螺旋锥齿轮磨削界面力热耦合与表面性能生成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋锥齿轮是国防、能源、运载、装备制造业及交通等领域中重要装备的关键零件,其精密加工方法广泛采用数控磨削。由于螺旋锥齿轮空间形状和加工过程复杂,其磨削关键技术长期被美国Gleason等公司垄断,我国在近十年也研发出了螺旋锥齿轮磨削机床,但磨削质量的提高一直我国螺旋锥齿轮制造的难点。美国Gleason公司磨齿机加工螺旋锥齿轮可达2级精度,而国内目前螺旋锥齿轮磨削仅能达4-6级精度,易产生磨削表面粗糙度不稳定、磨削烧伤与裂纹等表面质量缺陷。螺旋锥齿轮磨齿质量与磨齿机及磨齿工艺密切相关,提高磨齿机本体精度及认识磨齿机理、实现磨齿参数的最优预控是解决我国螺旋锥齿轮磨削质量问题的根本途径,而我国目前在螺旋锥齿轮磨削机理及工艺参数控制方面的研究尤其缺乏。本论文以提高螺旋锥齿轮磨削表面质量为目的,根据螺旋锥齿轮加工原理与工艺特点,开展螺旋锥齿轮磨削界面力热耦合与表面性能生成机理的研究,主要内容叙述如下。
     螺旋锥齿轮磨削界面力热耦合机理研究。根据螺旋锥齿轮六轴五联动数控加工原理,进行了螺旋锥齿轮磨削调整计算与磨削机理分析,建立了物理意义上的磨削力计算公式,应用单磨粒热模型得出了热量分配比,采用矩形分布热源计算了磨削热流量;采用数值有限元方法建立了螺旋锥齿轮3D单齿模型。在此基础上,运用热传导理论、热弹塑性理论,对螺旋锥齿轮磨削温度场进行了力热耦合的有限元仿真分析,并进行了实验验证。采用PRANDTL-REUSS方法,建立了磨削界面应力应变场本构关系,仿真分析了螺旋锥齿轮不同齿面磨削位置的应力与应变场分布。
     螺旋锥齿轮磨削残余应力及其影响因素研究。结合螺旋锥齿轮啮合原理,运用矢量分析法建立齿面方程,通过“自底向上”的实体建模方法建立了分析螺旋锥齿轮磨削残余应力的实体模型。根据VonMises屈服准则、Mises流动准则和MISO模型建立了齿轮的材料关系模型。按照Gleason接触原理,得出了磨削基本参数的数学模型。基于力热耦合,对螺旋锥齿轮磨削残余应力进行了模拟分析,并进行了实验验证,得出了磨削残余应力随磨削工艺参数变化的规律。
     螺旋锥齿轮磨削表面粗糙度研究。运用空间坐标变换原理,通过构造弧齿锥齿轮展成磨削的齿面坐标系、刀具切削面和磨削啮合方程,建立了磨削齿面的数学模型。根据磨削表面粗糙度的包络形成机理及其影响因素分析,采用齿面网格节点的约束求解法计算磨削加工轨迹;然后,由沿齿高方向的各横向截面上2D理论残留面积高度,得出3D理论残留面积高度,并考虑塑性侧向隆起现象,建立了螺旋锥齿轮磨削表面粗糙度的理论模型,并进行了实验验证,得出了磨削工艺参数对磨削表面粗糙度的影响规律。
     螺旋锥齿轮磨削表层性态实验研究。运用力热耦合机理和位错理论,实验检测与分析了螺旋锥齿轮磨削表层显微硬度、组织的变化规律。通过对螺旋锥齿轮磨削温度、表层显微硬度与组织的检测与分析,得出了产生磨削烧伤的临界条件,获得了磨削烧伤与裂纹的生成规律与影响因素。
     在上述的磨削界面力热耦合与表面性能生成机理研究基础上,进行了螺旋锥齿轮磨削工艺参数优选与磨削表面性能的实验优化分析。根据磨削正交实验结果,采用极差分析法和方差分析法,获得了螺旋锥齿轮磨削工艺参数优选配置。运用多元非线性最小二乘法,得出了磨削评价指标的实验回归模型。通过磨削表面性能的实验优化分析,磨削表面粗糙度Rα值比一般磨削工艺下要小0.1μm以下,其它磨削表面综合性能良好,为螺旋锥齿轮磨削表面质量的提高提供了依据。
Spiral bevel gears are the key parts in the national defense, energy, carry, equipment manufacturing and traffic areas, and so on. Its NC grinding method is widely used in its precision machining. As the space shape and processing of spiral bevel gears are complicated, the key grinding technologies have been monopolized by companies such as Gleason in the long term. The researcher in China has also developed the grinding machines of spiral bevel gears in the past decade, but it has been difficult to improve the grinding quality in manufacturing spiral bevel gears. The grinding quality of grinding tooth machines produced by Gleason Corporation is up to two precision, but at present, the ones in China is 4-6 precision, and the grinding surface roughness is not stable, it is easy to produce grinding burn, cracks, and other grinding surface quality defects. The grinding tooth quality of spiral bevel gears is closely related to the grinding tooth machine and process. Therefore, it is a fundamental way to solve our problems of grinding quality of spiral bevel gears that the body precision of grinding tooth machine is improved, the grinding tooth mechanism is understood, and the optimum pre-control of grinding parameters is achieved. However, now there is the serious lack of research on grinding mechanism and process parameters control in China. Taking increase grinding surface quality as the goal, according to the machining principle and process characteristic of spiral bevel gears, the thesis carries out the research on mechanism of thermo-mechanical coupling on grinding interface and surface performance generating of spiral bevel gears. The main contents are as follows.
     Study on the mechanism of thermo-mechanical coupling on grinding interface of spiral bevel gears. According to the six axis five linkage NC machining principle of spiral bevel gears, its adjusting calculation and grinding mechanism analysis were made, and the physical meaning formulas of grinding forces were built. The heat distribution ratio was gotten by applying the thermal model of a single grinding grit, the heat flux was computed by using a rectangle distributing heat source, and the 3D single tooth model of spiral bevel gear was established by applying the finite element method. On the basis of researches of thermo-mechanical coupling, the grinding temperature field of spiral bevel gears was simulated and analyzed by using theories of heat conduction and the thermo-elastic-plastic, and it was verified by test. The constitutive relationships of stress and deformation fields on grinding interface have been set up by applying PRANDTL-REUSS method, and the distribution of stress and deformation fields at different location of grinding tooth were simulated and analyzed.
     Study on the grinding residual stresses of spiral bevel gears and its influencing factors. Combined with meshing principle of spiral bevel gears, tooth surface equations were built by applying vector analysis method, and the solid model of analyzing grinding tooth residual stresses was established by applying the bottom-up solid modeling method. Based on the Von Mises yield criterion, the Mises flow rule and the MISO model, the material relationship model of the gears was built. According to the Gleason contact principle, the mathematical models of basic grinding parameters were gotten. Based on the thermo-mechanical coupling, the grinding residual stresses of spiral bevel gear were simulated and verified by experiment, and its change laws with the variation of process parameters were obtained.
     Study on the grinding surface roughness of spiral bevel gears. According to the principle of space coordinates transformation, the mathematical models of grinding tooth of spiral bevel gear were set up by constructing the tooth surface coordinate system, cutting tool surface and grinding mesh equation of spiral bevel gears. Based on the cutter enveloping principle and analysis of influencing factors of surface roughness, the grinding trajectory was computed by using the constraint solving method of tooth surface grid nodes. Then, the 3D theoretical residual area heights were translated from 2D's ones of cross section along tooth depth, and the theoretical surface roughness model of grinding tooth of spiral bevel gear was built by taking into account a plastic side upheaval phenomenon, and the model was examined by test. The changing regularity of surface roughness affected by the grinding process parameters was reached.
     Experiment study on the grinding surface layer behavior of spiral bevel gears. The change regularity of micro-hardness and structure of grinding surface layer of spiral bevel gears were tested and analyzed by applying the mechanism of the thermo-mechanical coupling and dislocation theory. Through the test and analysis of temperature, micro-hardness and structure of grinding surface layer of spiral bevel gears, the critical condition of grinding burn was obtained, and the generating rules and its influencing factors of grinding burn and cracks were gotten.
     Based on the above study of mechanism of thermo-mechanical coupling on grinding interface and surface performance generating, the parameters optimization and the test optimal analysis of grinding surface performance of spiral bevel gears were carried out. According to the results of grinding orthogonal test, the optimizing configuration of grinding process parameters of spiral bevel gears was obtained by using range and variance analysis method. Then, the test regression models of grinding evaluating indicators were conducted by using multivariate nonlinear least squares method. Through the test optimal analysis of grinding surface performance, the value of grinding surface roughness Rαwas more less 0.1μm than ones of the average grinding process, and other comprehensive performance of grinding surface were better. These provided a basis for improvement of grinding surface quality of spiral bevel gears.
引文
[1]宋健.制造业与现代化[J].机械工程学报,2002,38(12):5-13.
    [2]蔡光起,冯宝富,赵恒华.磨削磨料加工技术的最新发展[J].航空制造技术,2003,4:31-35,40.
    [3]周志雄,邓朝晖,陈根余等.磨削技术的发展及关键技术[J].中国机械工程,2000,11(1-2):186-189.
    [4]庄中.格里森弧齿锥齿轮磨齿技术的发展[J].汽车工艺与材料,2004,(09):11-18.
    [5]The Gleason Works. Calculating Instructions FORMATE Spiral Bevel Gears, SFT-116[M]. Gleason Works, Rochester, New York,1971,34-65.
    [6]The Gleason Works. Calculating Instructions Generated Hypoid Gears, HGM-26[M]. Gleason Works, Rochester, New York,1971,23-64.
    [7]北京齿轮厂编.螺旋锥齿轮[M].北京:科学出版社,1974.
    [8]Litvin F L, Fuentes A, Perez I G, et al. New version of Novikov-Wildhaber helical gears:computerized design, simulation of meshing and stress analysis[J]. Comput. Methods Appl. Mech. Engrg,2002,191:5707-5740.
    [9]Litvin F L, Wang A G, Handschuh R F. Computerized design and analysis of face-milled, uniform tooth height spiral bevel gear drives[J]. Mech.Design,2006, 118:573-579.
    [10]Baxter M L. Second Order Surface Generation[J]. Industrial Mathematics, 1964,(2):15-22.
    [11]Litvin F L, Fan Q, Vecchiato D, et al. Computerized generation and simulation of meshing of modified spur and helical gears manufactured by shaving. Comput.Methods.Appl.Mech.Engrg.2007,190:5037-5055.
    [12]The Gleason Works. Calculating Instructions FORMATE Spiral Bevel Gears, SFT-116[M]. Gleason Works, Rochester, New York,1971.
    [13]The Gleason Works. Calculating Instructions Generated Hypoid Gears, HGM-26[M]. Gleason Works, Rochester, New York,1971.
    [14]Litvin F L, Gutman Y. Method of Synthesis and Analysis for Hypoid Gear-Drives of Formate and Helixform(Part 1)[J]. Journal of Mechanical Design, ASME,1981,103(1):83-88.
    [15]Litvin F L, Fan Q, Fuentes A, et al. Computerized Design, Generation, Simulation of Meshing and Contact of Face-Milled Formate-Cut Spiral Bevel Gears. NASA Report. ARL-CR:CR-210894,2001.458-467.
    [16]Litvin F L, Sheveleva G I, Vecchiato D, et al. Modified Approach for Tooth Contact Analysis of Gear Drives and Automatic Determination of Guess Values[J]. Comput.Methods.Appl.Mech.Eng.2005,194:2927-2946.
    [17]樊奇,让德福.格里森制造专家系统开创弧齿锥齿轮及准双曲面齿轮数字化制造新纪元[J].产品与技术,2005,(4):87-93.
    [18]于水琴,曾韬.数控螺旋锥齿轮磨齿机加工仿真系统的研究[J].机械制造,2008,46(523):5-7.
    [19]王志永,曾韬.数控螺旋锥齿轮磨齿机加工性能的实验研究[J].中国机械工程,2008,19(14):1661-1664.
    [20]曾韬,螺旋锥齿轮设计与加工[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [21]西安交通大学机制教研室齿轮研究组.弧齿锥齿轮与准双曲面齿轮加工调整原理[M].上海:上海科学技术出版社,1979,1-50.
    [22]Litvin F L, Fuentes A, Fan Q, Handschuh R F. Computerized Design Simulation of Meshing and Contact and Stress Analysis of Face-milled Formate Generated Spiral Bevel Gears[J]. Mechanism and Machine Theory,2002,37(5):441-459.
    [23]Litvin F L, Gutman Y A. Method of Local Synthesis of Gears Grounded on the Connection Between the Principal and Geodetic Curvatures of Surfaces[J]. ASME J. of Mech. Design,1981,103:114-125.
    [24]Kondo S. Study on Formate Grinding Method of Constant Depth Tooth Spiral Bevel Gears[J]. Bull JSME,1970,13 (65):1331-1338.
    [25]Ito, Norio, Takahashi, et al. Equi-depth Tooth Hypoid Gear Using Formate Gear Cutting Method (1st report, Basic Dimensions for Gear Cutting) Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers Part C,1995,61(582):373-379.
    [26]吴训成,毛世民,吴序堂.点啮合齿面主动设计研究[J].机械工程学报,2000,36(4):70-73.
    [27]吴训成,毛世民,吴序堂.点接触齿面啮合分析的基本公式及其应用研究[J].机械设计,2000,(2):15-18.
    [28]周军辉,刘宝生,陈建平,等.基于PHOENIX系列磨齿机的磨齿参数设计[J].起重运输机械,2003,(5):11-13.
    [29]魏冰阳,方宗德.传统机床与Free-Form型机床运动的等效转换[J].机械科学与技术,2004,23(4):425-428.
    [30]胡韦华,王秋成,胡晓冬,等.切削加工过程数值模拟的研究进展[J].南京航空航天大学学报,2005,37(1):194-198.
    [31]兰雄侯,王继先,高航.磨削温度理论研究的现状与进展[J].金刚石与磨料磨具工程,2001,123(3):5-6.
    [32]Pantale O, Bacaria J L, Dalverny O, et al.2D and 3D numerical models of metal cutting with damage effects[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(4):4383-4399.
    [33]Strenkowski J S, Shih A J, Lin J C. An analytical finite element model for predicting three-dimensional tool forces and chip flow[J]. International Journal of Machine Tools & Manufacture,2002,42:723-731.
    [34]Hamdi H,Zahouani H,Bergheau J M. Residual stresses computation in a grinding process[J]. Journal of Materials Processing Technology,2004,147:277-285.
    [35]黄志刚,柯映林,王立涛.金属切削加工的热力耦合模型及有限元模拟研究[J].航空学报,2004,25(3):317-320.
    [36]Litvin F L, Gutman Y. Methods of Synthesis and Analysis of Hypoid Gear Drives of 'Formate' and 'Helixform', part 1-3[J]. ASME J. of Mech. Design,1981, 103:83-113.
    [37]Litvin F L, Zhang Y. Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gears[A]. NASA CR4342, Chicago:NASA Lewis Research Center, 1991.
    [38]严志达.论共轭齿面的法曲率关系及应用[J].机械工程学报,1979,15(1):52-64.
    [39]陈惟荣.齿轮啮合理论[M].北京:煤炭工业出版社,1986.
    [40]吴序堂,王小椿,李峰.曲线齿锥齿轮三阶接触分析法的原理及传动质量评价[J],机械工程学报,1994,30(3):47-57.
    [41]王小椿.弧齿锥齿轮和准双曲线的三阶接触分析及优化调整计算[J].齿轮,1989,13(2):1-10.
    [42]王小椿.点啮合齿面三阶接触分析的进一步探讨--V/H检验法的理论[J].西安交通大学学报,1987,21(2):1-13.
    [43]郭晓东,郑昌启,林超.锥齿轮设计制造现代应用技术的研究[J].重庆大学学报,1993,16(1):37-44.
    [44]田行斌,方宗德.弧齿锥齿轮加工参数的全局优化设计[J].航空动力学报,2000,15(1):75-77.
    [45]方宗德,刘涛,邓效忠.基于传动误差设计的弧齿锥齿轮的啮合分析[J].航 空学报.2002,23(3):226-230.
    [46]高建平,方宗德,杨宏斌.螺旋锥齿轮边缘接触分析[J].航空动力学报,1998,13(3):289-292.
    [47]Litvin F L. Integrated Computer Program for Simulation of Meshing and Contact of Gear Drives[J]. Computer Methods in Applied and Engineering,2000,181(1): 71-85.
    [48]Fuentes A, Litvin F L, Mullins B R,et al. Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears[J]. Journal of Mechanical Design,2002,124 (9):524-529.
    [49]C.Gosselin,T.Nonaka,Y.Shiono. Identification of the Machine Setting of Real Hypoid Gear Tooth Surfaces[J]. Journal of Mechanical Design, ASME,1998, 120(9):429-440.
    [50]C.Gosselin, L.Clouter, Q.D.Nguyen. A General Formulation for the calculation of the Load Sharing and Transmission Error under Load of Spiral Bevel and Hypoid Gears[J]. Mech. Mach. Theory,1995,130(3):435-450.
    [51]Blok H. Thermal Network for Predicting Bulk Temperature in Gear Transmissions. Proc.7th Round Table Discussion. Sweden:Marin Reduction Gears,1995:21-25.
    [52]Argyris J,Fuentes A,Litivin F L. Computerized integrated approach for design and stress analysis of spiral bevel gears[J]. Comput.Methods Appl.Mach.Engrg, 2002,191 (4):1057-1095.
    [53]陈良玉,王延忠,郑夕健,等.弧齿锥齿轮的齿根应力精确计算方法研究[J].机械工程学报英文版,1994,30(4):22-26.
    [54]李润方,黄昌华,陈大良.运转中啮合轮齿的三维应力应变数值分析及实验研究[J].机械工程学报,1994,30(2):38-44.
    [55]黄昌华,李润方,郑昌启.螺旋锥齿轮啮合轮齿应力场分析[J].机械传动.1992,16(2):9-13.
    [56]陈国定,李剑新,刘志全,等.基于斜齿轮温度场研究的有限元分析模型.机械科学与技术,1999,18(5):401-402.
    [57]沈允文,王彤,王三民,等.弧齿锥齿轮传动的稳态本体温度场分析.机械传动,2001,25(3):1-4.
    [58]刘光磊.孤齿锥齿轮传动动态接触特性研究[D].西安:西北工业大学,2000.
    [59]Kalhori V. Modeling and simulating of mechanical cutting[D]. Lulea City: University of Lulea,2001.
    [60]Liu X B, Zhang B. Effects of Grinding Process on Residual Stresses in Nanostructured Ceramic Coatings[J]. Journal of Materials Science,2002,37(15): 3229-3239.
    [61]Hedi H,Hassan Z,Jean-Michel B. Residual stresses computation in a grinding process. Journal of Materials Processing Technology[J].2004,147:277-285.
    [62]Nabil B F, Habib S, Chedly Braham. Ground surface improvement of the austenitic stainless steel AISI 304 using cryogenic cooling[J]. Surface & Coatings Technology,2006,200:4846-4860.
    [63]Lin Zone-Ching, Lai Wun-Ling, Lin H Y, et al. The study of ultra-precision machining and residual stress for NiP alloy with different cutting speeds and depth of cut[J]. Journal of Materials Processing Technology,2000,97:200-210.
    [64]Tian X L.,Yu A B. A thermal elastoplastic model of the surface residual stress of ceramics grinding[J]. Journal of Materials Processing Technology,2002,129: 451-453.
    [65]遇立基.CIMT'99展出的数控齿轮加工机床[J].制造技术与机床,1999,(12):6-7.
    [66]Litvin F L, Fuentes A. Gear Geometry and Applied Theory[M]. USA:Cambridge University Press,2004.
    [67]王延忠,周云飞,李左章,等.基于五坐标数控机床螺旋锥齿轮NC加工研究[J].中国机械工程,2001,12(8):903-906.
    [68]李小清,周云飞,李左章,等.螺旋锥齿轮数控展成轨迹生成及直接插补算[J].华中科技大学学报,2002,30(10):38-40.
    [69]卢晓勇,侯伯杰,蒋文兵,等.螺旋锥齿轮数控加工中的后置处理[J].郑州大学学报,2002,23(3):64-66.
    [70]殷盛福.用扩口杯砂轮磨削螺旋锥齿轮成形法大轮的过程仿真研究[D].长沙:中南大学,2004.
    [71]刘凯,赵东标,黄沛建.弧齿锥齿轮数控展成运动轨迹规划方法[J].华南理工大学学报,2007,(08):103-105.
    [72]Wang X,Feng J ack C X. Development of Empirical Models for Surface Roughness Prediction in Fish Turning[J]. Int.J.Adv.Manuf.Tech.,2002,20 (5): 348-356
    [73]李晓梅,丁宁,朱喜林.表面粗糙度模糊神经网络在线辨识模型[J].机械工程学报,2007,43(3):212-217.
    [74]Sahin Y, Motorcu A R. Surface roughness model in machining hardened steel with cubic boron nitride cutting tool[J]. International Journal of Refractory Metals & Hard Materials,2008,26:84-90.
    [75]张淳,王军.超高速磨削表面形貌特征的模拟研究[J].燕山大学学报,2007,31(5):398-401.
    [76]Rogelio L, Hecker, Steven Y. Liang. Predictive modeling of surface roughness in grinding[J]. International Journal of Machine Tools & Manufacture,2003,43: 755-761.
    [77]Agarwal S, Rao P V. A probabilistic approach to predict surface roughness in ceramic grinding[J]. International Journal of Machine Tools & Manufacture, 2005,45:609-616.
    [78]Zhou X, Xi F. Modeling and predicting surface roughness of the grinding process [J]. International Journal of Machine Tools & Manufacture,2002,42(7):969-977.
    [79]Koshy P, Jian V K, Lai G K. Stochastic simulation approach to modelling diamond wheel topography[J]. International Journal of Machine Tool s & Manufacture,1997,37(6):751-761.
    [80]Aurich J C, Braun O,Warnecke G. Development of a super-abrasive grinding wheel with defined grain structure using kinematic simulation[J]. CIRP Annals Manufacturing Technology,2003,52 (1):275-280
    [81]宿崇,杨建宇,赵恒华等.虚拟砂轮的开发及其磨削性能分析[J].计算机辅助设计与图形学学报,2008,20(5):560-564.
    [82]修世超,李长河,蔡光起.磨削加工表面粗糙度理论模型修正方法[J].东北大学学报,2005,26(8):770-773.
    [83]毛世民,吴序堂,聂钢.锥面砂轮磨齿机的等粗糙度磨削法[J].工具技术,1998,32(6):13-15.
    [84]Brockhoff T. Grinding-Hardening:A Comprehensive View [J]. Annals of the CIRP,1999,48 (1):255-260.
    [85]Zarudi I, Zhang L C. Mechanical Property Improvement of Quenchable Steel by Grinding[J]. Journal of Materials Science,2002,37(18):3935-3943.
    [86]Zarudi I, Zhang L C. Modeling the Structure Changes in Quenchable Steel Subjected to Grinding. Journal of Materials Science,2002,37(20):4333-4341.
    [87]Fricker D C, Pearce T R A, Harrison A J L. Predicting the occurrence of grind hardening in cubic boron nitride grinding of crankshaft steel[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2004,218(10):1339-1356.
    [88]Yamaguchi K, Mitzutani K. Estimation of Maximum Depth of Crack Extension under Finished Surface in Grinding of Ceramics[J]. J Soc Mater Sci Jpn,1993, 42:419-425.
    [89]Malkin S, Ritter J E. Grinding mechanism and strength degradation for ceramics[J]. ASME J of Eng for Ind,1989,111:167-173.
    [90]Malkin S, Hwang T W. Grinding Mechanisms for Ceramics[J]. Annals of the CIRP,1996,45(2):569-580.
    [91]Ural A, Heber G, Wawrzynek P A, et al. Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear[J]. Engineering Fracture Mechanics,2005,72:1148-1170.
    [92]刘菊东,王贵成,陈康敏,等.非淬硬钢磨削表面硬化层的试验研究[J].中国机械工程,2005,16(11):1013-1017.
    [93]刘菊东,王贵成,陈康敏,等.45钢磨削硬化的试验研究[J].材料科学与工艺,2005,13(03):326-328.
    [94]刘菊东,王贵成,陈康敏,等.65Mn钢磨削硬化层组织的研究[J].中国机械工程,2004,15(17):1573-1576.
    [95]潘忠峰,王贵成,张金煜,等.磨削淬硬层厚度的预测预报[J].工具技术,2009,43(1):20-24.
    [96]Xu Xipeng, Yu Yiqing, Huang Hui, et al. Mechanism of abrasive wear in the grinding of titanium(TC4) and nickel(K417) alloys[J]. Wear,2003,255:1421-1426.
    [97]张红霞,陈五一,陈志同.SG砂轮磨削钛合金烧伤机理[J].北京航空航天大学学报,2008,34(1):22-26.
    [98]邓朝晖,张璧,周志雄,等.陶瓷磨削的表面/亚表面损伤[J].湖南大学学报,2002,29(5):61-70.
    [99]汪军,丁英辉,范乃则,等.齿轮磨齿烧伤的分析与防止[J].机械传动,2009,33(1):89-92.
    [100]Malkin S, Koren Y. Optimal Infeed Control for Accelerated Spark-out in P lunge Grinding[J]. Tran.ASME J. Engng Ind,1984,106(5):70-74.
    [101]Malkin S,C.Guo.张一飞译.外圆磨削加工的仿真、优化及控制[J].金刚石与磨料磨具工程,2001,125(5):11-16.
    [102]Cheol W L. Intelligent modeling and optimization of grinding processes[D]. Ann Arbor:Purdue University,2000.
    [103]李国发,王龙山,张卫波.磨削过程优化及其计算机仿真[J].中国机械工程,2002,13(06):501-504.
    [104]张勤俭,吴春丽.工程陶瓷加工性能预测及加工参数优化仿真系统[J].工具技术,2001,35:32-35.
    [105]梁式.外圆切入磨削过程的计算机仿真[J].新技术新工艺,1998,(3):10-12.
    [106]杜金萍.基于模糊综合评价的磨削过程优化研究[J].煤矿机械,2008,29(7):55-57.
    [107]贾特,李嫚,张弢.基于正交试验的PCD材料磨除率和磨耗比的研究[J].金刚石与磨料磨具工程,2007,159(3):72-75.
    [108]陶晓杰,王开冲,李朝荣.磨齿烧伤和裂纹及其变质层深度[J].北京科技大学学报,2001,23(5):449-451.
    [109]张一飞,于怡青,徐西鹏.仿真技术及其在磨削加工中的应用[J].金刚石与磨料磨具工程,2002,132(4):40-44.
    [110]李兆文,王勇,陈正洪.螺旋锥齿轮技术的研究现状[J].工具技术,2007,41(10):3-6.
    [111]许浩,曾韬.网络化螺旋锥齿轮齿面加工集成制造系统[J].工程图学学报,2006,(2):43-50.
    [112]Zuo D W,Matsuo T. Significance of Grinding Temperature in Metal Removal[J]. Key Engineering Materials,2001,202-203(6):57-60.
    [113]方刚,曾攀.金属正交切削工艺的有限元模拟[J].机械科学与技术,2003,22(4):641-645.
    [114]黄志刚,柯映林,王立涛.金属切削加工的热力耦合模型及有限元模拟研究[J].航空学报,2004,25(03):317-320.
    [115]Stadfeld H J. The G-LAB Expert System, a Third Dimension in Developing Bevel Gears[M]. The Gleason works, Rochater,1994.
    [116]Stadtfeld,H.J.Advanced Bevel Gear Technology[M]. The Gleason works, Edition 2000.
    [117]王志永,于水琴,曾韬.数控磨齿机与“T类”铣齿机加工参数的转换[J].制造技术与机床,2007,540(09):75-78.
    [118]王志永,于水琴,曾韬.数控磨齿机与“M”类铣齿机加工参数的转换[J].制造技术与机床,2007,540(7):94-97.
    [119]刘慧玲,于水琴,曾韬.数字化闭环加工系统在螺旋锥齿轮制造中的应用[J].机械工程师,2008,(04):103-105.
    [120]Lin B, Zhang H L. Theoretical Analysis of Temperature Field in Surface Grinding with Cup Wheel[J]. Key Engineering Materials,2001,202-203(6): 93-98.
    [121]Lin C Y, Chung B T, Zhang H F. Mathematical model of spiral bevel and hypoid gears manufactured by the modified roll method[J]. Mech. Mach.Theoy,1997, 32(2):121-136.
    [122]殷盛福.用扩口杯砂轮磨削螺旋锥齿轮成形法大轮的过程仿真研究[D].长沙:中南大学,2004.
    [123]张幼桢.金属切削理论[M].北京:航空工业出版社,1988.
    [124]K.Steffens, W.Konig. Closed Loop Simulation of Grinding[J]. Annals of the CIRP,1983,32(1):65-71.
    [125]Chen Xun, W.Brian Rowe. Analysis and Simulation of The Grinding Process[J]. Int. J. M TM,1996,36(8):871-906.
    [126]Malkin S.磨削技术理论与应用[M].蔡光起,巩亚东,宋贵亮译.沈阳:东北大学出版社,2002.
    [127]唐进元,杜晋,陈勇平.齿轮磨削中磨削力数学模型的研究[J].制造技术与机床,2008,541(1):73-76.
    [128]郭秀云.磨削热模型的发展概况及应用.机械研究与应用[J].2005,18(3):12-13.
    [129]Guo C, Wu Y, Varghese V, et al. Temperatures and energy partition for grinding with vitrified CBN wheels[J]. Annals of the CIRP,1999,48(1):247-249.
    [130]J. Y. Shen, W. M. Zeng, H. Huang, et al. Thermal aspects in the face grinding of ceramics[J]. Journal of Materials processing Technology,2002,129(1-3):212-216.
    [131]张国华,郭力.陶瓷材料高速高效磨削温度研究的进展.精密制造与自动化[J].2005,164(4):3-6.
    [132]Jin T, Cai G Q. Analytical thermal models of oblique moving heat source for deep grinding and cutting[J]. Journal of Manufacturing Science and Engineering,2001,123(5):185-190.
    [133]胡鹏浩.非均匀温度场中机械零部件热变形的理论及应用研究[D].合肥:合肥工业大学,2001.
    [134]Alfonso Fuentes, Faydor L.Litvin, Baxter R.Mullins, et al. Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears. Journal of Mechanical Design,2002,124(9):524-529
    [135]Tian X L, Yu A B. Analytical thermal models of oblique moving heat source for deep grinding and cutting[J]. Journal of Materials Processing Technology, 2002,129:451-453.
    [136]刘伟香,邓朝晖.工程陶瓷磨削表面残余应力的数学模型.机械设计与制造[J].2004,(5):49-51.
    [137]Moulik P N, Yang H T Y, Chandrasekar S. Simulation of Thermal Stress duo to Grinding[J]. International Journal of Mechanical Sciences,2001,43:235-231.
    [138]Moulik P N, Yang H T Y. Chandrasekar Simulation of thermal stress duo to grinding[J]. International Journal of Mechanical Sciences,2001,43:162-171.
    [139]Mahdi M, Zhang L C. Residual stresses in ground components caused by coupled thermal and mechanical plastic deformation[J]. Journal of Materials Processing Technology,1999,95:238-245.
    [140]Gu R J, SHILLOR M, BARBER G C, et al. Thermal analysis of the grinding process. Mathematical and Computer Modelling,2004,39:991 - 1003.
    [141]王立华.汽车螺旋锥齿轮传动耦合非线性振动研究[D].重庆:重庆大学,2003.
    [142]胡红舟.机械CAD/CAM [M].武汉:武汉理工大学出版社,2006.
    [143]王小林.准双曲面齿轮齿面参数化和接触可视化方法研究[D].武汉:华中科技大学,2005.
    [144]Movahhedy M, Gadala M, Altintas Y. Simulation of the orthogonal metal cutting process using an arbitrary Lagrangian-Eulerian finite-element method[J]. Journal of Materials Processing Technology,2000,103:267-275.
    [145]程林.二维金属切削应力场和温度场的数值模拟[D].合肥:合肥工业大学,2004.
    [146]荆琦.纳米结构WC12Co涂层精密磨削表面残余应力的实验研究与有限元模拟[D].长沙:湖南大学,2005.
    [147]Francesca D P, Marco G, Massimo G. Alternative formulation of the theory of gearing[J]. Mechanism and Machine Theory,2005,40:613 - 637.
    [148]王素玉.高速铣削加工表面质量的研究[D].济南:山东大学,2006.
    [149]范继美,万光氓.位错理论及其在金属切削加工中的应用[M].上海:上海交通大学出版社,1991.
    [150]Stohr R, Heinzel C. Grind-hardening with CBN[J]. Abrasives magazine,2002, 53(6):22-30.
    [151]Wager J G, Gu D Y. Influence of Up-Grinding and Down-Grinding on the Contact Zone[J]. Annals of the CIRP,1991,40(1):323 - 326.
    [152]Wesley Lloyd Stone. Thermal effects on subsurface damage during the surface grinding of titanium aluminide [D].2003,36-146.
    [153]翟晓玉,高嵩.渗碳齿轮磨削裂纹问题分析及抑制措施[J].机械工程师,2001,(3):52-53.
    [154]Shih A J. An experimental investigation of rotary diamond truing and dressing of vitreous bond wheels for ceramic grinding[J]. International Journal of Machine Tools and Manufacture,2000,40 (12):1755-1774.
    [155]王秀芹.如何防止渗碳淬火齿轮磨削裂纹的产生[J].煤矿机械,2005,(8):75-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700