压电厚膜驱动的变形镜技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应光学技术对波前畸变进行实时测量并校正,能够补偿诸如大气湍流等动态扰动的影响,获得接近系统衍射极限的分辨率。随着自适应光学技术的发展,已经在天文望远镜、视网膜成像、激光光束整形、光通信等领域得到应用。变形镜作为一种波前校正器,是自适应光学系统的核心部件。其中,基于压电驱动的变形镜以其大变形量、高带宽等优点受到研究者的青睐。本论文以PZT厚膜作为驱动材料,以研究低成本、低驱动电压、大变形量变形镜为目标,对压电厚膜MEMS变形镜和双驱动模式单压电片变形镜这两种变形镜进行研究。
     (1)压电厚膜MEMS变形镜研究。首先采用影响函数矩阵法研究变形镜参数对波前校正能力的影响,完善基于薄板理论和压电方程的电-机械耦合模型预测变形镜的变形行为。在此基础之上,对变形镜的结构参数如排列方式、致动器数目、影响函数、致动器尺寸、PZT/Si层厚度、镜面厚度等进行优化设计。研究压电厚膜MEMS变形镜的制作流程及关键工艺,采用研磨抛光技术实现高平整度硅基PZT的制备,成功研制满足波前校正要求的61单元变形镜样机。最后对变形镜样机进行测试,结果显示:100V工作电压获得约5μm的致动器变形量,一阶谐振频率为18kHz,16mm口径内PV幅值约为21μm,采用19单元和37单元对Zernike多项式像差进行重构,实验结果证明其具有较强的校正能力并适用于高阶像差的校正。
     (2)双驱动模式单压电片变形镜研究。该变形镜由两种类型致动器驱动:中心的致动器阵列用于校正波前像差,环形致动器用于产生整体偏置,只用正向驱动电压实现了双向波前校正能力。论文对其进行建模、优化、制备及测试。结果显示该变形镜的致动器变形量约为5μm@100V,最大离焦幅值为~15pm,初始镜面校平后优于λ/20RMS能够精确重构前5阶Zernike多项式面形,显示其优异的波前校正能力。该变形镜具有低成本、低驱动电压、大变形量等优势,具有在自适应光学中应用的潜力。
     (3)变形镜控制方法研究。研究基于波前反馈的控制方法,包括影响函数矩阵法和基于最速下降的闭环控制方法。通过影响函数方法实现变形镜初始镜面的校平,并重构Zernike多项式像差表征变形镜的波前校正性能。研究变形镜在光斑整形中的应用并搭建相应的实验装置。采用点扩散函数研究波前像差对光斑质量的影响。研究基于搜索算法(如模拟退火算法)的闭环反馈控制算法。经过变形镜对光束的校正,系统获得了按近衍射极限的聚焦光斑,为下一步应用奠定基础。
     基于以上研究,本论文在以下几个方面具有创新之处:(1)成功制备了满足波前校正要求的压电MEMS变形镜这一新类型变形镜,并对其校正性能进行表征;(2)提出了一种新型的双驱动模式单压电片变形镜,以正向驱动电压实现了双向波前校正能力;(3)搭建了基于泰曼-格林干涉仪的变形镜实验平台,可进行基于波前反馈和基于搜索算法的控制算法的实验研究。
Adaptive optics (AO) measures and corrects the wavefront distortion in real-time to overcome the dynamic wavefronts aberrations of the imaging system, such as atmospheric disturbances, achieving the diffraction limit resolution. With the development of the AO, it has been investigated in astronomical telescopes, retinal imaging, laser beam shaping, optical communication and so on. Deformable mirror (DM) worked as wavefront corrector is a core component and determines the performance of the AO system. Among various kinds of developed DMs, piezoelectric-driven DM is attracted by researchers due to its large deformation, high frequency response. In this dissertation, in order to develop DMs with low-cost, large deformation and low drive voltage, two types of DMs based on PZT thick films, PZT-thick-film MEMS DM and dual-drive mode unimorph DM, were studied.
     (1) For the PZT-thick-film MEMS DM, the correction capability of the DM was investigated using the influence function matrix method. The electrics-mechanics coupling model of the PZT-thick-film MEMS DM based on the theory of plates and shell and piezoelectric equations was developed to predict the DM deformation. Based on thses models, the parameters of the DM, such as actuator arrangement, actuator number, influnce function, actuator size, the PZT/Si layer thicknesses and the mirror thickness, were optimized. The fabrication processes of the PZT-thick-film MEMS DM, including PZT thick films grinding and polishing techniques, were intestigated. A61-element DM prototype was successfully developed, which meets the requirements of the wavefront aberration correction. The stroke was measured of approximately5μm at100V. The first order resonant frequency is18kHz. And peak to valley (PV) amplitude is2.1μm at16mm operture which controlled by19actuators. The generation of Zernike polynomials was performed using19actuators and37actuators, which demonstrates that the PZT-thick-film MEMS DM has strong correction capabilities even for higher-order aberrations.
     (2) A dual-drive mode unimorph DM driven by positive voltage is presented. The developed DM consists of both an inner actuator array and an outer ring actuator. The inner actuator array is used for aberration correction, while the outer ring actuator is used to generate an overall defocus bias. This dissertation describes the design, fabrication and characterization of the DM. The measurements show that the device has the maximum defocus amplitude of~15μm and the actuator deflection of~5um at100V. After correction, mirror surface better than λ/20RMS was achieved. Replication of Zernike polynomial up to5th order indicates it has excellent wavefront correction ability. Considering the advantages of low-cost, large deformation and low driving voltage, this DM is satisfactory for low-cost AO applications.
     (3) The control methods of DM are investigated. The control methods based wavefront feedback were studied, including influence function matrix method and the closed-loop control method based on steepest-descent algorithm are investigated. The correction of the initial surface and generation of Zernike polynomials shapes were characterized using influence function matrix method. The application of the DM for laser beam shaping was studied. Point Spread Function with wavefront aberrations was used to evaluate the spot quality. The control method based search algorithms, such as simulated annealing algorithm, were researched for wavefront sensor-less AO system. After the correction using the developed DM, the sysrem achieved the diffraction limit focal spot. This experiment lays the foundation for the applications of the DMs.
     There are some creative points in this dissertation as follows:(1) a piezoelectric MEMS DM which is suitable for the AO applications is develop, and the correction performances are characterized,(2) a new dual-drive mode unimorph DM is proposed, which can achieve bidirectional wavefront correction capability only using a positive drive voltage;(3) a test platform based on Twyman-Green interferometer for the DM performance measuement is developed. The experiments for both the wavefront feedback control algorithm and the search-based algorithm for wavefront sensor-less AO can be tested.
引文
[I]R. K. Tyson, [Principles of adaptive optics], (1991).
    [2]姜文汉,“自适应光学技术,”自然杂志,28(1),7-13(2006).
    [3]周仁忠,阎吉祥,赵达尊等,[自适应光学]国防工业出版社,(1996).
    [4]D. A. Horsley, H. Park, S. P. Laut et. ai, "Characterization of a bimorph deformable mirror using stroboscopic phase-shifting intcrferometry," Sensors and Actuators a-Plrysical,134(1), 221-230(2007).
    [5]饶学军,凌宁,姜文汉,“用数字干涉仪测量变形镜影响函数的实验研究,”光学学报,15(10),1446-1449(1995).
    [6]李新阳,“哈特曼夏克传感器的泽尼克模式波前复原误差,”光学学报,22(10),(2002).
    [7]V. V. Voitsekhovich, "Phase-Retrieval Problem And Orthogonal Expansions-Curvature Sensing," journal of the Optical Society of America a-Optics linage. Science and Vision, 12(10),2194-2202(1995).
    [8]韩杏子,俞信,“微变形镜在自适应光学中的应用与发展,”光学技术,34(6),836-840(2008).
    [9]M. J. Barberio, and K. Wagner, [Next-generation deformable mirror electronics], (2004).
    [10]俞信,“自适应光学进展及展望,”光学技术,3,2-6(1993).
    [11]H. W. Babcock, "The Possibility of Compensating Astronomical Seeing," Publications of the Astronomical Society of the Pacific,65(386),229 (1953).
    [12]J. W. Hardy, J. E. Lefebvre, and C. L. Koliopoulos,"Real-time atmospheric compensation, JOSA,67(3),360-369 (1977)
    [13]L. C. Bradley, and J. Herrmann, "Phase Compensation For Thermal Blooming," Applied Optics,13(2),331-334(1974).
    [14]D. P. Greenwood, and C. A, Primmerman, "Adaptive optics research at Lincoln Laboratory,' Lincoln Laboratory Journal,5(1), (1992).
    [15]F. Merkle, "Adaptive optics for the European Very Large Telescope (VLT)," Proceedings of the International Topical Meeting on Image Detection and Quality, (1986).
    [16]P. J. Lena, "Astrophysical results with the COME-ON+adaptive optics system" Proc. SPIE, 2201,1099-1109(1998).
    [17]"http://cfao.ucolick.org/."
    [18]A. G. Alcksandrov, A. L. Rnkosuev, V. Y. Zavalova et al, "Adaptive system for high power lasers," SPIE,5120,156-163 (2003).
    [19]B. G. Henderson, and J. D. Mansell, "Laser Beam Shaping with Membrane Deformable Mirrors," Advanced Wavefront Control:Methods, Devices, and Applications Vi,7093, U125-U134(2008).
    [20]S. Fourmaux, S. Payeur, A. Alexandrov et al, "Laser beam wavefront correction for ultra high intensities with the 200 TW laser system at the Advanced Laser Light Source," Optics Express, 16(16),11987-11994(2008).
    [21]W. Lubeigt, G. Valentine, and D. Burns, "Enhancement of laser performance using an intracavity deformable membrane mirror," Optics Express,16(15),10943-10955 (2008).
    [22]J. Wenhan, H. Shufu, L. Ning et al., "Hill-climbing wavefront correction system for large laser engineering," Proceedings of the SPIE-The International Society for Optical Engineering. 965,(1989).
    [23]Y. Zhang, Z. Yang, C. Guan et al., "Dynamic aberrations correction in an ICF laser system," Adaptive Oprics for Industry and Medicine.102,261-271 (2005).
    [24]N. Doble, and D. R. Williams, "The application of MEMS technology for adaptive optics in vision science," Ieee Journal of Selected Topics in Quantum Electronics,10(3),629-635 (2004).
    [25]T. Weyrauch, M. A. Vorontsov, G. W. Carhart el al., "Adaptive optical antennas:design and evaluation-art. no.6708OR," Atmospheric Optics:Models, Measurements, and Target-in-the Loop Propagation,6708, OR708-OR708 (2007).
    [26]B. Potsaid, and J. T. Y. Wen, "Adaptive scanning optical microscope:large field of view and high-resolution imaging using a MEMS deformable mirror," Journal of Microlithography, Microfabrication, and Microsystems,02)009 (10 pp.) (2008).
    [27]M.J. Booth, "Adaptive optics in microscopy," Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences,365,2829-2843 (2007).
    [28]姜文汉,“光电技术研究所的自适应光学技术,”光电工程,22(1),1-13(1995)
    [29]宁禹,[双压电片变形反射镜的性能分析与应用研究],(2008)
    [30]程少园,胡立发,曹召良等,“人眼视网膜成像自适应光学系统的初步试验和改进,”光子学报,38(6),1491-1493(2009)
    [31]X. H. Xu, B. Q. Li, Y. Feng et al, "Design, fabrication and characterization of a bulk-PZT-actuated MEMS deformable minor," Journal of Micromechanics and Microengineerig.17(12),2439-2446 (2007).
    [32]许晓慧, [基于PZ厚膜的MEMS微变形镜], (2008).
    [33]H. B. Yu,H. Q. Chen, and J. Li, "Development of a novel 3X3 micromirror array for light modulation," Journal of Micromechanics and Microengineenng,14(11),1544-1547 (2004).
    [34]余洪斌,[MEMS-DMs理论设计及工艺研究],(2005).
    [35]杨强,朱建平,曹根瑞,“双压电变形反射镜的优化设计,”光学学报,19(9),1164-1169(1999).
    [36]D. Y. Qiao, S. J. Wang, and W. Z. Yuan, "A continuous-membrane micro deformable mirror based on anodic bonding of SOI to glass wafer," Microsystern Technologies-Micro-and Nanosystems-Infoiination Storage and Processing Systems, 16(10), 1765-1769 (2010).
    [37]李开成,[大冲程高表面质量MEMS1微变形镜实现技术的研究],(2007)
    [38]孙全,[基于PolyMUMPs技术的微机电变形镜的研究]国防科学技术大学,长沙(2011).
    [39]W. Jung, C. Rao, Y Zbanj et al., "Adaptive optics at the IOE, CAS," Proceedings of the S PIE, 72090) (12 pp.) (2009).
    [40]R. Changliui, W. Kai, Z. Xuejim et al., "First observations on the 127-element adaptive optical system for 1.8m telescope," Proceedings of the SPIE- he International Society for Optical Engineering, 7654111 (8 pp.) (2010).
    [41]饶长辉,姜文汉,张雨东等,“云南天文台1,2m望远镜61单元自适应光学系统,”量子电子学报,23(3),295-302(2006)
    [42]凌宁,张雨东,饶学军等,“用于活体人眼视网膜观察的自适应光学成像系统,”光学学报,24(9),(2004).
    [43]耿则勋,陈波,工振国等、[自适应光学图像复原理论与方法]科学出版社,(2010).
    [44]苏定强,崔向群,“主动光学—新一代大望远镜的关键技术,”天文学进展,17(1),1-14(1999).
    [45]J. M. Beckers, "Adaptive Optics for Astronomy - Principles, Performance. and Applications,' Annual Review of Astronomy and Astrophysics, 31, 13-62 (1993).
    [46]I. de Pater, S. G. Gibbard, B. A. Macintosh et al., "Keck adaptive optics images of Uranus and its rings," Icarus, 160(2), 359-374 (2002).
    [47]NI. A. van Dam, D. Le Mignant, and B. A. Macintosh, "Performance of the Keck Observatory adaptive-optics system," Applied Optics, 43(29), 5458-5467 (2004).
    [48]C. F. Max, B. A. Macintosh, S. G. Gibbard et al., "Cloud structures on Neptune observed with Keck Telescope adaptive optics,"Astronomical Journal. 125(1), 364-375 (2003).
    [49]H. Takami, N. Takato, Y. fIayano el al., "Performance of Subaru Cassegrain Adaptive Optics system," Publications of the Astronomical Society oi}Japan, 56(1), 225-234 (2004).
    [50) Y. Minowa, Y. Hayano, S. Oya et al., "Performance of Subaru adaptive optics system AO 188,' Adaptive Optics Systems li, 7736, (2010).
    [51]D. Gavel, "MLMS for the next generation of giant astronomical telescopes." SPIE, 6113, 611307 (2006).
    [52]R. Dekany, M. Britton, D. Gavel et al., "Adaptive optics requirements definition for TMT," (2004).
    [53]D. Gallagher, and J. Beckert, "Ground testing of the Wide Field/Planetary Camera-II, or 'Bringing Hubble back into focus'" AIAA, Aerospace-Ground Testing Conference,18th, Colorado Springs, CO; UNITED STATES;,94-2625 (1994).
    [54]P. A. Sabelhaus, J. Decker, and Ieee, "James Webb Space Telescope (JWST) project Overview," IEEE (2006).
    [55]D. Redding, S. Basinger, A. E. Lowman el al., "Wavefront sensing and control for a Next Generation Space Telescope," SPIE (1998).
    [56]张士胜,王玲,王康孙,“自适应光学技术的眼科应用,”国际眼科纵览,30(4),224-227(2006).
    [57]S. S. Olivier, "Adaptive optics applications in vision science," Optical Engineering at the Lawrence Livcrmore National Laboratory,5001,50-55 (2003).
    [58]A. Roorda. F. Romcro-Borja, W. J. Donnelly et al., "Adaptive optics scanning laser ophthalmoscopy," Optics Express,10(9),405-412 (2002).
    [59]H. Li, J. Lu, G. H. Shi et al., "Real-time blind deconvolution of retinal images in adaptive optics scanning laser ophthalmoscopy," Optics Communications,284(13),3258-3263 (2011).
    [60]E. J. Fernandez, B. Hermann, B. Povazay et al., "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Optics Express. 16(15),11083-11094(2008).
    [61]D. T. Miller, J. L. Qu, R. S. Jonnal et al., "Optical coherence tomography for an adaptive optics retina camera," SPIE,4829,641-643 (2003).
    [62]R. J. Zawadzki, B. Cense, Y. Zhang et al., "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Optics Express,16(11),8126-8143 (2008).
    [63]Z. Yuhua, and A. Roorda, "MEMS deformable mirror for ophthalmic imaging," Proceedings of the SPIE,61130A-1-8 (2006).
    [64]R. J. Zawadzki, S. S. Choi, A. R. Fuller et al., "Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography," Optics Express,17(5), 4084-4094 (2009).
    [65]E. J. Fernandez, B. Povazay, B. Hermann et al., "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Research,45(28).3432-3444 (2005).
    [66]N. Doble, G. Yoon. L. Chen et al., "Use of a microelectromechanical mirror tor adaptive optics in the human eye," Optics Letters,27(17),1537-1539 (2002).
    [67]A. Dubra, D. C. Gray, J. I. W. Morgan et al, "MEMS in adaptive optics scanning laser ophthalmoscopy:achievements and challenges," Mems Adaptive Optics li,6888,88803 (2008).
    [68]J. T. Salmon, E. S. Bliss, T. W. Long et al, "Real-time wavefront correction system using a zonal deformable mirror and a Hartmann sensor " Proc. SPIE,1542,459-467 (1991).
    [69]A. V. Kudryashov, and V. V. Samarkin, "Control Of High-Power Co2-Laser Beam By Adaptive Optical-Elements," Optics Communications,118(3-4),317-322 (1995).
    [170]胡绍云,钟鸣,左研等,“自适应光学在固体战术激光武器中的应用,”激光与光电子学进展,43(2),(2006).
    [71]P. Yang, Y. Ning, X. Lei et al, "Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror,"Optics Express, 18(7),7121-7130(2010).
    [72]刘良清,和袁孝,“微变形镜内腔补偿激光模式畸变研究,”强激光与粒子束,19(5),7 18-722(2007).
    [73]T. A. Planchon, j. P. Rousseau, F. Burgy el al, "Adaptive wavefront correction on a 100-TW/10-Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation," Optics Communications,252(4-6),222-228 (2005).
    [74]Z. J. Ren, X. Y. Liang, M. B. Liu et al, "Wavefront Correction of Pettawat Laser System by a Deformable Mirror with 50 mm Active Aperture," Chinese Physics Letters,26(12), (2009).
    [75]E. Zeek, K. Maginnis, S. Backus et al, "Pulse compression by use of deformable mirrors,' Optics Letters,24(7),493-495 (1999).
    [76]P, Wnuk, C. Radzewicz, and J. S. Krasinski, "Bimorph piezo deformable mirror for femtosecond pulse shaping," Optics Express,13(11),4154-4159 (2005).
    [77]张志伟,马骏,俞信,“微小型自适应光学系统及其在星载光学遥感器上的应用,”红外与激光,29(1),49-54(2000).
    [78]赵秋艳,“美国成像侦察卫星的发展,”光机电信息,10,15-23(2001).
    [79]X. Tao, B. Fernandez, O. Azucena et al, "Adaptive optics confocal microscopy using direct wavefront sensing," Optics Letters,36(7),1062-1064 (2011).
    [80]R. D. Simmonds, P. S. Salter, A. Jesacher et al, "Three dimensional laser microfabrication in diamond using a dual adaptive optics system," Optics Express,19(24),24122-8 (2011).
    [81]G. Y. Zhou, and M. Gu, "Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal," Optics Letters,31(18),2783-2785 (2006).
    [82]M.). Booth, M. Schwertner, T. Wilson et ai, "Predictive aberration correction for multilayer optical data storage," Applied Physics Letters,88(3), (2006).
    [83]E. Theofanidou, L. Wilson, W. J. Hossack et al., "Spherical aberration correction for optical tweezers," Optics Communications,236(1-3),145-150 (2004).
    [84]N. Doble, D. T. Miller, G. Yoon et al., "Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,' Applied Optics,46(20),4501-4514 (2007).
    [85]J. B. Stewart, T. G. Bifano, S. Cornelissen et al., "Design and development of a 331-segment tip-tilt-piston mirror array for space-based adaptive optics," Sensors and Actuators A,138, 230-233 (2007).
    [86]D. Q. Su, and X. Q. Cui, "Active optics in LAMOST," Chinese Journal of Astronomy and Astrophysics,4(1),1-9(2004).
    [87]J. E. Pearson, and S. Hanson, "Experimental Studies of A Dcformable Mirror Adaptive Optical System," Journal of the Optical Society of America,67(3),325-333 (1977)-
    [88]"http://www.cilas.com/adaptative-mirrors.htm.'
    [89]"http://www.as.northropgrumman.com/products/xinetics_deformable_mirror/index.html."
    [90]M. A. Ealey, and J. T. Trauger, "High-density deformable mirrors to enable coronographic planet detection," Proceedings of the SPIE-The International Society for Optical Engineering, 5166(1),172-9(2004).
    [91]H. Zhu, J. M. Mioa, Z. H. Wang et al, "Tabrication of ultrasonic arrays with 7 mum PZT thick films as ultrasonic emitter for object detection in air," Sensors and Actuators a-Physical, 123-24,614-619 (2005).
    [92].1. Xie, M. Hu, S. F. Ling et al., "Fabrication and characterization of piezoelectric cantilever for micro transducers," Sensors and Actuators a-Physical.126(1),182-186 (2006).
    [93]孙慷,张福学,[压电学]国防工业出版社,(1984)
    [94]Y. Hishinuma, and E.-H. E. Yang, "Piezoelectric Unimorph Microactuator Arrays for Single-Crystal Silicon Continuous-Membrane Deformable Mirror," Journal of Microelectromechanical Systems,15(2),370-379(2006).
    [95]E. H. Yang. Y. Hishmuma, H. G. Cheng et al., "Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane," Journal of Microelectromechanical Systems,15(5),1214-1225 (2006).
    [96]L. Miller, M. Agronin, R. Bartman et al., "Fabrication and characterization of a micromachined deformable mirror for adaptive optics applications," SPIE,421-430 (1993).
    [97]S. Bonora, and L. Poletto, "Push-pull membrane mirrors for adaptive optics." Optics Express, 14(25),11935-11944(2006).
    [98]G. Vdovin, P. M. Sarro, and S. Middelhoek, "Technology and applications of micromachined adaptive minors," Journal of Micromechanics and Microengineering,9(2), R8-R19 (1999).
    [99]S. A. Cornelissen, P. A. Bierden, and T. G. Bifano, "A 4096 Element Continuous Facesheet MEMS Dcformable Mrror for High-Contrast Imaging," Proc. of SPIE,6888, (2008).
    [100]T. Bifano, "ADAPTIVE IMAGING MEMS deformable minors," Nature Photonics,5(1), 21-23 (2011).
    [101]"http://www.irisao.corn/."
    [102]M. A. Helmbrecht, H. Min, C. J. Kempf et al., "The Iris AO S163-X, a 489 actuator, 163-piston/tip/tilt-segment MEMS DM," Proceedings of the SPIE-The International Society for Optical Engineering,74660E (8 pp.) (2009).
    [103]"http://www.bostonmicromachines.com/productjon_ products.htm."
    [104]F. Rooms, S. Camet, J. Charton et al, [A new deformable minor and experimental setup for free-space optical communication], (2009).
    [105]E. Oumldlund, H. F. Raynaud. C. Kulcsaacuter et al., "Control of an electromagnetic deformable mirror using high speed dynamics characterization and identification," Applied Optics,49(31), G120-G128 (2010).
    [106]M. Loktev, G. Vdovin, N. Klimov et al., "Liquid crystal wavefront corrector with modal response based on spreading of the electric field in a dielectric material," Optics Express,15(6), 2770-2778 (2007).
    [107]姜文汉,王春红,吴旭斌等,“37单元自适应光学系统,”光电工程,22(1),38-45(1995)
    [108]凌宁,官春林,王岚等,“61单元分立式压电变形反射镜的研制,”强激光与粒子束10(4),527-530(1998)
    [109]C. H. Rao, W. H. Jiang, Y. D. Zhang et al., "Progress on the 127-element adaptive optical system for 1.8m telescope," Adaptive Optics Systems,7015, Y155-Y155 (2008).
    [110]周虹,宁禹,官春林等,“双压电片变形反射镜样镜的设计与研制,”光学学报,29(6),1437-1442(2009)
    [111]宁禹,余浩,周虹等,“20单元双压电片变形镜的性能测试与闭环校正实验研究,”物理学报,58(4),4717-4723(2009)
    [112]Y. Jun. H. Fangrong, C. Dongmei et al., "Design and analysis of repulsive electrostatic driven MEMS actuators," Proceedings of the SPIE-The International Society for Optical Engineering,72090K (9 pp.) (2009).
    [113]F. R. Hu, J. Yao. C. K. Qiu et al., "A MEMS microminor driven by electrostatic force Journal of Electrostatics,68(3).237-242 (2010).
    [114]Q. Da-yong. R. Fu-bo, Y. Wei-zheng et al., "Design and Comparison of Several Segmented Micro Defonnable Mirrors," Aviation Precision Manufacturing Technology, 41(5), 5 (2005).
    [115]余洪斌,陈海清,竺子民等,“星载自适应光学系统新型可变形反射镜的研究,”压电与声光,27(4),352-355(2005).
    [116]向东,陈海清,王青玲等,“带透明电极可变形反射镜的研制,”光电子.激光,17(7)849-853 (2006).
    [117]S. Quan, and J. Zongfu, "Double-layer PMN bimorpli deforinable mirror system optimization design and fabrication technology," Proceedings of the SPIE, 75131K (2009).
    [118]W. Zhang, D. Lots, J. Bai et al., "Study of a deformablc micro-mirror based on PZT films," J. Opt, A: Pure Appl. Opt., (2007).
    [119]Z. Kelu, L. Jian, and C. Jiaru "A novel wet etching process of Pb(Zr,Ti)O/sub 3/ thin films for applications in microclectrornechanical system," Japanese Journal of Applied Physics, 43(6B), 3934-7 (2004).
    [120]X. Xiao-Hui, and C. Jia-Ru, "Preparation of a high-quality PZT thick film with performance comparable to those of bulk materials for applications in MEMS," Journal of Micromechanics and Microengineering, 18, 065001 (2008).
    [121]G. T. Kennedy, and C. Paterson, "Correcting the ocular aberrations of a healthy adult population using microelectroinechanical (MEMS) dcforn-able mirrors," Optics Communications, 271(1), 278-284 (2007).
    [122]"Airborne LaserAdvanced Technology," Proceedings of the SPIE - The International Society for Optical Engineering. 3381, (1998).
    [123]M. A. Ealey, and J. A. Wellman, "Xinetics low-cost deformable mirrors with actuator replacement cartridges," SPIE, 2201, (1994).
    [124]S. A. Cornelissen,J. A. Bierden, T. G. Bifano et al., "4096-elernent continuous face-sheet MEMS defoimable inin-or for high-contrast imaging," J. Micro/Nanolith. MEMS MOEMS, 8(3), 031308 (2009).
    [125]M. Schwertner, M. J. Booth, and T. Wilson, "Adaptive optics for microscopy, optical data storage and micromachining," Advanced Wavefront Control: Methods, Devices, and Applications IV, 6306, A3060-A3060 (2006).
    [126]S. Li, and S. Chen, "Amilytical analysis of a circular PZT actuator for valvcless micropumps,' Sensors and Actuators A: Physical, 104(2), 151-161 (2003).
    [127]何福保,沈亚鹏,[板壳理论].(1993).
    [128]S. Timoshenko, and S. Woinowsky-Kricger, [Theory of-Plates and Shells] McGraw-Hill, New York(1995).
    [129]h't. A. Ealev, and J. A Wellman, "Deformable mirrors: design fundamentals, key performance specifications, and parametric trades," SPIE, 1543, (1991).
    [130]P. Hyunkyu, and D. A. Horsley, "Single-crystal PMN-PT MEMS Deformable Minors,' Journal of Microelectromechanical Systems, 20(6), (2011).
    [131]T. Zhang, and Q. M. Wang, "Performance evaluation of a valveless microputnp driven by a ring-type piezoelectric actuator," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 53(2), 463-473 (2006).
    [132]郑可炉,褚家如,鲁健等,“PZT铁电薄膜湿法刻蚀技术研究,”压电与声光.27(2),209-212(2005)
    [133]袁巨龙,王志伟,文东辉等,“超精密加工现状综述,”机械工程学报,43(1),35-48(2007).
    [134]M. J. Barberio, rind K. Wagner, "Next-Geneiation Defonriable Minor Electronics.'
    [135]H. Song, A. N. Sitnonov, and G. Vdovin, "Multiplexing Control of a Multichannel Piezoelectric Defog niriblc Mir ror." Proceedings of the SPIE, 6018 60 t 81 F (2010).
    [136]杨国光,[近代光学测试技术]浙江大学出版社,(1993)
    [137]蒋震宇,缪泓,张青川等,“调制度分析在等步长相移法相位展开中的应用,”光学学报.24(8),1032-1038(2004).
    [138]崔玉国,孙宝元,董维杰等,“压电陶瓷执行器迟滞与非线性成因分析,”光学精密工程,11(6),270-275(2003)
    [139]B. R. Oppenheimer, D. Palmer, R. Dekany et al., "Investigating a Xinetic:s Eric deformable mirror," Adaptive Optics and Applications. 3126, 569-579 (1997).
    [140]J. D. Mansell, B. Henderson, B. Wiesncr et al., "A low-cost compact metric adaptive optics system - art. no. 67110K," Advanced Wavefront Control: Methods, Devices, and Applications V, 6711, K7110-K71 10 (2007).
    [14]L. J. Zhu, P. C. Sun, D. U. Bartsch et al., "Adaptive control of a tnicromachined continuous-membrane deforrnable mirror for aberration compensation," Applied Optics, 38(1), 168-176 (1999).
    [142]B. S. Vinevich, L. N. Evdokimovich, A. G. Safronov et al., "Application of deforniable mirrors in industrial C02 lasers. II. Intracavity power control and repetitively pulsed modulation of output radiation," Quantum Electronics, 34(4), 333-340 (2004).
    [143]T. Maodong, B. Fernandez, D. C. Chen et al., "Adaptive optics confocal fluorescence microscopy with direct wavefront sensing for brain tissue imaging," Proceedings of the SPIE. 7931,(2011).
    [144]苏显渝,李继陶,[信息光学]科学出版社,(1999)
    [145]Y. Huizhen, and L. Xinyang, "Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefrom sensor." Optics and Laser Technology,630-5(2011).
    [146]J. Sheldakova, A. Rukosuev, and A. Kudryashov, [Genetic and hill-climbing algorithms for laser beam correction], (2004).
    [147]P. Yang, Y. Liu, M. Ao et al., "A wavefront sensor-less adaptive optical system for a solid-state laser," Optics and Lasers in Engineering,46(7),517-521 (2008).
    [148]童桂,廖文和,梁春,“基于模拟退火的连续膜变形镜最优模式复原,”激光技术,32(5]7-520),(2008).
    [149]C. Boulct, M. Griffith, L. C. Laycock et al., "Development of a small aperture bimorph deformable mirror for a free-space optical communications system," Proceedings of the SPIE-The International Society for Optical Engineering,78330D (9 pp.) (2010).
    [150]S. Verpoort, and U. Wittrock, "Actuator patterns for uniniorph and bimorph deformable mirrors," Applied Optics,49(31), G37-G46 (2010).
    [151]Y. Ning. W. H. Jiang, N. Ling et al., "Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors," Optics Express,15, 12030-12038(2007).
    [152]V. Samarkin, and A. Kudryashov, "Deformable mirrors for laser beam shaping," Laser Beam Shaping Xi,7789,(2010).
    [153]S. Oya, A. Bouvier, O. Guyon et al., "Performance of the deformable mirror for Subaru LGSAO," Advances in Adaptive Optics II, Prs 1-3,6272, U1573-U1580 (2006).
    [154]J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, "Low-order adaptive deformable mirror,' Applied Optics,37(21),4663-4668 (1998).
    [155]M. S. Griffith, L. C. Laycock, J. M. Bagshaw et al., "Dual-use bimorph deformable mirrors,' Proceedings of the SPIE,598906 (2005).
    [156]E. M. Ellis, [Low-cost bimorph mirrors in adaptive optics], (1999).
    [157]H. Y. Park, and D. A. Horsley, "MEMS Deformable Mirrors for Adaptive Optics using Single Crystal PMN-PT," 2008 leee/Leos International Conference on Optical Mems and Nanophotonics,90-91 (2008).
    [158]H. Park, and D. Horsley, "Fabrication and Characterization of MEMS Deformable Mirrors for Adaptive Optics," IMECE2006,13147 (2006).
    [159]"http://www.okotech.com/15-mm-37-ch-qoko-mirrorq.'
    [160]B. H. Cumpston.S. P. Ananthavel, S. Barlow el al., "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication." Nature,398(6722),51-54 (1999).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700