces ligand binding and down-regulates cell adhesion and cell migration[J]. J Biol Chem, 2004,279:19747- 19754.
    
    [14] 陈惠黎.生物大分子的结构与功能[M].上海:上海医科大学出版社, 1999:331-367.
    
    [15] Sitia R, Braakman I. Quality control in the endoplasmic reticulum protein factory [J]. Nature,2003,426:891-894.
    
    [16] Ellgaard L, Helenius A. ER quality control: towards an understanding at the molecular level[J]. Curr Opin Cell Biol ,2001, 13:431-437.
    
    [17] Tatu U, Helenius A. Interactions between newly synthesized glycoproteins, calnexin and a network of resident chaperones in the endoplasmic reticulum[J]. J Cell Biol, 1997, 136:555-565.
    
    [18] Kuznetsov G, Chen LB, Nigam SK. Multiple molecular chaperones complex with misfolded large oligomeric glycoproteins in the endoplasmic reticulum[J]. J Biol Chem ,1997, 272:3057-3063.
    
    [19] Molinari M, Eriksson KK, Calanca V, Galli C, Cresswell P, Michalak M, Helenius A. Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control[J]. Mol Cell, 2004, 13:125-135._
    
    [20] Schrag JD, Procopio DO, Cygler M, Thomas DY, Bergeron JJ. Lectin control of protein folding and sorting in the secretory pathway[J]. Trends Biochem Sci ,2003, 28:49-57.
    
    [21] Parodi AJ. Protein glucosylation and its role in protein folding[J].Annu Rev Biochem, 2000, 69:69-93.
    
    [22] Caramelo JJ, Castro OA, de Prat-Gay G, Parodi AJ. The endoplasmic reticulum glucosyltransferase recognizes nearly native glycoprotein folding intermediates[J]. J Biol Chem ,2004, 279:46280-46285.
    
    [23] Caramelo JJ, Castro OA, Alonso LA, de Prat-Gay G, Parodi AJ. UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates[J]. Proc Natl Acad Sci USA, 2003, 100:86-91.
    
    [24] Hamman BD, Hendershot LM, Johnson AE. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation[J]. Cell, 1998, 92:747-758.
    
    [25] Kim PS, Bole B, Arvan P. Transient aggregation of nascent thyroglobulin in the endoplasmic reticulum: relationship to the molecular chaperone, BiP[J]. J Cell Biol ,1992, 118:541-549.
    
    [26] Gething MJ. Role and regulation of the ER chaperone BiP[J]. Semin Cell Dev Biol ,1999,10:465-472.
    
    [27] Oda Y, Hosokawa N, Wada I, Nagata K. EDEM as an acceptor of terminally misfolded glycoprotein released from calnexin[J]. Science, 2003, 299:1394-1397.
    
    [28] Molinari M, Calanca V, Galli C, Lucca P, Paganetti P. Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle[J]. Science ,2003, 299:1397-1400.
    
    [29] Kleizen B, Braakman I.Protein folding and quality control in the endoplasmic reticulum[J]. Current Opinion in Cell Biology, 2004,16:343 - 349.
    
    [30] Mizushima T, Hirao T, Yoshida Y, Lee SJ, Chiba T, Iwai K, Yamaguchi Y, Kato K, Tsukihara T, Tanaka K. Structural basis of sugar-recognizing ubiquitin ligase[J]. Nat Struct Mol Biol, 2004, 11:365-370.
    
    [31] Yoshida Y, Adachi E, Fukiya K, Iwai K, Tanaka K. Glycoprotein-specific ubiquitin ligases recognize N-glycans in unfolded substrates[J].EMBO Rep,2005, 6:239-244.
    
    [32] Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, Ito Y, Matsuoka K, Yoshida M, Tanaka K, Tai T. E3 ubiquitin ligase that recognizes sugar chains[J]. Nature.2002,418:438-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700