超硬刀具高速铣削钛合金的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金具有比强度高、热强度高、抗断裂性高、耐腐蚀性好等优良特性,在航空航天、化工、船舶和核技术等领域得到了广泛的应用。钛合金同时具有导热系数小,高温化学活性高,弹性模量低,摩擦系数大等特性,易导致其加工性能差。目前国内外钛合金加工主要采用硬质合金刀具,切削速度一般在60m/min左右,大大限制了钛合金的加工效率,如何实现对钛合金材料进行高效精密加工成为一个亟待解决的难题。聚晶金刚石刀具(Polyerystalline Diamond,简称PCD)可以实现对钛合金的高效精密加工,与硬质合金刀具相比具有切削速度高、刀具耐用度长等优势。本文针对TA15钛合金材料,开展了超硬刀具高速铣削钛合金的基础研究,主要研究工作包括以下方面:
     1.高速铣削钛合金的超硬刀具设计。结合钛合金的高速切削加工特点和超硬刀具高速铣削钛合金的试验,设计出适用于钛合金高速铣削的PCD刀具,有效的控制了高速断续切削中超硬刀具的崩刃。利用有限元分析技术,模拟了PCD刀具高速切削TA15钛合金时切削刃上的接触应力场,分析了刀具的几何参数对刀具破损的影响,验证了刀具参数设计的合理性。
     2.超硬刀具高速铣削钛合金切屑形态研究。通过高速铣削TA15钛合金试验,对比研究不同刀具材料、不同切削用量以及不同刀具磨损状态对切屑宏观和微观形貌的影响及其原因。借助金相试样显微分析方法,研究刀具材料、切削用量和刀具磨损对切屑变形的影响,寻找锯齿化程度、集中剪切频率、剪切角和滑移角随切削用量的变化规律。
     3.超硬刀具高速铣削钛合金刀具耐用度研究。通过利用三维视频显微镜、扫描电镜和能谱分析等手段,对不同切削速度下的刀具磨损状态进行跟踪测量,对比研究了高速精加工TA15钛合金时PCD和硬质合金刀具的耐用度及其影响因素,观察和研究PCD和硬质合金刀具高速铣削钛合金时的刀具磨损形貌,为进一步阐述刀具的磨损机理奠定基础。
     4.超硬刀具高速铣削钛合金刀具磨损机理研究。首先从刀具—工件摩擦副的摩擦学特性入手,搭建了模拟高速切削过程的摩擦磨损试验平台,开展了高速滑动摩擦磨损试验,采用单点和双点快速热电偶标定法,对所使用的自然热电偶进行了标定。定量对比分析了PCD和硬质合金与TA15钛合金摩擦副之间的摩擦磨损特性,深入分析了速度和载荷对两种摩擦副的摩擦系数、摩擦温度以及摩擦磨损形貌的影响,借助扫描电镜和能谱分析手段,对摩擦磨损机理进行了探讨,在此基础上探讨了高速铣削TA15钛合金时PCD刀具的磨损机理。
     5.超硬刀具高速铣削钛合金表面完整性的研究。借助三维视频显微镜、显微硬度仪和表面粗糙度仪等仪器,研究了铣削用量、刀具磨损对表面完整性的影响规律。建立了表面粗糙度的理论模型和预测模型。研究了铣削用量和刀具磨损对加工硬化和表层显微组织的影响。利用有限元分析和试验相结合的方法,研究了切削速度对表层残余应力的影响,分析了残余应力的形成机理。
Titanium alloys are widely used in aerospace, shipbuilding chemical, and nuclear because of theirhigh specific strength, good corrosion resistance and high thermal stability. However, titanium alloy iswell known as a difficult to machine material, because of its low thermal conductivity, small elasticmodule, and high chemical activity. Nowadays, both in home and abroad, titanium alloys aremachined with carbide cutting tools, and the cutting speed is about60m/min. So it is crucial toenhance the machining efficiency level. Compared with uncoated carbide cutting tools, thepolycrystalline diamond (PCD) cutting tools can have higher cutting speed and longer tool life. Thefundamental research on high speed milling of titanium alloys with super-hard tools has been carriedout. The major research works are included as follows:
     1. Parameter design of super-hard tools in high speed milling titanium alloy. According to thefeatures of titanium alloy and high speed milling experiments, a PCD tool was designed reasonablyfor high speed milling titanium alloy. Chipping of super-hard tool was effectively controlled inhigh-speed intermittent cutting. The contact stress field on cutting edge in high-speed cutting titaniumalloy with PCD tool was simulated. The effect of tool geometric parameters on the tool breakage wasanalyzed. It verified that the design tool parameters were reasonable.
     2. Study on chip formation mechanism in high speed milling of titanium alloy with Super-hard tool.The process of chip formation, chip shape and chip deformation were studied from both theoreticaland experimental aspects. Finite element analysis was used to simulate the process of chip formationin high-speed cutting titanium alloy with PCD tool. The effects of tool materials, cutting parametersand tool wear on macro and micro morphology of the chip were analyzed. By means of microanalysisof metallographic sample, effects of cutting parameters and tool wear on chip deformation werestudied. Variation of the saw tooth level, concentrated shear rate, shear angle and slip angle with thecutting parameters were studied comparatively with different tool materials.
     3. Tool life in high speed milling of titanium alloy with super-hard tool. The three-dimensionalvideo microscope, SEM and EDS were utilized to investigate the effect of cutting speed on tool wearof the titanium alloy. Tool life and tool wear morphology of PCD and carbide cutting tools werestudied comparatively in high-speed finishing milling titanium alloys. It would be helpful forrevealing the tool wear mechanism.
     4. Tool wear mechanism in high speed milling of titanium alloy with super-hard tool. Firstly, thefriction and wear behavior of super-hard tool sliding against TA15alloy were investigated at high sliding speeds. The test platform was established to simulate high speed cutting process. The frictiontests between cutting tool and TA15were carried out. A single point and double point thermocouplecalibration method were used to calibrate the natural thermocouple used in the experiments. The basictribological properties and friction parameters of carbide-TA15friction pair and PCD-TA15frictionpair were measured and analyzed. The friction wear mechanism was revealed deeply. The SEM andEDS were utilized to reveal the super-hard tool wear mechanism.
     5. Surface integrity in high speed cutting of titanium alloy with super-hard tool. By means ofthree-dimensional video microscope, micro hardness tester and surface roughness and otherequipments, effects of the milling parameters and tool wear on surface integrity are investigated. Atheoretical model and prediction model of surface roughness were established. Effects of the millingparameters and tool wear on work hardening and microstructure were studied. Finite element analysisand experimental methods were used to study the effect of cutting speed on residual stress, and theformation mechanism of residual stress was analyzed.
引文
[1]张春江.钛合金切削加工技术.西安:西北工业大学出版社,1986.
    [2]张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社,2005.
    [3]艾兴等.高速切削加工技术.北京:国防工业出版社,2003.
    [4]谢惠茹.我国钛及钛合金研发与进展.稀有金属快报,2007,26(8):7-9.
    [5]李树侠,朴松花.钛合金材料的机械加工工艺综述.飞航导弹,2007,(7):57-61.
    [6]毛文革.钛合金的切削加工.机械制造,2001,(1):64-66.
    [7]E.O. Ezugwu, Z.M. Wang. Titanium alloys and their machinability—a review. Journal of MaterialsProcessing Technology,1997,68(3):262-274.
    [8]李文平.钛合金的应用现状及发展前景.轻金属,2002,(5):53-55.
    [9]李梁,孙健科,孟祥军.钛合金的应用现状及发展前景.钛工业进展,2004,(9):20-24.
    [10]Anon. Titanium alloys for aerospace. Advanced Materials&Proeesses,1999,155(3):39.
    [11]陶春虎等著.航空用钛合金零件的失效及其预防.北京:国防工业出版社,2002.9.
    [12]Bill Sweetman, The progress of the f-22fighter program. www.jane.com,1997.
    [13]莱因斯C,皮特尔斯M著,陈振华译.钛与钛合金.北京:化学工业出版社,2005.
    [14]满忠雷.基于绿色制造的钛合金高速铣削技术研究.南京:南京航空航天大学博士学位论文,2003.
    [15]G. Lutjering, J.C. Williams. Titanium. Berlin: Springer-Verlag,2007.
    [16]韩荣第.难加工材料切削加工.北京:机械工业出版社,1996.
    [17]L.Z. Liu. Surface hardening of titanium alloys by gas phase nitridation under kinetic control. Ph. D.America: Case Western Reserve University,2004.
    [18]《中国航空材料手册》编辑委员会编.中国航空材料手册第四卷钛合金、铜合金(第二版).北京:中国标准出版社,2002.
    [19]周泽华.金属切削理论.北京:机械工业出版社,1992.
    [20]艾兴.高速切削加工技术.北京:国防工业出版社,2003.
    [21]F. Klocke, G. Eisenblaetter. Dry Cutting. Annals of CIRP,1997,46(2):519-526.
    [22]陈日曜.金属切削原理.北京:机械工业出版社,1993.
    [23]J.H. Xu, K.Q. Ren, G.S. Geng. Cutting forces in high-speed milling of a close alpha titanium alloy.Key Engineering Materials,2004,259-261:451-455.
    [24]E.O. Ezugwu, J. Bonney, Y. Yamane. An overview of the machinability of aeroengine alloys.Journal of Materials Processing Technology,2003,134:233-253.
    [25]M. Rahmon, Y.S. Wong, A.R. Zareena. Machinability of titanium alloys. JSME,2003,46(1):107-115.
    [26]M.V. Ribeiro, J.R. Ferreira. Optimization of titanium alloy (6Al-4V) machining. Journal ofMaterials Processing Technology,2003,143-144:458-463.
    [27]C. Ohkubo, I. Watanabe, J.P. Ford, et al. The machinability of cast titanium and Ti-6Al-4V.Biomaterials,2000,21:421-428.
    [28]耿国盛.钛合金高速铣削技术的基础研究.南京:南京航空航天大学博士学位论文,2006.
    [29]《航空制造工程手册》总编委会主编.航空制造工程手册金属切削加工分册.北京:航空工业出版社,1994.
    [30]《透平机械现代制造技术丛书》编委会.叶片制造技术.北京:科学出版社,2002.
    [31]E.O. Ezugwu. Key improvements in the machining of difficult-to-cut aerospace superalloys.International Journal of Machine Tools&Manufacture,2005,45:1353-1367.
    [32]H. Schulz, T. Moriwaki. High speed maching. CIRP Annals-Manufacturing Technology,1992,41(2):637-643.
    [33]R. Komanduri. Some clarifications on the mechanics of chip formation when Machining titaniumalloys. Wear,1982,76(1):15-34.
    [34]R. Komanduri, R. Brown. On the mechanics of chip segmentation in machining. Transactions ofASME Journal of Manufacturing Science and Engineering,1981,103:33-51.
    [35]R. Komanduri, B.F. Von Turkovich. New observations on the mechanism of chip formation whenmachining titanium alloys. Wear,1981,69:179-188.
    [36]C. Zener, J.H. Hollomon. Problems in non-elastic deformation of metals. Journal of AppliedPhysics,1946,17(2):69-82.
    [37]R. Recht. Catastrophic thermoplastic shear. Transactions of ASME, Journal of applied Mechanics,1964,186(31):189-193.
    [38]C.A. Van Luttervelt, The split shearzone—mechanism of chip segmentation. Annals of the CIRP,1977,25(1):33-37.
    [39]A. Vyas, M.C. Shaw. Mechanics of sawtooth chip formation in metal cutting. Transactions ofASME Journal of Manufacturing Science and Engineering,1999,121:163-172.
    [40]N. He, L. Li, M. Wang. Cutting Equation for High Speed Cutting of Difficult-to-cut Materials.Chinese Journal of Mechanical Engineering,2002,(15):207-210.
    [41]M.A. Davies, T.J. Burns, C.J. Evans. On the dynamics of chip formation in machining hardmetals. Annals of the CIRP1997,46:25-30.
    [42]A. Molinari, C. Musquar, G. Sutter. Adiabatic shear banding in high speed machining ofTi–6Al–4V: experiments and modeling. International Journal of Plasticity2002,18:443-459.
    [43]S. Motonishi, Y. Hara,et al.. Kobelco Tech. Rev.,1987,2:28-31.
    [44]A.R. Shahan, A.K. Taheri. Adiabatic shear bands in titanium and titanium alloys: a critical review.Materials&Design,1993,14:243-250.
    [45]A.E. Bayoumi, J.Q. Xie. Some metallurgical aspects of chip formation in cuttingTi-6wt.%Al-4wt.%V alloy. Materials Science and Engineering A,1995,190:173-180.
    [46]J.D. Puerta Velásquez, et al. Metallregical study on chips obtained by high speed machining of aTi-6wt.%Al-4wt.%V alloy. Materials Science and Engineering A,2007,452-453:469-474.
    [47]J. Sun, Y.B. Guo. A new multi-view approach to characterize3D chip morphology and propertiesin end milling titanium alloy Ti-6Al-4V. International Journal Machine Tools and Manufacture,2008,48:1486-1494.
    [48]Norihiko Narutaki. High-speed machining of titanium alloy, Chinese Journal of MechanicalEngineering,2002,15:109-113.
    [49]满忠雷,何宁.不同介质下钛合金高速铣削时铣削力的研究.机械工程师,2004,(4):5-8.
    [50]L.Li, H.Chang. Temperature measurement in high speed milling Ti6Al4V. Key EngineeringMaterials,2004,259-260:804-808.
    [51]P.A. Dearnley. Evaluation of principal wear mechanism of cemented carbides and ceramics usedfor machining titanium alloys and IMI-318. Material Sciences and Technology,1986,2:47-58.
    [52]M.Nouari, A.Ginting. Wear characteristics and performance of multi-layer CVD-coated alloyedcarbide tool in dry end milling of titanium alloy. Surface&Coatings Technology,2006,200(18-19):5663-5676.
    [53]李友生,邓建新,张辉.高速车削钛合金的硬质合金刀具磨损机理研究.摩擦学学报,2008,28(5):443-447.
    [54]N. Corduan, T. Hirnbert. Wear mechanisms of new tool materials for Ti6Al4V high performancemachining. CIRP Annals-Manufacturing Technology,2003,52(1):73-76.
    [55]R.G. Vargas Pérez. Wear mechanisms of WC inserts in face milling ofgamma titanium aluminides.Wear,2005,259:1160-1167.
    [56]A. Jawaid, S. Sharif, S. Koksal. Evaluation of wear mechanisms of coated carbide tools whenface milling titanium alloy. Journal of Materials Processing Technology.2000,99:266-274.
    [57]Z.G. Wang, M. Rahman, Y.S. Wong. Tool wear characteristics of binderless CBN tools used inhigh-speed milling of titanium alloys. Wear,2005,258(5-6):752-758.
    [58]P.D. Hurtung. Tool wear in titanium machining. MIT Ph.D, Thesis,1981,6.
    [59]T. Kitagawa, A. Kubo, K. Maekawa. Temperature and wear of cutting tools in high-speedmachining of inconel718and Ti-6Al-6V-2Sn. Wear,1997,202(2):142-148.
    [60]王珉.钛合金铣削加工中刀具磨损的研究.南京:南京航空学院博士学位论文,1985.12.
    [61]A.L. Mantle, D.K.Aspinwall. Surface integrity of a high speed milled gamma titanium aluminide.Journal of Materials Processing Technology,2001,118(1-3):143-150.
    [62]A.R.C. Sharman, D.K.Aspinwall. Workpiece surface integrity considerations when finish turninggamma titanium aluminide. Wear,2001,249(5-6):473-481.
    [63]A. Ginting, M. Nouari. Surface integrity of dry machined titanium alloys. International Journal ofMachine Tools and Manufacture,2009,49(3-4):325-332.
    [64]史兴宽,杨巧凤,陈明.钛合金TC4高速铣削表面完整性的研究.科技成果学术论文,2001,(1):30-36.
    [65]A.W. Warren, Y.B.Guo, M.L. Weaver. The influence of machining induced residual stress andphase transformation on the measurement of subsurface mechanical behavior using nanoindentation.Surface&Coatings Technology,2006,200:3459-3467.
    [66]王素玉.高速铣削表面质量研究.济南:山东大学博士学位论文,2005.
    [67]H. Sasahara, T. obikawa, T. Shirakashi. Prediction model of surface residual stress within amachined surface by combining two orthogonal plane models. International Journal of Machine Tools&Manufacture,2004,44:815-822.
    [68]B.R. Sridhar, G. Devananda, K. Ramaehandra. Effect of machining parameters and heat treatmenton the residual stress distribution in titanium alloy IM-834. Journal of Materials ProeessingTeehnology,2003,139:628-634.
    [69]米古茂[日]著,朱荆璞,邵会孟译.残余应力的产生和对策.北京:机械工业出版社,1983.
    [70]胡华南,周泽华,陈澄州.预应力加工表面残余应力的理论分析.华南理工大学学报,1994,22(4):1-10.
    [71]王立涛.关于航空框类结构件铣削加工残余应力和变形机理的研究.杭州:浙江大学博士学位论文,2003.
    [72]C.H. Che-Harona, A. Jawaid. The effect of machining on surface integrity of titanium alloyTi-6%Al-4%V. Journal of Materials Proeessing Technology,2005,166:188-192.
    [73]杜随更,吕超,任军学.钛合金TC4高速铣削表面形貌及表层组织研究.航空学报,2008,29(6):1710-1715.
    [74]温诗铸.摩擦学原理.北京:清华大学出版社,1990.
    [75]全永昕,施高义.摩擦磨损原理.杭州:浙江大学出版社,1988.
    [76]庞佑霞,黄伟九,谭援强,等.工程摩擦学基础.北京:煤炭工业出版社,2004.
    [77]E.O. Ezugwu, R.B. Da Silva, J. Bonney, A.R. Machado. Evaluation of the performance of CBNtools when turning Ti–6Al–4V alloy with high pressure coolant supplies. International Journal ofMachine Tools&Manufacture,2005,45(9):1009-1014.
    [78]戚正风,任瑞铭.国内外刀具材料发展现状.金属热处理,2008,33(1):15-20.
    [79]蒋林森.超硬刀具在现代加工技术中的地位和作用.超硬材料工程,2005,17(60):40-43.
    [80]邓建新,冯益华,艾兴.高速切削刀具材料的发展、应用及展望.机械制造,2002,40(449):11-15.
    [81]王西彬,刘志兵.高速切削的加工机理及刀具技术.机械工人(冷加工),2003,(9):27-29.
    [82]宜云雷,刘祥慧,郭红.钛的特性及其在超硬材料行业中的应用.金刚石与磨料磨具工程,2005,(4):67-69.
    [83]袁人炜,陈明.高速切削加工中刀具材料的选用.机械工艺师,2000,(3):12-14.
    [84]I. E. Clark, P.K. Sen.超硬刀具材料的研究进展.工业金刚石评论,1999,1:16-20.
    [85]邓福铭,陈启武. PDC超硬复合刀具材料及其应用.北京:化学工业出版社,2003.
    [86]于启勋.超硬刀具材料的发展与应用.工具技术,2004,38(11):9-12.
    [87]刘献礼.聚晶立方氮化硼刀具及其应用.哈尔滨:黑龙江科学技术出版社,1999.
    [88]R. Zareena, M. Rahman, Y.S. Wong. Binderless CBN Tools, a Breakthrough for MachiningTitanium Alloys. Journal of Manufacturing Science and Engineering,2005,127(2):277-279.
    [89]Z.G. Wang, Y.S. Wong, M. Rahman. High-speed milling of titanium alloys using binderless CBNtools. International Journal of Machine Tools&Manufacture,2005,45(1):105-114.
    [90]A.K.M. Nurul Amin, Ahmad F. Ismail, M.K. Nor Khairusshima. Effectiveness of uncoatedWC–Co and PCD inserts in end milling of titanium alloy—Ti-6Al-4V. Journal of MaterialsProcessing Technology,2007,192-193:147-158.
    [91]E. Kuljanic, M.Fioretti, F.Miani. Milling titanium compressor blades with PCD cutter. CIRPAnnals–Manufacturing Technology,1998,47(1):61-64.
    [92]E.O. Ezugwua, J. Bonneya. Surface integrity of finished turned Ti-6Al-4V alloy with PCD toolsusing conventional and high pressure coolant supplies. International Journal of Machine Tools&Manufacture,2007,47(6):884-891.
    [93]F. Nabhani. Machining of aerospace titanium alloys. Robotics and Computer IntegratedManufacturing,2001,17(1-2):99-106.
    [94]Z.A. Zoya, R. Krishnamurthy. The performance of CBN tools in the machining of titanium alloys.Journal of Materials Processing Technology,2000,100(1-3):80-86.
    [95]龙迪凯. BT20-xB-yY高温钛合金组织及性能的研究.哈尔滨:哈尔滨工业大学硕士学位论文,2010.1.
    [96]徐文臣,单德彬,李春峰,等. TA15钛合金的动态热压缩行为及其机理研究.航空材料学报,2005,25(4):10-15.
    [97]冯素玲.超硬材料刀具高速铣削钛合金研究.南京:南京航空航天大学硕士学位论文,2010.5.
    [98]任开强.高强度钛合金的高速铣削研究.南京:南京航空航天大学硕士学位论文,2003.3.
    [99]中国航空材料手册编辑委员会编.中国航空材料手册.北京:中国标准出版社,2001.8.
    [100]曲迪. PCD刀具加工合金的试验研究.大连:大连理工大学硕士学位论文,2008.
    [101]陈明,袁人炜.凡孝勇,等.三维有限元分析在高速铣削温度研究中的应用.机械工程学报,2002,38(7):76-79.
    [102]沈昌武. TA15、TC11钛合金热变形材料本构模型研究.西安:西北工业大学硕士学位论文,2007.
    [103]方刚,曾攀.金属正交切削工艺的有限元模拟.机械科学与技术,2003,22(4):641~645.
    [104]张春江,苑伟政.钛合金切屑形成过程的动态研究.航空学报,1987,8(3):164~170.
    [105]李亮.钛合金高速铣削机理及其工艺研究.南京:南京航空航天大学博士学位论文,2004.
    [106]M. Cotterell, G Byrne. Dynamics of chip formation during orthogonal cutting of titanium alloyTi-6Al-4V. CIRP Annals–Manufacturing Technology,2008,57:93-96.
    [107]赵威.基于绿色切削的钛合金高速切削机理研究.南京:南京航空航天大学博士学位论文,2006.
    [108]徐鸿钧,童宪超.刀具工件材料热电特性动态定度方法的研究.南京航空学院科技报告,1982.
    [109]505教研室.自然与半自然热电偶高精度快速标定装置技术说明书.南京航空学院科技报告,1984.
    [110]张锦霞.热电偶使用维修与检定技术问答.中国计量出版社,2000.
    [111]李德春.热电偶的冷端补偿问题.飞机设计,1994,4:53-57.
    [112]沈维善,张孙元.热电偶分度手册.北京:机械工业部仪器仪表工业局标准化研究室出版,1983.
    [113]赵威,何宁,李亮.在氮气介质中WC-Co/Ti6A14V摩擦副的摩擦磨损性能研究.摩擦学学报,2006,26(5):439-442.
    [114]潘永智,艾兴,赵军,等.超细晶粒硬质合金的高速摩擦磨损特性研究.摩擦学学报,2008,28(1):78-82.
    [115]邱明,张永振,杨建桓.摩擦热对Ti6A14V合金摩擦磨损性能的影响.摩擦学学报,2006,26(3):202-207.
    [116]王珉,张幼桢.钛合金端铣时硬质合金刀具磨损机理的研究.航空学报,1988,9(9):495-498.
    [117]姜同川.正交试验设计.济南:山东科学技术出版社,1985.
    [118]高允彦.正交及回归试验设计方法.北京:冶金工业出版社,1988.
    [119]张铁茂.试验设计与数据处理.北京:兵器工业出版社,1990.
    [120]舒彪.基于绿色制造的钛合金高速切削技术的研究.南京:南京航空航天大学博士学位论文,2003.
    [121]牛长山,徐通模.试验设计与数据处理.西安:西安交通大学出版社,1988.
    [122]方开泰,马长兴.正交与均匀试验设计.北京:科学出版社,2001.
    [123]AiXing, LiZhaoqian. Characteristics of Ceramic Tool Fracture. Key Engineering Materials,1994,96:165-196.
    [124]刘战强,艾兴,李甜甜,等. PCBN刀具加工TC4钛合金的切削加工性.山东大学学报(工学版).2009,39(1):77-83.
    [125]I.E. Clark, P.K. Sen.超硬刀具材料的研究进展.机械工程师,2000,(8):1-4.
    [126]刘战强,艾兴.高速切削刀具磨损表面形态研究.摩擦学学报,2002,22(6):468-471.
    [127]白清顺,姚英学, BEX Phillip, ZHANG Grace.聚晶金刚石刀具加工强化复合地板时的切削性能及磨损机理研究.摩擦学学报,2003,23(2):81-85.
    [128]P. Philbin, S. Gordon. Characterization of the wear behavior of polycrystalline diamond(PCD)tools when machining wood-based composites. Journal of Materials Processing Technology,2005,162-163:665-672.
    [129]E.O. Ezugwu, Z.M. Wang. Tool life and workpiece surface integrity evaluation when machiningTi6Al4V with PVD coated tools. Surface Modification Technologies, SMT,1998,10:414-426.
    [130]K. J. Dann. The fracture and fatigue of sintered diamond compact. Journal of material science.1979,14:882-890.
    [131]Tiz-Pin Lin. Wear and failure mechanisms of polycrystalline diamond compact bits. Wear,1992,156:133-150.
    [132]Hendrick Niemann, Eu-gene Ng, Hue Loftus, et al. The effect of cutting environment and toolcoating when high speed ball nose end milling titanium alloy, metal cutting and high speed machining,edited by D. Dudzinski et al., Kluwer Academic/Plenum Publishers,2002:181-189.
    [133]张幼桢.金属切削原理及刀具.北京:国防工业出版社.1990.
    [134]刘敏,景璐璐,安庆龙,等.4Cr16Mo模具钢立铣加工过程中的切削力系数.上海交通大学学报,2009,43(1):25-29.
    [135]刘战强,万熠,艾兴.高速铣削中切削力的研究.中国机械工程,2003,14(9):734-737.
    [136]范继美.位错理论在金属切削加工中的应用.上海:上海交通大学出版社,1991.
    [137]中华人民共和国国家质量监督检验检疫总局. GB-T6611-2008,钛及钛合金术语和金相图
    谱.北京,中国国家标准化管理委员会,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700