多硬度拼接淬硬钢铣削动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淬硬钢是经热处理后硬度达到50HRC以上的高碳钢或合金钢,具有良好的淬透性和抗磨损性能,适合于制造各类冷作冲压模具的镶块及模体。多硬度拼接淬硬钢是指由材料牌号、硬度各异且经过精密切削的淬硬钢单体,采用特定装配顺序和工艺获得的拼接间隙小于0.3μm的装配体,广‘泛应用于大型模具、拼接模具制造等领域。
     拼接淬硬钢在动态铣削力的作用下,由于其硬度的差异,加工过程易发生颤振,加工质量难以保证。本文结合结构力学、有限元分析、模态分析与试验研究等方法,对拼接淬硬钢铣削过程中的切削力、铣削振动及稳定性进行了深入探讨,推导了铣削加工颤振稳定性预测模型,进行了稳定性仿真分析,并完成了实验验证。本文相关研究工作,对于揭示多硬度拼接淬硬钢硬态铣削机理,推动硬态切削基础理论的完善,提高淬硬钢铣削技术水平具有重要意义。
     本文的主要研究内容及结论如下:
     (1)基于拼接件的力学本构模型与硬度特性,建立了多硬度拼接淬硬钢切削过程数值力学模型,模拟了多硬度拼接淬硬钢的切削力,研究了工件硬度对切削力的影响规律。在此基础上,应用正交试验法进行了球头精铣淬硬钢倾斜表面的切削力试验研究,得到了切削参数对切削力的影响规律。
     (2)基于多参考最小二乘复指数法(LSCE)与工作模态分析(OMA)方法,提出了一种切削系统工作模态动态分析方法。使用锤击试验时脉冲激励下的主轴响应点间的互谱函数,利用OMA进行模态分析,通过LSCE提取主轴系统模态参数,并与锤击模态试验中通过传统频响函数识别的模态参数进行对比,验证了该方法的有效性。
     (3)基于再生颤振理论建立了两自由度铣削加工动力学模型,在此基础上建立了拼接淬硬钢铣削稳定性预测模型,仿真分析了工艺参数对铣削稳定性的影响,并通过稳定性试验验证了稳定性叶瓣图的正确性。
     (4)进行了多硬度拼接条件下的淬硬钢铣削实验,验证了本文相关理论研究成果的正确性,并对铣削振动时频特性、加工参数对铣削振动影响规律等问题进行了进一步研究。以多硬度拼接工件过渡区附近的表面粗糙度最小为优化目标对铣削参数进行了优化,提出了拼接条件下的铣削工艺参数的选用原则。
Hardened steel is high carbon steel or alloyed steel with high hardness (more than50HRC) after heat processing. Hardened steel owning excellent hardenability and wear-resistance is suitable for manufacturing of assembled die and body mold for cold-working punching mould. Assembled hardened steel with different hardness consists of a lot hardened steel single bodies with different material trademarks and hardness after accurate cutting. Special assembling and technical process was used to deal with assembled hardened steel with different hardness to own low assembling space (less than0.3μm). So assembled hardened steels with different hardnesses are widely applied in the fields of large-scale mould, manufacturing of assembled mould.
     Chattering dither always happens in the assembled hardened steel machining process under dynamic milling force for the hardness difference. So the machining quality cannot steadily keep high level. The structural mechanics, finite element (FE) analysis, modal synthesis and experimental investigation are introduced in the present study. The target of present thesis is to investigate the milling force, vibration and stability in the milling process of the assembled hardened steel. The model of milling chattering dither steadily is established. FE emulation analysis about the steadily is conducted, and corresponding experiments are completed. So the works completed in the present thesis is significative for revealing milling mechanism of assembled hardened steel with different hardness, promoting basic theory of hard cutting, enhancing technical level of hardened steel milling.
     The main contents and conclusions:
     (1) Numerical mechanical model of cutting process of assembled hardened steel with different hardness is established based on mechanical constitutive model and hardness feature. The cutting force used for machining assembled hardened steel with different hardness is simulated. The influence of workpiece hardness on cutting force is investigated. Based on aforementioned works, the orthogonal design method is introduced to investigate the cutting force when ball end miller is employed to deal with declivity surface of hardened steel. The regular pattern of influence of cutting parameters on cutting force is owned;
     (2) One kind of method of operational modal dynamic analysis about cutting system is given based on least squares complex exponential (LSCE) multi-reference method (LSCE) operational modal dynamic (OMA) method. Cross-spectral function among response points of basic shaft under impulse excitation in hammering process is calculated. Modal parameter of basic shaft is extracted based on LSCE. OMA is used to conduct dynamic modal analysis, the results is compared to the modal parameter owned from analysis of the traditional frequency response function in hammering process. The availability of this new method is proved;
     (3) Two-degree milling dynamics model is established based on regenerative chattering dither method. And then, universal milling stability prediction model is established. The influence of technical parameters (milling force coefficient, radial cutting-in) on milling stability is analyzed by emulation method. The experiment of milling stability proves the correctness of Stability lobes;
     (4) The milling experiments of hardened steels assembled with different hardness under ball end miller are conducted. The correctness of correlative investigation conclusions in this study are proved based on aforementioned experimental results. Some key problems, such as cutting vibration, wear mechanism, cutting morphology, are also discussed. The milling parameters of the transient area of assembled hardened steel with different hardness are optimized. The surface roughness of the machining surface and wear extent of tool are employed to be evaluating indicator. Finally, the select principle of cutting technical parameter under assembled condition is given.
引文
[1]张华禹.我国快速经济模具发展现状及发展建议[J].电加工与模具(增刊),2010,38-40.
    [2]向红英.拉延模型面采用镶块拼接的原因分析[J].西华大学学报(自然科学版),2006,25(3):44-45,50.
    [3]周科年.分块拼接大型冲裁模的介绍[J].模具工业,1990(6):29-30.
    [4]宋继顺.大台而短行程落料模结构分析[J].机械设计,2008,25(9):60-62
    [5]拼镶式模具,http://linyi.dzwww.com/zt/benteng/cx/2011/1109/46025_3.html.
    [6]虞耀君,马明亮,丁志华.汽车模具先进制造技术现状与行业发展趋势[J].制造技术与机床,2010(5):45-47.
    [7]姚洪华.我国汽车冲压件的技术现状与发展趋势研究[J].上海汽车,2010(2):26-30.
    [8]中国模具工业协会.模具行业“十二五”发展规划[R].北京:2010.
    [9]刘献礼,文东辉,侯世香,等.硬态干式切削机理及技术研究综述[J].中国机械工程,2002,13(11):79-82.
    [10]文东辉,郑力,刘献礼,等.精密硬态切削过程金属软化效应与表面塑性侧流的研究[J].金刚石与磨料磨具工程,2003(4):9-12.
    [11]Dewes R C, Aspinwall D K.A review of ultra high speed milling of hardened steels[J]. Journal of Materials Processing Technology,1997,69(1-3):1-17.
    [12]Das D, Dutta A K, Ray K K.Influcnce of varied cryotreatment on the wear behavior of AISI D2 steel[J]. Wear,2009,266(1-2):297-309.
    [13]王凌云,黄红辉.基于BP网络的注塑成型模具硬态高速铣削力研究[J].中南大学学报(自然科学版),2010,41(6):2218-2223.
    [14]刘献礼,孟安,陈立国.硬态干式切削GCr15时的临界硬度[J].机械工程学报,2000,36(3):13-16.
    [15]Pu Z W,Anshul S. High speed ball nose end milling of hardened AISI A2 tool steel with PCBN and coated carbide tools[J]. Journal of Manufacturing Processes,2013(10):110-116.
    [16]Bouzakis K D,Makrimallakis S,Katirtzoglou G, et al.Coated tools'wear description in down and up milling based on the cutting edge entry impact duration[J]. CIRP Annals-Manufacturing Technology,2012,61(1):115-118.
    [17]Schulz H, Hock S.High-Speed Milling of Dies and Moulds--Cutting Conditions and Technology[J]. C1RP Annals-Manufacturing Technology,1995,44(1):35-38.
    [18]Toh C K.Surface topography analysis in high speed finish milling inclined hardened steel[J]. Precision Engineering,2004,28(4):386-398.
    [19]王素玉,艾兴,赵军,等.高速立.铣3Cr2Mo模具钢切削力建模及预测[J].山东大学学报:工学版,2006,36(1):1-5.
    [20]Zhou H M, Wang C Y,Zhao Z Y. Dynamic characteristics of conjunction of lengthened shrink-fit holder and cutting tool in high-speed milling[J].Journal of Materials Processing Technology, 2008,207(1-3):154-162.
    [21]秦哲.淬硬模具钢高速铣削机理研究[D],广州:广东工业大学.2009.
    [22]刘战强,万熠,艾兴.高速铣削中切削力的研究[J].中国机械工程,2003,14(9):734-737.
    [23]庞俊忠,王敏杰,钱敏,等.高速立铣P2O淬硬钢的切屑形态和切削力的试验研究[J].中国机械工程, 2008,19(2):170-173.
    [24]庞俊忠,王敏杰,段春争,等.高速铣削P20和45淬硬钢的切削力[J].中国机械工程,2007,18(21):2543-2546.
    [25]Wang Y Y,Ji S M,Zhang X,et al. Vibration Analysis on Ball End Milling Hardened Mould Assembled with Different Hardness Materials[J]. Advanced Materials Research,2011(188):561-565.
    [26]何宁.高速切削技术[M].上海:上海科学技术出版社.2012.
    [27]Iyer R, Koshy P, Ng E.Helical milling:An enabling technology for hard machining precision holes in AISI D2 tool steel[J]. International Journal of Machine Tools and Manufacture,2007,47(2):205-210.
    [28]Johnson R, Cook W H.A constitutive model and data for metals subjected to large strains, high rates and high temperatures[C]. In:Proceedings of the 7th International Symposium on Ballastics, Hague, Netherlands,1983,541-547.
    [29]Hong Y, Hua J, Shivpuri R.Flow stress of AISI H13 die steel in hard machining[J]. Materials & Design,2007,28(1):272-277.
    [30]Umbrello D, Hua J, Shivpur R.Hardness-based flow stress and fracture models for numerical simulation of hard machining AISI 52100 bearing steel[J].Materials Science and Engineering.2004(374):90-100.
    [31]Umbrello D,Rizzut S.Outeiro J C, et al.Hardness-based flow stress for numerical simulation of hard machining AISI H13 tool steel[J]. Journal of Materials Processing Technology,2008(199):64-73.
    [32]Thiele J D, Melkote S N. Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel[J]. Journal of Materials Processing Technology,1999,94(2-3):216-226.
    [33]Chen W Y.Cutting forces and surface finish when machining medium hardness steel using CBN tools[J]. International Journal of Machine Tools and Manufacture,2000,40(3):455-466.
    [34]Chinchanikar S, Choudhury S K. Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel:An optimization approach. Measurement[J],2013,46(4):1572-1584.
    [35]Li J L, Jing L L, Chen M. An FEM study on residual stresses induced by high-speed end-milling of hardened steel SKD11 [J]. Journal of Materials Processing Technology,2009,209(9):4515-4520.
    [36]Ng E G, Aspinwall D K.Modelling of hard part machining[J]. Journal of Materials Processing Technology,2002,127(2):222-229.
    [37]Limido J, Espinosa C, Salaun M,et al.SPH method applied to high speed cutting modelling[J]. International Journal of Mechanical Sciences,2007,49(7):898-908.
    [38]Guo Y B.Yen D W. A FEM study on mechanisms of discontinuous chip formation in hard machining[J]. Journal of Materials Processing Technology,2004(155-156):1350-1356.
    [39]唐德文.淬硬钢高速铣削过程仿真与实验研究[D].广州:广东工业大学.2009.
    [40]Amini S, Soleimanimehr H, Nategh M J.et al. FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool[J].Journal of Materials Processing Technology,2008.201(1-3):43-47.
    [41]梁良,王成勇,胡映宁,等.球头铣刀高速铣削斜面的三维数值模拟研究[J].工具技术,2008,42(10):57-63.
    [42]胡映宁,王成勇,张华伟,等.小直径铣刀铣削淬硬钢切入过程的动力学仿真研究[J].机械强度,2005,27(6):782-789.
    [43]陈明,袁人炜,凡孝勇,等.三维有限元分析在高速铣削温度研究中的应用[J].机械工程学报,2002,38(7):76-79.
    [44]王宇,刘亦智,岳彩旭,等.淬硬钢GCr15斜角切削过程的有限元分析[J].制造技术与机床,2008(5):88-92.
    [45]Toh C K.Cutter path strategies in high speed rough milling of hardened steel[J]. Materials & Design, 2006,27(2):107-114.
    [46]查文炜,何宁.高速铣削淬硬钢表面粗糙度的试验研究[J].工具技术,2007,41(3):12-15.
    [47]申志刚,何宁,李亮.高速硬铣削加工刀具磨损监测研究[J].中国机械工程,2009,20(13):1582-1586.
    [48]吴卫国,王贵成,沈春根.球头铣刀高速铣削淬硬Cr12模具钢的研究[J].工具技术,2009(10):26-28.
    [49]王素玉.高速铣削加工表面质量的的研究[D].济南:山东大学.2006.
    [50]胡天明,须莹.高速铣削淬硬钢的表面粗糙度的试验研究[J].机械制造,2009,47(7):51-52.
    [51]李风泉,方沂.淬硬钢高速铣削表面粗糙度预测模型研究[J].新技术新工艺,2006(6):9-11.
    [52]潘建新.高速铣削淬硬钢材料4Cr5MoSiV1的试验研究[J].模具制造,2007(8):76-79.
    [53]O" Zel T, Karpat Y,Figueira L, et al.Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts[J]. Journal of Materials Processing Technology,2007, 189(1-3):192-198.
    [54]文东辉,刘献礼,严复钢,等PCBN刀具的磨损机理[J].哈尔滨理工大学学报,2002,7(1):56-59.
    [55]查文炜,何宁.高速铣削淬硬钢刀具磨损机理的研究[J].机械设计与制造,2008(12):220-222.
    [56]Elbestawi M A, Chen L,Becze C E,et al. High-Speed Milling of Dies and Molds in Their Hardened State[J]. CIRP Annals-Manufacturing Technology,1997,46(1):57-62.
    [57]Becze C E, Elbestawi M A. A chip formation based analytic force model for oblique cutting[J]. International Journal of Machine Tools and Manufacture,2002,42(4):529-538.
    [58]Yuan N, Rahman M, Wong Y S. Investigation of chip formation in high speed end milling[J], Journal of Materials Processing Technology,2001,113(1-3):360-367.
    [59]万敏,张卫红.铣削过程中误差预测与补偿技术研究进展[J].航空学报,2008,29(5):1340-1349.
    [60]Urbanski J P,Koshy P, Dewes R C,et al.High speed machining of moulds and dies for net shape manufacture.Materials & Design,2000,21(4):395-402.
    [61]陈涛,刘献礼,罗国涛PCBN刀具切削淬硬钢时倒棱参数对切削过程的影响[J].农业机械学报,2008,39(11):169-171,175.
    [62]袁人炜,陈明,曲征洪,等.响应曲面法预测铣削力模型及影响因素的分析[J].上海交通大学学报,2001,35(7):1040-1044.
    [63]陈远玲,龙卫仁,张宝磊.应用人工神经网络预测高速铣削淬硬钢的切削力[J].机械设计与制造,2009(10):241-243.
    [64]上小纯,胡映宁,曹景源,等.小直径铣刀铣削淬硬钢圆弧切削力研究.中国机械工程,2009,20(13):1604-1607.
    [65]陆洁,胡忠举,宋一平,曾湘黔,淬硬钢Crl2高速铣削力实验研究.机械设计与制造.2010(2):p.170-171.
    [66]Fontaine M, Moufki A, Devillez A.el al.Modelling of cutting forces in ball-end milling with tool-surface inclination:Part I:Predictive force model and experimental validation[J]. Journal of Materials Processing Technology,2007,189(1-3):73-84.
    [67]Fontaine M, Devillez A, Moufki A,et al. Modelling of cutting forces in ball-end milling with tool-surface inclination:Part II. Influence of cutting conditions, run-out, ploughing and inclination angle[J]. Journal of Materials Processing Technology,2007,189(1-3):85-96.
    [68]倪其民,李从心,吴光琳,等.考虑刀具变形的球头铣刀铣削力建模与仿真[J].机械工程学报,2002,38(3):108-112.
    [69]Engin S, Altintas Y.Mechanics and dynamics of general milling cutters. Part I:helical end mills[J]. International Journal of Machine Tools and Manufacture,2001.41(15):p.2195-2212.
    [70]Zuperl U, Cus F. Tool cutting force modeling in ball-end milling using multilevel perceptronfJ]. Journal of Materials Processing Technology,2004,153-154:268-275.
    [71]Kim T Y, Woo J, Shin D W,et al. Indirect cutting force measurement in multi-axis simultaneous NC milling processes[J]. International Journal of Machine Tools and Manufacture,1999,39(11): 1717-1731.
    [72]阎兵,徐安平,张大卫,等.一种新的螺旋刃球头铣刀铣削力模型.中国机械工程,2002,13(2):160-163.
    [73]Fontaine M, Devillez A, Moufki A,et al. Predictive force model for ball-end milling and experimental validation with a wavelike form machining test[J]. International Journal of Machine Tools and Manufacture,2006,46(3-4):367-380.
    [74]Lee P, Altintas Y. Prediction of ball-end milling forces from orthogonal cutting data[J]. International Journal of Machine Tools and Manufacture,1996,36(9):1059-1072.
    [75]马万太,王宁生.考虑弹性变形时的球头铣刀切削力模型的研究[J].南京航空航天大学学报,1998,30(6):633-640.
    [76]Moufki A, Devillez A, Dudzinsk D,et al. Thermomechanical modelling of oblique cutting and experimental validation[J]. International Journal of Machine Tools and Manufacture,2004,44(9): 971-989.
    [77]Molinari A, Moufki A. The Merchant's model of orthogonal cutting revisited:A new insight into the modeling of chip formation[J]. International Journal of Mechanical Sciences,2008,50(2):124-131.
    [78]李炳林,胡于进,王学林,等.基于斜角切削理论的立铣切削力预测研究[J].中国机械工程,2011,22(19):2283-2288.
    [79]李炳林,王学林,胡于进,等.斜角切削的热力建模与仿真分析[J].中国机械工程,2010,21(20):2402-2408.
    [80]Feng H Y, Menq C H. The prediction of cutting forces in the ball-end milling process--Ⅰ. Model formulation and model building procedure[J]. International Journal of Machine Tools and Manufacture,1994,34(5):697-710.
    [81]Feng H Y, Menq C H. The prediction of cutting forces in the ball-end milling process--Ⅱ. Cut geometry analysis and model verification[J]. International Journal of Machine Tools and Manufacture,1994,34(5):711-719.
    [82]Tsai C L, Liao Y S.Prediction of cutting forces in ball-end milling by means of geometric analysis[J]. Journal of Materials Processing Technology,2008,205(1-3):24-33.
    [83]马万太,林志航,陈康宁.刚性的球头铣刀切削力模型[J].机械科学与技术,1998,17(3):422-424.
    [84]倪其民,李从心,阮雪榆.基于实体造型的球头铣刀三维铣削力仿真[J].上海交通大学学报,2001,35(7):p.1003-1007.
    [85]倪其民.曲面加工过程切削负载自适应新策略及其关键技术研究[D].上海:上海交通大学,2000.
    [86]Wei Z C, Wang M J, Zhu J-N,et al.Cutting force prediction in ball end milling of sculptured surface with Z-level contouring tool path[J].International Journal of Machine Tools and Manufacture,2011, 51(5):428-432.
    [87]张臣,周儒荣,庄海军,等.基于Z-map模型的球头铣刀铣削力建模与仿真[J].航空学报,2006,27(2):347-352.
    [88]Kim G M, Chu C N.Mean cutting force prediction in ball-end milling using force map method[J]. Journal of Materials Processing Technology,2004,146(3):303-310.
    [89]Matjaz M, Cus F.Simulation of cutting forces in ball-end milling[J]. Robotics and Computer Integrated Manufacturing,2003,19(1-2):99-106.
    [90]NaserianR, Salami M H,Sadeghi H,et al. Static rigid force model for 3-axis ball-end milling of sculptured surfaces[J]. International Journal of Machine Tools and Manufacture,2007,47(5): 785-792.
    [91]于天彪,王学智,关鹏,等.超高速磨削机床主轴系统模态分析[J].机械工程学报,2012,48(17):183-188.
    [92]Vincent G, Le T P, Ray P.Modal identification of spindle-tool unit in high-speed machining[J]. Mechanical Systems and Signal Processing,2011,25(7):2388-2398.
    [93]李中付.华宏星,宋汉文,等.基于环境激励的工作模态参数识别[J].上海交通大学学报,2001,35(8):1167-1171.
    [94]郑敏,中凡,史东锋,等.单独利川响应数据进行模态分析[J].中国机械工程,2006,17(4):405-409.
    [95]Mohanty P, Rixen D J. Operational modal analysis in the presence of harmonic excitation[J]. Journal of Sound and Vibration,2004,270(1-2):93-109.
    [96]刘进明,应怀樵,章关永.OMA模态参数的优化及盲分析技术探讨[J].振动.测试与诊断,2012,32(6):1016-1020.
    [97]王宝元.自行火炮工作模态分析试验技术[J].兵工学报,2009,30(7):853-856.
    [98]陈林,张立民,段合朋.基于环境激励的车辆系统工作模态试验分析[J].噪声与振动控制,2008(6):81-84.
    [99]马维金.自动化立体仓库巷道堆垛机的振动测试与工作模态分析[J].中国机械工程,2004,15(4):287-290.
    [100]Yang S F, Allen M S.Output-only Modal Analysis using Continuous-Scan Laser Doppler Vibrometry and application to a 20kW wind turbine[J]. Mechanical Systems and Signal Processing,2012(31): 228-245.
    [101]Pierro E, Mucchi E, Soria L,et al. On the vibro-acoustical operational modal analysis of a helicopter cabin[J]. Mechanical Systems and Signal Processing,2009,23(4):1205-1217.
    [102]Modak S V, Rawal C, Kundra T K. Harmonics elimination algorithm for operational modal analysis using random decrement technique[J]. Mechanical Systems and Signal Processing,2010,24(4): 922-944.
    [103]Matthew S A, Sracic M W, Chauhan S,et al. Output-only modal analysis of linear time-periodic systems with application to wind turbine simulation data[J]. Mechanical Systems and Signal Processing,2011,25(4):1174-1191.
    [104]Agneni A, Crema L B, Coppotelli G,et al.Output-only analysis of structures with closely spaced poles[J]. Mechanical Systems and Signal Processing,2010,24(5):1240-1249.
    [105]Qi K Y, He Z J, Li Z, et al.Vibration based operational modal analysis of rotor systems[J]. Measurement,2008,41(7):810-816.
    [106]张义民,张守元,李鹤,等.运行模态分析中固有模态和谐波模态区分方法研究[J].振动与冲击,2009,28(1):64-67.
    [107]Li B, Cai H, Mao X Y,et al. Estimation of CNC machine-tool dynamic parameters based on random cutting excitation through operational modal analysis[J]. International Journal of Machine Tools and Manufacture,2013,71(10):26-40.
    [108]Solis E, Peres C R, Jimcz J E,et al. A new analytical-experimental method for the identification of stability lobes in high-speed milling[J]. International Journal of Machine Tools and Manufacture, 2004,44(15):1591-1597.
    [109]Altintas Y, Budak E. Analytical Prediction of Stability Lobes in Milling[J]. CIRP Annals-Manufacturing Technology,1995,44(1):357-362.
    [110]Altintas Y, Week M. Chatter Stability of Metal Cutting and Grinding[J].CIRP Annals- Manufacturing Technology,2004,53(2):619-642.
    [111]Altintas Y, Lee P. A General Mechanics and Dynamics Model for Helical End Mills[J]. CIRP Annals-Manufacturing Technology,1996.45(1):p.59-64.
    [112]Altintas Y, Engin S. Generalized Modeling of Mechanics and Dynamics of Milling Cutters[J]. CIRP Annals-Manufacturing Technology,2001,50(1):25-30.
    [113]Govekar E, Gradisek J, Kalveram M, et al. On Stability and Dynamics of Milling at Small Radial Immersion[J]. CIRP Annals-Manufacturing Technology,2005.54(1):357-362.
    [114]梁睿君,叶文华.薄壁零件高速铣削稳定性预测与验证[J].机械工程学报,2009,45(11):146-151.
    [115]Li Z Q,Liu Q. Solution and Analysis of Chatter Stability for End Milling in the Time-domain[J]. Chinese Journal of Aeronautics,2008,21(2):169-178.
    [116]Weingaertner W L.Schroeter R B, Polli M L,et al. Evaluation of high-speed end-milling dynamic stability through audio signal measurements[J]. Journal of Materials Processing Technology,2006. 179(1-3):133-138.
    [117]Sims N D, Bayly P V, Young K A. Piezoelectric sensors and actuators for milling tool stability lobes[J]. Journal of Sound and Vibration,2005,281(3-5):743-762.
    [118]Bravo U, Altuzarra O, Lopez De Lacalle L N, et a/.Stability limits of milling considering the flexibility of the workpiece and the machine[J]. International Journal of Machine Tools and Manufacture,2005,45(15):1669-1680.
    [119]Zaghbani I, Songmene V. Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis[J]. International Journal of Machine Tools and Manufacture,2009,49(12-13):947-957.
    [120]Toh C K. Vibration analysis in high speed rough and finish milling hardened steel[J]. Journal of Sound and Vibration,2004,278(1-2):101-115.
    [121]Toh C K. Static and dynamic cutting force analysis when high speed rough milling hardened steel[J]. Materials & Design,2004,25(1):41-50.
    [122]赵兴法.淬硬钢模具铣削加工试验研究及仿真分析[D].哈尔滨:哈尔滨理工大学.2011.
    [123]秦哲,王成勇,吴学奇,等.高速铣削刀具悬伸量试验研究[J].工具技术,2004,38(9):76-78.
    [124]马海真,姜彬,郑敏利,等.钼钒铸铁汽车覆盖件模其数控高效切削加上稳定性研究[J].工具技术,2008,42(8):17-20.
    [125]梁睿君,叶文华,黄翔.铣削加工3维稳定性预测.四川大学学报(工程科学版),2011,43(3):219-224.
    [126]宋清华,艾兴,于水清.高速铣削稳定性与表面加工精度研究[J].制造技术与机床,2008(4):40-43.
    [127]宋清华.高速铣削稳定性及加工精度研究[D].济南:山东大学.2009.
    [128]Tang W X, Song Q H, Yu S Q,et al. Prediction of chatter stability in high-speed finishing end milling considering multi-mode dynamics[J]. Journal of Materials Processing Technology,2009,209(5): 2585-2591.
    [129]杨建中,李江威,屈文晓,等.铣削加工过程稳定性分析[J].中国机械上程,2013,24(3):360-365.
    [130]Schmitz T L, Couey J, Marsh E, et al. Runout effects in milling:Surface finish, surface location error, and stability[J]. International Journal of Machine Tools and Manufacture,2007,47(5):841-851.
    [131]李忠群,刘强.基于频响函数的高速铣削颤振稳定域快速分析与研究[J].制造技术与机床,2008.(4):53-57.
    [132]汪通悦,何宁,李亮,等.薄壁零件的铣削加工稳定性研究[J].机床与液压,2009(12):15-17.
    [133]尹力.数控铣削加工过程动力学仿真优化技术及应用研究[D].北京:北京航空航天大学.2004.
    [134]Abrari F, Elbestawi M A, Spence A D.On the dynamics of ball end milling:modeling of cutting forces and stability analysis[J]. International Journal of Machine Tools and Manufacture,1998,38(3): 215-237.
    [135]Afazov S M, Ratchev S M, Segal J. Modelling and simulation of micro-milling cutting forces[J]. Journal of Materials Processing Technology,2010,210(15):2154-2162.
    [136]Kourosh T, Gren P. Measurement of milling tool vibrations during cutting using laser vibrometry[J]. International Journal of Machine Tools and Manufacture,2008,48(3-4):380-387.
    [137]Amin Nurul A K M, Dolah S B, Mahmud M B,et al. Effects of workpiece preheating on surface roughness, chatter and tool performance during end milling of hardened steel D2.Journal of Materials Processing Technology,2008,201(1-3):466-470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700