叶片双面砂带磨削工艺理论与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国科技发展,航空航天等高精尖领域对动力装置性能要求甚严。作为能源转换装置核心部件的叶片,其生产效率和加工精度对整机性能都有着重要的影响。目前叶片成型加工已经实现自动化,但是叶片磨削加工工序仍依赖手工,手工磨削叶片效率较低且叶片型面质量完全依赖操作者。近年来砂带磨削作为高效加工技术被应用到叶片精密加工中。
     本文从砂带磨削工艺理论、叶片砂带磨削去除模型、叶片双面砂带磨削机床结构和机床整机模态分析等几方面开展了研究工作。
     研究了砂带磨削工艺理论,获得了工艺参数对加工效率、磨削力和磨削温度的影响规律;提出了一种简便计算平面磨削力的经验公式,该经验公式考虑了磨削过程中工件与磨粒之间摩擦系的数变化对磨削力的影响。
     测量叶片表面点云数据,通过逆向工程软件对点云数据进行处理工作,得到叶片三维实体模型。利用离散化网格面片,结合概率论、弹性力学以及接触力学等理论建立了叶片磨削去除模型。
     为提高叶片砂带磨削效率,改善操作者工作环境,本文开发了一种新型叶片双面砂带磨削机床。利用双X轴和双Z轴的同步运动实现叶片双侧型面同步加工。砂带磨削系统采用了接触轮转换机构,该机构含有四个不同直径接触轮,以适应不同曲率叶片型面砂带磨削加工。利用激光干涉仪对机床的X轴以及Z轴进行了重复定位误差测量,测量结果表明误差均能满足加工需要。
     基于弹性接触理论,对进给系统轴向接触刚度进行了研究,揭示了进给系统轴向接触刚度和轴向变形随载荷的变化规律。采用基于重复误差补偿的PID控制方法对进给伺服系统进行控制,并与传统PID控制结果进行了对比分析,结果表明本文提出的控制方法对机床进给伺服系统的控制精度优于传统PID。
     利用有限元分析软件以及模态分析系统对叶片双面磨削机床模态进行了仿真和实验研究,实验结果表明有限元模型可以为改善机床性能提供依据。
The blade plays decisive role for the working performance of the wholemachine. The performance of the blade is related to the energy field, launch vehiclefields and national defense field. So the manufacturing efficiency, machiningaccuracy and surface roughness have important effect to the performance andefficiency of the energy conversion device. Some progress has been obtained inblade processing industry the past few years. There are special machines for thesurface of blades. The grinding process for the blade still depends on manualoperation. The grinding efficiency and the part accuracy are also very low in generalcase. Belt grinding has been used to the precision machining of blade as an efficientmachining technology. The research on the theory of belt grinding, the grindingremoval analysis based on discrete grid dough sheet, the structure and the controlmethod of the machine and the modal analysis of the machine are carried out in thispaper.
     First, the research on the evaluation index of the performance of the belt grindingand the influencing factors of the belt grinding is carried out. The effect of grindingdepth, feed rate and the rotational speed of the tool on the grinding force is discussedin this paper. Then, an empirical formula to calculate the grinding force in surfacegrinding is proposed. The alterable friction coefficient in the grinding process isconsidered in the formula.
     Data points of the blade are collected in this paper. Then the reverse engineeringsoftware is used to deal with the data points. The data points are repaired and thethree-dimensional solid model of the blade is built up.
     The knowledge of probability theory, elasticity and contact mechanics is used tostudy the research on grinding removal depth based on the discrete grid dough sheet.
     A new machine for grinding both sides of blade synchronically is proposed inthis paper to improve the efficiency. The four axes coordinated would be used to cut machining time in the synchronous machining region. The converted mechanism formultiple contact wheels is also developed to fit the blade surface with different radiusof curvature.
     Laser measurement system is used to measure the repetitive position error ofX-orient and Z orient. The measure results show that the errors are in the allowedrange.
     The axial contact stiffness of the feed system is studied based on the elasticcontact theory. Then a control method based on repetitive compensation for the Xaxial transmission system of the double-side blade grinding machine is proposed inthis paper. The simulation results show that the PID controller based on the repetitivecompensation controller had good robustness and high accuracy.
     Modal analysis is the key point to improve the system performance. The modalanalysis of the machine is studied used the finite element analysis software and themodal testing system. The results are helpful to improve the performance of themachine.
引文
[1]朱凯旋,陈延君,黄云.叶片型面砂带磨削技术的现状和发展趋势[J].航空制造技术,2007,(2):102–104.
    [2]许庆顺,黄云,黄智.超声振动精密砂带磨削0Cr17Ni4Cu4Nb不锈钢的试验研究[J].工具技术,2007,41:26-29.
    [3]符志华,黄云,黄智等.燃气轮机叶片材料0Cr17Ni4Cu4Nb砂带磨削性能研究[J].材料工程,2008,1:398-401.
    [4]黄云,黄智.现代砂带磨削技术及工程应用[M].重庆:重庆大学出版社,2008.
    [5]黄云,刘兆平.国内外砂带磨削技术与设备发展现状[C].第11届全国磨削技术学术会议论文集,2001.
    [6]李伯民,赵波,李清.磨料、磨具与磨削技术[M].化学工业出版社,2010
    [7] X. Ren, M. Cabaravdic, X. Zhang, et al. A local process model forsimulation of robotic belt grinding [J]. International Journal of MachineTools&Manufacture,2007,47:962-970.
    [8] Xiang Zhang, Bernd Kuhlenk tter, Klaus Kneupner. An efficient methodfor solving the Signorini problem in the simulation of free-form surfacesproduced by belt grinding [J]. International Journal of Machine Tools&Manufacture,2005,45:641-648.
    [9] X. Ren, B. Kuhlenk tter, H. Müller. Simulation and verification of beltgrinding with industrial robots [J]. International Journal of Machine Tools&Manufacture,2006,46:708–716.
    [10]黄云,朱派龙.砂带磨削技术及其应用[M].重庆大学出版社,1993.
    [11]钟华珍,吴秀英,石东平等.汽轮机叶片的数控砂带磨削[J].磨料磨具与磨削,1993,78(6):26-29.
    [12]魏源迁,钟华珍,陈日曜.汽轮机叶片砂带磨削的机理及特性[J].汽轮机技术,1993,35(6):19-21.
    [13]魏源迁,陈尔昌,陈日曜.复杂型面数控砂带磨削加工原理的探讨[J].磨床与磨削,1993(1):17-20.
    [14]邓朝晖,廖钢,罗重常等.强力砂带平面磨削的磨削机理(上)[J].制造技术与机床,1997(2):16-17.
    [15]邓朝晖,廖钢,罗重常等.强力砂带平面磨削的磨削机理(下)[J].制造技术与机床,1997(2):16-17.
    [16]邓朝晖,刘改,刘禄祥等.强力砂带平面磨削工件表面残余应力的研究[J].湖南大学学报,1995,22(6):65-69.
    [17]王福明,黄云.基于砂带磨削的铝合金磨削力和表面粗糙度的研究[J].机床与液压,2008,36(1):43-45.
    [18]陈延君,黄云,朱凯旋,黄智.精密砂带研磨特性研究及应用[J].重庆大学学报(自然科学版),2006,29(3):28-31.
    [19]黄智,黄云,张明德等.自由曲面六轴联动砂带磨削机床试验[J].重庆大学学报,2008,31(6):598-602.
    [20]黄云,许庆顺,黄智等.手持叶片砂带磨床的研制[J].机械设计与制造,2007(12):112-113.
    [21]朱派龙,黄云,徐发仁.国内砂带磨削现状展望与我见[J].机床,1993(7):3-7.
    [22]黄智.叶片型面数控砂带磨削技术基础及应用研究[D].重庆大学博士学位论文,2010.
    [23]薛小飞.汽轮机叶片材料砂带磨削的相关研究[D].东北大学硕士学位论文,2008.
    [24]朱凯旋.0Cr17Ni4Cu4Nb燃汽轮机叶片材料砂带磨削的表面质量研究
    [D].重庆大学硕士学位论文,2006.
    [25] http://www.willemin-macodel.com.
    [26] http://www.e-cuttech.com/ReadNews/6754.html.
    [27] http://gongkong.gongye360.com/news_view.html?id=93657.
    [28] http://www.syjc.cn/print.php?printid=128.
    [29]杨旭.新型叶片混联抛磨机床及其关键技术研究[D].吉林大学博士学位论文,2010.
    [30] http://www.newmaker.com/news_83282.html.
    [31]赵军.叶片并联抛光机床变轮式工具系统研究[D].吉林大学硕士学位论文,2009.
    [32] http://articles.e-works.net.cn/amtoverview/Article60994.htm.
    [33] http://www.bjswhj.com/news4.htm.
    [34] http://www.mtmt.com.cn/view.asp?tb=ztzf&id=222.
    [35]李大奇.叶片双面磨抛系统及路径规划研究[D].吉林大学博士学位论文,2011.
    [36]赵扬.机器人磨削叶片关键技术研究[D].吉林大学,2009.
    [37] H. Huang, Z.M. Gong, X.Q. Chen, etc. Robotic grinding and polishing forturbine-vane overhaul [J]. Journal of Materials Processing Technology,2002,127:140-145.
    [38] H. Huang,Y.C. Liu.Experimental investigations of machining characteristicsand removal mechanisms of advanced ceramics in high speed grinding[J].International Journal of Machine Tools&Manufacture,2003,43:811-823.
    [39] Piotr Stepien. A probabilistic model of the grinding process [J]. AppliedMathematical Modelling.2009,33:3863-3884.
    [40] E. Brinksmeier, J. C. Aurich, E. Govekar,et al. Advances in Modeling andSimulation of Grinding Processes[J]. Annals of the CIRP,2006,55:667-696.
    [41] D.A. Doman, A. Warkentin, R. Bauer. A survey of recent grinding wheeltopography models [J]. International Journal of Machine Tools&Manufacture,2006,46:343-352.
    [42] J. Xie, J. Xua, Y. Tang, et al.3D graphical evaluation of micron-scaleprotrusion topography of diamond grinding wheel [J]. International Journalof Machine Tools&Manufacture,2008,48:1254-1260.
    [43] Rogelio L. Hecker, Igor M. Ramoneda, Steven Y. Liang. Analysis of WheelTopography and Grit Force for Grinding Process Modeling [J]. Journal ofManufacturing Processes,2003,5:13-23.
    [44] T.A. Nguyen, D.L. Butler. Simulation of surface grinding process, part2:interaction of the abrasive grain with the workpiece [J]. InternationalJournal of Machine Tools&Manufacture,2005,45:1329-1336.
    [45] Tnshoff H K, Peters J, Inasaki I et al. Modelling and simulation of grindingprocesses [J].Annals of the CIRP,1992,41(2):677-688.
    [46] Zhen Bing Hou, Ranga Komanduri. On the mechanics of the grindingprocess–Part I. Stochastic nature of the grinding process [J]. InternationalJournal of Machine Tools&Manufacture,2003,43:1579-1593.
    [47] Chen X, Rowe W B. Analysis and simulation of the grinding process. Part I:generation of the grinding wheel surface [J]. International Journal ofMachine Tools and Manufacture,1996,36(8):871-882.
    [48] Koshy P, Jain V K, Lal G K. Stochastic simulation approach to modellingdiamond wheel topography [J]. International Journal of Machine Tools andManufacture,1997,37(6):751-761.
    [49] Torrance A A, Badger J A. The relation between the traverse dressing ofvitrified grinding wheels and their performance [J]. International Journal ofMachine Tools and Manufacture,2000,40(12):1787-1811.
    [50] Hegeman J B J W. Fundamentals of Grinding: Surface Conditions ofGround Materials [D].Netherlands: University of Groningen,2000.
    [51] A. Jourani, M. Dursapt, H. Hamdia, etc. Effect of the belt grinding on thesurface texture: Modeling of the contact and abrasive wear [J]. Wear,2005,259:1137-1143.
    [52] Huang-Cheng Chang, J.-J. Junz Wang. A stochastic grinding force modelconsidering random grit distribution [J]. International Journal of MachineTools&Manufacture,2005,48:135-1344.
    [53] J.A. Badger, A.A. Torrance. A comparison of two models to predictgrinding forces from wheel surface topography [J]. International Journal ofMachine Tools&Manufacture,2000,40:1099-1120.
    [54] J.-J. Junz Wang, C.M. Zheng. An analytical force model with shearing andploughing mechanisms for end milling [J]. International Journal of MachineTools&Manufacture,2002,42:761-771.
    [55]花国然,罗新华,张兴国.砂带磨削技术及其应用展望[J].南通工学院报,1998,14(1):9-12.
    [56] Qiang Liua, Xun Chenb, Yan Wangc, etc. Empirical modelling of grindingforce based on multivariate analysis [J]. Journal of materials processingtechnology,2008,203:420-430.
    [57] Kun Li, T. Warren Liao. Modelling of ceramic grinding processes Part I.Number of cutting points and grinding forces per grit[J]. Journal ofMaterials Processing Technology,1997,65:1-10.
    [58] R.G. Visser and R.C. Lokken, The effect of the severity of the grindingmode on the wear characteristics of grade Al2O3–and Al2O3-ZrO2–coatedabrasive belts,Wear,1981,65:325-350.
    [59]黄奇,任敬心,华定安.单颗磨粒磨削钛合金的试验研究[J].航空工艺技术,1988(6):1-4.
    [60]霍文国,徐九华,傅玉灿.砂带干式磨削Ti-6Al-4V钛合金的磨削力[J].机械工程材料,2008,32(12):19-24.
    [61] K.W. Sharp, M.H. Miller, R.O. Scattergood. Analysis of the graindepth-of-cut in plunge grinding [J], Precision Engineering,2000,24:220-230.
    [62] P.S. Sreejith, B.K.A. Ngoi. Material removal mechanisms in precisionmachining of new Materials [J]. International Journal of Machine Tools&Manufacture,2001,41:1831–1843.
    [63] Jiwang Yan, Zhiyu Zhang,Tsunemoto Kuriyagawa. Mechanism for materialremoval in diamond turning of reaction-bonded silicon carbide [J].International Journal of Machine Tools&Manufacture,2009,49:366-374.
    [64] P. Krajnik, R. Drazumeric, B. Meyer, etc. Simulation of workpiece formingand centre displacement in plunge centreless grinding [J]. InternationalJournal of Machine Tools&Manufacture,2008,48:824-831.
    [65]李长河,蔡光起,原所先.砂轮约束磨粒喷射精密光整加工材料去除模型[J].农业机械学报,2005,36(11):132-135.
    [66] Maxence Bigerelle, Benjamin Hagege, Mohamed El Mansori. Mechanicalmodelling of micro-scale abrasion in superfinish belt grinding [J]. TribologyInternational,2008,41:992-1001.
    [67] P.KOSHY, V.K.JAIN, G.K.LAL. MECHANISM OF MATERIALREMOVAL IN ELECTRICAL DISCHARGE DIAMOND GRINDING [J].International Journal of Machine Tools&Manufacture,1996,36:1173-1185.
    [68] Behrouz Shiari, Ronald E. Miller, Dennis D. Klug. Multiscale simulation ofmaterial removal processes at the nanoscale [J]. Journal of the Mechanicsand Physics of Solids,2007,55:2384-2405.
    [69] Man-Kyung Ha, Jae-Seob Kwak, Yung-Mo Hwang, etc. Machiningcharacteristics of mold material in high-speed grinding [J]. Journal ofMaterials Processing Technology,2004,155-156:1189-1195.
    [70] Rajendra K.Jain, Vijay K.Jain, P.M.Dixit. Modeling of material removaland surface roughness in abrasive flow machining process [J]. InternationalJournal of Machine Tools&Manufacture,1999,39:1903-1923.
    [71] Preston F W. The theory and design of plate glass polishing machines [J].Journal of the Society of Glass Technology,1927,11:214-256.
    [72] Lin Y Y, Lo S P, Lin S L et al. A hybrid model combining simulation andoptimization in chemical mechanical polishing process [J]. Journal ofMaterials Processing Technology,2008,202:156-164.
    [73] Brinksmeier E, Riemer O, Gessenharter A. Finishing of structured surfacesby abrasive polishing [J]. Precision Engineering,2006,30,325-336.
    [74] Moon Y. Mechanical aspects of the material removal mechanism inchemical mechanical polishing (CMP)[D]. Berkeley: University ofCalifornia,1999.
    [75] Schinhaerl M, Smith G, Stamp R et al. Mathematical modelling of influencefunctions in computer-controlled polishing: Part I [J]. Applied MathematicalModelling,2008,32:2888-2906.
    [76] Schinhaerl M, Smith G, Stamp R et al. Mathematical modelling of influencefunctions in computer-controlled polishing: Part II [J]. AppliedMathematical Modelling,2008,32:2907-2924.
    [77] Yang M Y, Lee H C. Local material removal mechanism consideringcurvature effect in the polishing process of the small aspherical lens die [J].Journal of Materials Processing Technology,2001,116:298-304.
    [78]李全胜,成晔,蔡复之等.计算机控制光学表面成形驻留时间算法研究[J].光学技术,1999,3:56-62.
    [79] Zhao J, Kondo T, Narahara H et al. Study on automatic polishing of mouldcurved surface at constant pressure intensity [J]. Chinese Journal ofMechanical Engineering,1994,7(4):296-302.
    [80] Zhao J, Saito K, Kondo T et al. A new method of automatic polishing oncurved aluminium alloy surfaces at constant pressure [J]. InternationalJournal of Machine Tools&Manufacture,1995,35(12):1683-1692.
    [81]赵继.模具自由曲面的自动研磨加工理论与实验研究[D].吉林工业大学,1997.
    [82]王桂莲.微小研抛机器人加工大型曲面工艺规划技术[D].吉林大学博士学位论文,2010.
    [83] Guilian Wang, Yiqiang Wang, Zhixing Xu. Modeling and analysis of thematerial removal depth for stone polishing [J]. Journal of materialsprocessing technology,2009,209:2453-2463.
    [84]张雷,袁楚明,周祖德等.模具曲面抛光时表面去除的建模与试验研究[J].机械工程学报,2002,38(12):98-102.
    [85] Hon-Yuen Tam, Meng Hua, Lei Zhang. Aspheric surface finishing by fixedabrasives [J]. Int J Adv Manuf Technol,2007,34:483–490.
    [86] L Zhang, H Y Tam, C-M Yuan, etc. On the removal of material along apolishing path by fixed abrasives [J]. IMechE,2002,216:1217-1225.
    [87] Chen Y, Nguyen T, Zhang L C. Polishing of polycrystalline diamond by thetechnique of dynamic friction-Part5: Quantitative analysis of materialremoval [J]. International Journal of Machine Tools&Manufacture,2009,49:515-520.
    [88] Zhang L, Tam H Y, Yuan C M et al. An investigation of material removalin polishing with fixed abrasives [J]. Proceedings of the Institution ofMechanical Engineers, Part B: Journal of Engineering Manufacture,2002,216(1):103-112.
    [89] Tam H Y, Zhang L, Hua M. Material removal by fixed abrasives followingcurved paths [J].Proceedings of the Institution of Mechanical Engineers,Part B: Journal of Engineering Manufacture,2004,218(7):713-720.
    [90] Zhang L, Tam H Y. Prediction of material removal in polishing free-formsurfaces with fixed abrasives [J]. Key Engineering Materials,2004,257-258:423-428.
    [91]龚正.砂带磨削的机理及砂带磨损的探讨[J].上海第二工业大学学报,1991(1):25-32.
    [92]曹和平,李高峰,洪在地.砂带磨削接触有限元分析[J].煤矿机械,2008,29(10):82-84.
    [93]毛逸宁,王宛山,单瑞兰等.砂带磨削温度的试验研究[J].东北工学院学报,1993,14(2):134-139.
    [94]徐蔡俊,徐九华,傅玉灿等.钛合金砂带磨削磨粒磨损研究[J]东北工学院学报,1993,14(16):134-139.
    [95]石璟.面向叶片加工的数控砂带抛磨系统的研究[D].江南大学硕士学位论文,2009.
    [96]王龙山,李国发.磨削过程模型的建立及其计算机仿真[J].中国机械工程,2002,13(1):1-4.
    [97]钱文明.汽轮机叶片数控砂带磨床关键技术研究[D].扬州大学硕士学位论文,2008.
    [98]钱文明,王隆太,季源源等.汽轮机叶片数控砂带磨削工艺分析与磨床结构设计[J].工艺与装备,2007(10):89-91.
    [99]任守良.钛合金砂带磨削研究[D].南京航空航天大学硕士学位论文,2007.
    [100]傅蔡安,陈佩胡.叶片数控砂带复合磨削加工方法的研究[J].机械制造,2007,45(520):5-8.
    [101]王维朗.砂带磨削金属材料的工艺及机理研究[D].重庆大学硕士学位论文,2006.
    [102]黄云,黄智.砂带磨削的发展及关键技术[J].中国机械工程,2007,18(18):2263-2267.
    [103]李成群,负超,张习加等.机器人柔性磨削机床的恒磨削力补偿机构及其动力学分析[J].机械科学与技术.2008,27(6):701-705.
    [104]庞涛,郭大春,庞楠.超精密加工技术[M],北京:国防工业出版社,2000
    [105] I. Marinescu, M. Hitchiner, E. Uhlmann, et al. Handbook of machining withgrinding wheels [M], Boca Raton, CRC Press,2007.
    [106] Jinyuan Tang, Jin Du, Yongping Chen.Modeling and experimental study ofgrinding forces in surface grinding [J]. Journal of materials processingtechnology,2009,:209:2847-2854.
    [107]李伯民,赵波等.实用磨削技术[M],北京:机械工业出版社,1996.
    [108] U.S. Patnaik Durgumahanti, Vijayender Singh,and P. Venkateswara Rao.ANew Model for Grinding Force Prediction and Analysis.InternationalJournal of Machine Tools&Manufacture [J],2010,50:231-240.
    [109] T.M.A. Maksoud. Heat transfer model for creep-feed grinding [J]. Journalof Materials Processing Technology,2005,168:448-463.
    [110] Tsunemoto Kuriyagawa, Katsuo Syoji, Hideo Ohshita. Grindingtemperature within contact arc between wheel and workpiece inhigh-efficiency grinding of ultrahard cutting tool materials [J]. Journal ofMaterials Processing Technology,2003,136:39-47.
    [111] Dinesh G.Bansal, JeffreyL.Streator. Design curves for temperature rise insliding elliptical contacts [J]. Tribology International,2009,42:1638-1650.
    [112] Zhen Bing Hou, Ranga Komanduri. On the mechanics of the grindingprocess, Part III—thermal analysis of the abrasive cut-off operation[J].International Journal of Machine Tools&Manufacture,2004,44:271-289.
    [113] Benardos P G, Vosniakos G C. Predicting surface roughness in machining:a review [J].International Journal of Machine Tools&Manufacture,2003,43:833-844.
    [114] Chang S H, Farris T N, Chandrasekar S. Contact Mechanics ofSuperfinishing [J]. Journal of Tribology,2000,122:388-393.
    [115] Hecher R L, Liang S Y. Predictive modeling of surface roughness ingrinding [J]. International Journal of Machine Tools&Manufacture,2003,43:755-761.
    [116] Xi F F, Zhou D. Modeling surface roughness in the stone polishing process[J]. International Journal of Machine Tools&Manufacture,2005,45:365-372.
    [117]修世超,李长河,蔡光起.磨削加工表面粗糙度理论模型修正方法[J].东北大学学报(自然科学版),2005,26(8):770-772.
    [118] Savio G, Meneghello R, Concheri G. A surface roughness predictive modelin deterministic polishing of ground glass moulds [J]. International Journalof Machine Tools&Manufacture,2009,49:1-7.
    [119] Atkins A G, Liu J H. Toughness and the transition between cutting andrubbing in abrasive contacts [J]. Wear,2007,262:146-159.
    [120]孙玉文,刘伟军,王越超.基于三角网格曲面模型的刀位轨迹计算方法[J].机械工程学报,2002,38(10):50-53.
    [121]齐宝明.三角网格离散曲率估计和Taubin方法改进[D].大连理工大学硕士学位论文,2008.
    [122]蒋书运,祝书龙.带滚珠丝杠副的直线导轨结合部动态刚度特性[J].机械工程学报,2010,46(1):92-99.
    [123]毛宽民,李,斌,谢波等.滚动直线导轨副可动结合部动力学建模[J].华中科技大学学报(自然科学版),2008,36(8):85-88.
    [124]吴长宏.滚珠丝杠副轴向接触刚度的研究[D].吉林大学硕士学位论文,2008.
    [125] Xie Dong, Zhu Jianqu, Wang Feng. Fuzzy PID control to feed servo systemof CNC machine tool [J]. Procedia Engineering,2012,29:2853-2858.
    [126] K.Z. Tang, S.N. Huang, K.K. Tan, T.H. Lee. Combined PID and adaptivenonlinear control for servo mechanical systems [J]. Mechatronics,2004,14:701–714.
    [127] Paul I. Ro, Wonbo Shim, Sanghwa Jeong. Robust friction compensation forsubmicrometer positioning and tracking for a ball-screw-driven slide system[J]. Precision Engineering,2000,24:160–173.
    [128] Bojie Hou, Jianshe Gao, Xiaoqing Li, Yunfei Zhou. Study on repetitive PIDcontrol of linear motor in wafer stage of lithography [J]. ProcediaEngineering,2012,29:3863–3867.
    [129]苏义鑫,蔡丹丹,王雁.基于重复补偿控制的交流伺服系统的PID控制[J].控制工程,2011,18(5):685-687.
    [130]魏要强.基于空运行激励的数控机床结构实验模态分析新方法[D].华中科技大学博士学位论文,2010.
    [131]魏要强,李斌,毛新勇等.数控机床运行激励实验模态分析[J].华中科技大学学报(自然科学版),2011,39(6):79-82.
    [132] Magne Bratland, Bj rn Haugen, Terje R lvag. Modal analysis of activeflexible multibody systems [J]. Computers and Structures,2011,89:750-761.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700