聚醚醚酮树脂稳定性的提高及相关机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚醚醚酮是一种高性能特种工程塑料,它具有的多项优异性能使其在军工、航空航天、石油化工、生物医疗等领域有着广泛和极有潜力的应用,但是,聚醚醚酮也存在着老化降解、交联等问题。
     本论文主要研究聚醚醚酮在熔融状态下的降解交联行为及稳定性的改善。首先,为了研究聚醚醚酮树脂熔融阶段的降解机理,我们合成出聚醚醚酮齐聚物作为聚醚醚酮树脂的模型化合物,这种模型化合物具有与聚醚醚酮相似的结构和更好的溶解性,并且结构精确,纯度很高。通过研究这个模型化合物的降解过程,我们总结出了模型化合物的降解交联机理,进而推断出聚醚醚酮树脂在熔融阶段发生的降解交联行为。
     然后,我们尝试通过添加抗氧剂的方法来提高聚醚醚酮树脂的熔融稳定性。我们优选了三种分属不同类别的抗氧剂及其复配抗氧剂与聚醚醚酮树脂熔融共混,然后分别考察了这些抗氧剂对聚醚醚酮的熔融稳定性、热分解温度及机械性能的影响,最终,研究优化出添加抗氧剂的聚醚醚酮树脂配方,获得了熔融稳定性良好的聚醚醚酮树脂。
     进一步,我们又通过非等温热力学模型和追踪聚醚醚酮体系中自由基的方法,研究了抗氧剂对聚醚醚酮的作用,并推断其作用机理。
The widespread use of synthetic polymers has revolutionized the manufacturingindustry. Poly (ether ether ketone), a type of thermoplastic resin, is widely usedespecially in aerospace, automotive and health care applications due to the excellentchemical resistance, superior mechanical properties, tribological properties and highservice temperature. However, like other commercial plastics, PEEK will experiencesome types of degradation or cross-linking in the process of extrusion and injectionmolding due to the higher processing temperature which is almost paralleled with its’melting point (around340oC). The degradation will lead to a decline in PEEKproperties, such as embrittlement and difficulty in molding.
     Little work has been carried out on elucidating the reactions taking place in themelt of PEEK because the determination methods of the degradation are limited. Themethod that tracks the small organic molecules in the gas upon decomposition todeduce the degradation mechanisms is not suitable for the melting PEEK becausethere are nearly no organic molecules released into the gas phase when PEEK ismelted at the temperature lower than450oC. Some methods, like FTIR and13C NMRmeasurements, are not efficiently to investigate the degradation mechanisms preciselysince the chemical changes in the melting PEEK are not as visible as the changeshappened at the higher temperature (over450oC). The excellent solvent resistance ofPEEK is another important factor which brings embarrassment to the analysis ofPEEK because the difficulty to find a fine solvent to dissolve the polymer well thatmany measurements which are normally considered to be proven technique to studythe chemical structure are limited.
     In this work, the stability of melting PEEK was evaluated by rheological testand thermogravimentric analysis. Dimeric model compound of PEEK have beensynthesized successfully and tested in the conditions paralleled with PEEK to studythe reactions which occurred in the melt. Mass spectrum (MS), FTIR and1H NMRmeasurements were used to observe the changes of chemical structures of thecompounds. By the analysis on the structure changes of model compound, a possiblemechanism of degradation and crosslink of melting PEEK was proposed.
     The Rheological study of PEEK indicated the melting viscosity of PEEK wouldincrease with the prolongation of the melting time, and the reason was normallyconsidered that some types of crosslink occurred between polymer chains. Tospeculate the reactions which occurred in the melting PEEK accurately, a novelmethod and design of experiment was introduced. The model compound, dimericPEEK, was synthesized and treated at the similar experiment condition paralleled withpolymer PEEK. The model compounds before and after degradation were analyzed bymass spectrum,1H NMR and FTIR to reveal the changes of molecular structurecaused by the heating treatment. The results showed that not only crosslink but alsografting reaction happened during the degradation. When the molecule was heatedabove the melt point, the ether bonds and the end carbonyl groups were more unstablethan the other chemical bonds and easily generate radicals which then grafted to theadjacent molecular on the ortho position of carbonyl or combined with anotherradicals. Meanwhile, a little of crosslink reaction occurred between the molecularchains, causing the increase of viscosity and molecular weight. Finally, a possiblegrafting and crosslink mechanisms of polymer PEEK was proposed.
     Three types of antioxidants were used to intend to improve the stability of poly(ether ether ketone)(PEEK). To evaluate the effect of the antioxidants on theproperties of PEEK and the stabilization mechanism, some characterization methodswere carried out, such as rheometer, TGA, universal tester and electron spinresonance (ESR). The results indicated that the efficiency of the phosphorousantioxidant (DS9228) in improving the melting stability of PEEK was better than thatof the phenolic antioxidant (3114) and HP136, and the melting stability of PEEK sample containing0.07wt%DS9228was the best among all samples Additionally, noobvious changes could be observed in mechanical properties of PEEK containingantioxidants compared to virgin PEEK.
     In this dissertation, TG and differential thermogravimetry (DTG) measurementsof Poly (aryl ether ketone) containing naphthalene moieties were reported. Thethermal degradation temperature and the kinetics of polymer were studied throughnonisothermal in Air conditions
     Electron spin resonance (ESR) is an effective measurement to observe thestructure and the number of free radicals, which provide a route to study the effect ofthe free radicals on polymer processed at high temperature. the efficiency ofantioxidants for PEEK was evaluated by ESR and the stabilization mechanism ofantioxidants on PEEK resin was discussed.
引文
[1] Bonner WH.[P] USA patent3065205,1962.
    [2] Rose JB.[P] USA patent4320224,1976.
    [3] Rose JB.[P] USA patent1558671,1976.
    [4] Rose JB.[P] USA patent1414422,1976.
    [5] Rose JB.[P] USA patent1414423,11976.
    [6] Rose JB.[P] USA patent1414424,1976.
    [7]吴忠文,特种工程塑料聚醚砜、聚醚醚酮树脂国内研究、开发、生产现状[J],.化工新材料,2002,30,15-18.
    [8] Rama M, Rao VL, Radhakrishman TS, Ramachandran S, Synthesischaracterization and thermal degradation studies of poly (ether etherketone)copolymers.[J]. Polymer,1992,33,2834–2839.
    [9] Chen M, Chen JY, Analysis of crystallization kineties of poly (ether ether ketone).[J], J. Polym. Sci. PartB: Polym. Phys,1998,36,1348-1355.
    [10]田爱国,纳米氧化铝粉体填充增强聚醚醚酮复合材料及其性能研究[D],上海材料研究所硕士论文,2002,1-30.
    [11]赵纯,张玉龙,聚醚醚酮[M].化学工业出版社,2008,6-18.
    [12]李凌,吕培军,王勇,氧化锆牙科陶瓷低温老化性能的研究[J],北京大学学报(医学版)
    [13]Kobayashi K, Kuwajima H,Masaki T.Phase change and Mechanical properties ofZrO2-Y2O3solid electrolyte after aging. Solid State Ionics [J]. Polymer,1981,31,435-445.
    [14]束国刚,陆念文,压水堆核电厂关键金属部件的老化和寿命评估.[J].中国电力,2006,05,34-45.
    [15]Mhadhbi, L.; Palanca, A.; Gharred, T.; Boumaiza, M., Bioaccumulation of Metalsin Tissues of Solea Vulgaris from the outer Coast and Ria de Vigo, NE Atlantic(Spain).[J].International Journal of Environmental Research2012,6,19-24.
    [16]Mocchegiani, E.; Costarelli, L.; Giacconi, R.; Piacenza, F.; Basso, A.; Malavolta,M., Micronutrient (Zn, Cu, Fe)-gene interactions in ageing and inflammatoryage-related diseases: Implications for treatments.[J]. Ageing research reviews2012,11(2),297-319.
    [17]朱明华,高分子材料的降解及腐蚀机理.国外医学(生物医学工程分册)1996,(06).
    [18]Oussama, E.; Elhem, G.; Valerie, M.; Mongi, B. O., Mechanical and physicalproperties of epoxy polymer concrete after exposure to temperatures up to250degrees C.[J]. Construction and Building Materials2012,27(1),415-424.
    [19]Patel, M.; Skinner, A. R.; Chaudhry, A.; Billingham, N. C.; Mahieu, B., Impactof thermal ageing on the tin catalyst species in room temperature vulcanisedpolysiloxane rubbers.[J]. Polymer Degradation and Stability2004,83,157-161.
    [20]甘润德,工程塑料老化与防老化概述.[J],兵工塑料,1974,(01).39-41.
    [21]Yu, T. L.; Chen, Y. S., Physical aging of epoxy resin blended with poly(ethersulfone): Effect of poly(ether sulfone) molecular weight.[J]. Journal of PolymerResearch-Taiwan2000,7(4),257-266.
    [22]Cousineau-Pelletier, P.; Langelier, E., Relative Contributions of MechanicalDegradation, Enzymatic Degradation, and Repair of the Extracellular Matrix onthe Response of Tendons When Subjected to Under-and Over-MechanicalStimulations In Vitro.[J]. Journal of Orthopaedic Research2010,28(2),204-210.
    [23]尹亮,聚乙二醇修饰超氧化物歧化酶稳定性变化的研究.[J].生物技术2003,4,47-51.
    [24]Chrissafis K., Paraskevopoulos, K. M.; Bikiaris, D. N., Effect of molecularweight on thermal degradation mechanism of the biodegradable polyesterpoly(ethylene succinate).[J]. Thermochimica Acta2006,440(2),166-175.
    [25]Mourad, A. H. I., Thermo-mechanical characteristics of thermally agedpolyethylene/polypropylene blends.[J]. Materials&Design2010,31(2),918-929.
    [26]任强,孙春燕,刘伟,周涵,高聚合度聚氯乙烯的热降解特性研究.[J]石油炼制与化工,2007,05,55-62.
    [27]Wang, X.; Chen, X. Y.; Yu, W. C.; Ji, Y. D.; Hu, X. B.; Xu, J. R., Applications ofrheological torque-time curves to the study of thermooxidative degradation ofpolypropylene powder.[J]. Journal of Applied Polymer Science2007,105(3),1316-1330.
    [28]Chen, X. L.; Yu, J.; Guo, S. Y., Thermal oxidative degradation kinetics of PP andPP/Mg (OH)(2) flame-retardant composites.[J].Journal of Applied PolymerScience2007,103(3),1978-1984.
    [29]Choi, S. S., Influence of rubber composition on change of crosslink density ofrubber vulcanizates with EV cure system by thermal aging.[J]. Journal of AppliedPolymer Science2000,75(11),1378-1384.
    [30]Xu, M.; Li, F. K., Thermally stimulated shape memory behavior of polymers withphysical crosslinks.[J]. Chinese Journal of Polymer Science1999,17(3),203-213.
    [31]Liao, L. W.; Yue, H. B.; Cui, Y. D., Crosslink Polymerization Kinetics andMechanism of Hydrogels Composed of Acrylic Acid and2-Acrylamido-2-methylpropane Sulfonic Acid.[J].Chinese Journal of ChemicalEngineering2011,19(2),285-291.
    [32]Oshima, A.; Seguchi, T.; Tabata, Y., Radiation-induced free radicals and theirbehaviour in crosslinked polytetrafluoroethylene (PTFE).[J].PolymerInternational1999,48(10),996-1003.
    [33]Tang, B. Z.; Xu, H. Y., Preparation, alignment, and optical properties of solublepoly(phenylacetylene)-wrapped carbon nanotubes.[J].Macromolecules1999,32(8),2569-2576.
    [34]Decker, C.; Viet, T. N. T.; Decker, D.; Weber-Koehl, E., UV-radiation curing ofacrylate/epoxide systems.[J]. Polymer2001,42(13),5531-5541.
    [35]Matuana, L. M.; Kamdem, D. P.; Zhang, J., Photoaging and stabilization of rigidPVC/wood-fiber composites.[J].Journal of Applied Polymer Science2001,80(11),1943-1950.
    [36]Hirschler M.M., Recent Developments in Flame-Retardant Mechanisms,Developments in Polymer Stabilisation,[J].Journal of Applied Polymer Science1982,5,107-52.
    [37]T. Kashiwagi, A. Inabi, J.E. Brown, K. Hatada, T. Kitayama, and E.Masuda,Effects of Weak Linkages on the Thermal and Oxidative Degradation ofPoly(methyl methacrylates),[J].Polymer stability and degradation1992,45,334-435.
    [38]C.F.Cullis and M.M.Hirschler, The Significance of Ther-moanalyticalMeasurements in the Assessment of Polymer Flammability,[J] Polymer,1983,24,834-840.
    [39]Hirschler M.M, Thermal Analysis and Flammability of Polymers: Effect ofHalogen-Metal Additive Systems,[J]. Europ. Polymer Journal,1983,19,121-129.
    [40]Cullis C.F., Hirschler M.M., Townsend R.P.,.Visanuvi-mol V, The Pyrolysis ofCellulose under Conditions of Rapid Heating,[J]. Macromolecules,1986,19,2160-2168.
    [41]Kumagai, S.; Yoshimura, N., Tracking and erosion of HTV silicone rubber andsuppression mechanism of ATH.[J]. Ieee Transactions on Dielectrics andElectrical Insulation2001,8(2),203-211.
    [42]Steckler K.D., Kashiwagi T., Baum H.R., Kanemaru K., Analytical Model forTransient Gasification of Noncharring Thermoplastic Materials, in FireSafety Sci., Proc. Third Int. Symp.(G. Cox and B. Langford, eds.) Elsevier,London (1991).
    [43]Chandler L.A., Hirschler M.M., and Smith G.F., A Heated Tube Furnace Test forthe Emission of Acid Gas from PVC Wire Coating Materials: Effects ofExperimental Procedures and Mechanistic Considerations,[J]. European PolymerJournal,1987,23,51-61.
    [44]Curan.F.R. Standard for the Surface Flam-mability of Carpets and Rugs [J].Flammable Fabrics Act Regulations,2000,16,697-706.
    [45]Pawe G., Thermodynamic studies on the hydrogen bonding of cholesterol withproton-acceptor solvents,[J]. Thermochimica Acta1992,211,43-47.
    [46]Nihal S.,Emel O., Preparation of phase change material–montmorillonitecomposites suitable for thermal energy storage,[J]. Thermochimica Acta2011,524,39-46.
    [47]Hirschler M.M., Effect of Oxygen on the Thermal Decom-position ofPoly(vinylidene fluoride),[J]. Europe. Polymer Journal,1982,18,463-467.
    [48]Inabi A., Kashiwagi T., A Calculation of Thermal Degradation Initiated byRandom Scission, Unsteady Radi-cal Concentration,[J]. Europe. Polymer.Journal.,1987,23,871-881.
    [49]Kashiwagi T., Nambu H., Global Kinetic Constants for Thermal OxidativeDegradation of a Cellulosic Paper,[J]. Com-bust. Flame1992,88,345-68.
    [50]Stuetz D.E., DiEdwardo A.H., Zitomer F., Barnes B.F., Polymer FlammabilityII,[J], J.Polym.Sci.,Polym.Chem.Ed.,1980,18,987-1009.
    [51]Brauman S.K., Polymer Degradation during Combustion [J] Journal of. PolymerScience., Part B1988,26,1159-71.
    [52]Kashiwagi T. Inabi A., Behavior of Primary Radicals during ThermalDegradation of Poly(methyl methacrylate),[J]. Polymer Degradation and Stability,1989,26,161-184.
    [53]Gijsman P., Hennekens J., Vincent J., The Mechanism of the Low-TemperatureOxidation of Polypropylene,[J]. Polymer Degradation and Stability1993,42,95-105.
    [54]Colquhoun H. M., Williams D. J., Zhu Z. X., Macrocyclic AromaticEther-Imide-Sulfones: Versatile Supramolecular Receptors with ExtremeThermochemical and Oxidative Stability,[J]. Journal of. American. Chemistry.Society.2002,124(45),13346-13347.
    [55]Dupon O.t, Jonas A. M., Nysten B., Legras R., PEEK Oligomers as PhysicalModel Compounds for the Polymer.[J], Macromolecules2000,33,562.
    [56]J. R.Atkinson, J. N.Hay, M. J.Jenkins, enthplaic relaxtion in semi-crystallinePEEK,[J]. Polymer2002,43,731-739
    [57].Chang L. L, Huang B.S., Woo E.M., Decreasing Miscibility with GreaterHeterogeneity in Ternary Polymer Blend: Poly(cyclohexyl methacrylate),Poly(a-methyl styrene), and Poly(4-methyl styrene),[J]. Polymer2001,42,839-847.
    [58]Attwood T.E., Dawson P.C.,.Freeman J.L, Hoy R.J., Rose J.B., Staniland P.A.,Synthesis&Properties of Polyaryletherketones,[J]. Polymer1981,22,1096-1103
    [59]Hay J. N., Kemmish D.J., Environmental stress crack resistance of and absorptionof low-molecular-weight penetrants by poly(aryl ether ether ketone)[J] Polymer1987,28,204-210.
    [60]Brauman, S.K. Pronko J. G., Chemiluminescence studies of the thermooxidationof PEEK [J] Journal of Polymer. Science.Part B:1988,26,1205-1211.
    [61]Day M., Suprunchuk T., Cooney J. D., Wiles D. M., Thermal degradation of poly(aryl-ether–ether-ketone)(PEEK): A differential scanning calorimetry study [J].Journal of Apply Polymer Science.1988,36,1097-1106.
    [62]60. Day M., Cooney J.D., Wiles D. M., The use of thermal analysis to studythermal processing effects on polypropylene,[J]. Journal of Apply PolymerScience1989,38,32-41.
    [63]Day M., Sally D., Wiles D. M., The thermal degradation of poly(aryl ether etherketone)(PEEK) as monitored by pyrolysis—GC/MS and TG/MS,[J]. Journal ofApply Polymer Science.1990,40,1615-1621.
    [64]Jonas A., Legras R.,Thermal stability and crystallization of poly(aryl ether etherketone),[J]. Polymer1991,32,2691-2706.
    [65]Piga L., Yvne J., Thermogravimetric analysis of a talc mixture,[J].Thermochimica Acta1992,211,115-162.
    [66]Hay J., Kemmish D.. Thermal decomposition of poly(aryl ether ketones)[J].Polymer1987,28:2047-2051.
    [67]Krishal P., Colin S., Bryony J., et al. Valence band XPS and FT-IR evaluation ofthermal degradation of HVAF thermally sprayed PEEK coatings [J]. PolymerDegradation and Stability,2010,95,792-797
    [68]Patel P., Hull T., McCabe R., et al. Mechanism of thermal decomposition ofpoly(ether ether ketone)(PEEK) from a review of decomposition studies[J].Polymer Degradation and Stability,2010,95,709-718.
    [69]Tsai C., Perng L., and Ling Y. A Study of Thermal Degradation ofPoly(aryl-ether-ether-ketone) Using Stepwise Pyrolysis/GasChromatography/Mass Spectrometry[J]. Rapid Communicationsin MassSpectromnery1997,11,1987–1995.
    [70]Day M., Cooney J., Wiles D..The thermal degradation ofpoly(aryl-ether-ether-ketone)(PEEK) as monitored by pyrolysis-CG/MS andTG/MS[J]. Journal of Analytical and Applied Pyrolysis,1990,18,163-173.
    [71]Perng L., Tsai C., Ling Y.. Mechanism and kinetic modelling of PEEK pyrolysisby TG/MS [J]. Polymer,1999,40,7321-7329.
    [72]Day M., Sally D., Wiles D.. Thermal degradation of poly(aryl ether ether ketone):experimental evaluation of crosslinking reactions[J]. Journal of Applied PolymerScience,1990,40,1615-1625.
    [73]Kubo S., Kadla J.. Hydrogen Bonding in Lignin: A Fourier Transform InfraredModel Compound Study[J]. Biomacromolecules,2005,6,2815-2821.
    [74]Eastman C.. Plastiline, A New Modeling Compound [J]. Science,1899,9,211-212.
    [75] Work T.. The synthesis of antimalarial compounds related to niquidine; modelexperiments on the synthesis of quinolyl carbinols [J]. Journal of the ChemicalSociety,1946,10,194-197.
    [76] Wolman M.. The mechanism of the Marchi type of methods for visualizingdegenerating myelin. Model experiments with pure compounds.[J]. The journalof histochemistry and cytochemistry: official journal of the HistochemistrySociety,1956,4,195-199.
    [77]Higuchi T., Bolton S.. The solubility and complexing properties ofoxytetracycline and tetracycline. III. Interactions in aqueous solution with modelcompounds, biochemicals, metals, chelates, and hexametaphosphate [J]. Journalof the American Pharmaceutical Association. American PharmaceuticalAssociation,1959,48,557-564.
    [78]Gallop P., Seifter S., Lukin M. Application of the Lossen rearrangement ofdinitrophenylhydroxamates to analysis of carboxyl groups in model compoundsand gelatin[J]. The Journal of biological chemistry,1960,235,2619‐2627.
    [79]Haupert L., Owen B., Marcum C.. Characterization of model compounds ofprocessed lignin and the lignome by using atmospheric pressure ionizationtandem mass spectrometry [J]. Fuel,2012,95,634‐641.
    [80]Maijala P., Mattinen M., Nousiainen P.. Action of fungal laccases on lignin modelcompounds in organic solvents [J]. Journal of molecular Catalysis B-enzymatic,2012,76,59-67.
    [81]Lee J., Feijen J. Biodegradable polymersomes as carriers and release systems forpaclitaxel using Oregon Green488labeled paclitaxel as a model compond [J]. J.Control Release2012,158,312-318.
    [82]Moradi S., Boghaei D.. The use of a cis-dioxomolybdenum (VI) dinuclearcomplex with quadradentate1,4-benzenediylbis(benzyldithiocarbamate)(2-) asmodel compound for the active site of oxo transfer molybdoenzymes: Reactivity,kinetics, and catalysis [J]. Spectrochimica Acta part A-molecular andBiomolecular Spectroscopy,2012,88,210-215.
    [83]马晓野。含苯乙炔的可自交联聚芳醚酮的分子设计与性能研究[D].吉林大学化学学院,2007,22-44.
    [84]Li X., Zhang S., Zhou F., et al. The Polymer Society of Korea Preparation andCharacterization of Hyperbranched Poly(ether ether ketone)s Suitable asRheology Control Agents for Linear Poly(ether ether ketone)s [J].Macromolecular Research,2011,19:427-435.
    [85]Li X., Zhang S., Wang H., et al. Facile synthesis and characterization ofhyperbranched poly(aryl ether ketone)s obtained via an A2+BB2approach[J].Polymer International,2010,59,1360–1366.
    [86]Fu J., Yuan J., Tu Y.. A polysaccharide from Acanthopanax senticosus improvesthe antioxidant status in alloxan-induced diabetic mice[J]. Carbohydrate Polymers,2012,2,517-521.
    [87]Wang Y., Mao F., Wei X.. Characterization and antioxidant activities ofpolysaccharides from leaves, flowers and seeds of green tea[J]. CarbohydratePolymers,2012,88,146-153.
    [88]Jin X.. Bioactivities of water-soluble polysaccharides from fruit shell of Camelliaoleifera Abel: Antitumor and antioxidant activities [J]. Carbohydrate Polymers,2012,87,2198-2201.
    [89]Wu W., Zhu Y., Zhang L.. Extraction, preliminary structural characterization, andantioxidant activities of polysaccharides from Salvia miltiorrhiza Bunge[J].Carbohydrate Polymers,2012,87,1348-1353.
    [90]Haider N., Karlsson S.. Kinetics of migration of antioxidants from polyolefins innatural environments as a basis for bioconversion studies [J]. Biomacromolecules,2000,1,481-487.
    [91]Allen N., Enriquez L., Edge M.. Performance and antioxidants activity ofphenol/phosphite antioxidants in synergistic blends in the thermal andphotooxidation of high-density polyethylene (HDPE) film: Influence of zincstearate[J]. Journal of Vinyl&Additive Technology,2001,7,110-122.
    [92]Suffield R., Dillman S., Haworth J.. Evaluation of antioxidants performance of anatural product in polyolefins [J]. Journal of Vinyl&Additive Technology,2004,10,52-56.
    [93]Kurisawa M., Chung J., Uyama H.. Enzymatic synthesis and antioxidantproperties,[J]. Biomacromolecules,2003,4,1394-1399.
    [94]Kurisawa M., Chung JE., Kim Y.J., Amplification of antioxidant activity andxanthine oxidase inhibition of catechin by enzymatic polymerization [J].Biomacromolecules,2003,4,469-471.
    [95]Ames B. N., Shigenaga M. K., Hagen T. M., Oxidants, antioxidants, and thedegenerative diseases of aging.[J]. Proceedings of the National Academy ofSciences of the United States of America,1993,90,7915-7922.
    [96]Mittler R, Oxidative stress, antioxidant tolerance [J]. Trends In plant Science,2002,7,405-410.
    [97]朱青,复合抗氧剂JS-1在HDPE加工中的抗热氧化效果,[J].辽宁化工,2006,9.520-546.
    [98]Valko M., Leibfritz D., Moncol J., Free radicals and antioxidants in normalphysiological functions and human disease [J]. International Journal ofbiochemistry&Cell Biology,2007,39,44-84.
    [99]Singleton V.L., Orthofer R., Lamuela-Raventos R.M., Analysis of total phenolsand other oxidation substrates and antioxidants by means of Folin-Ciocalteureagent [J]. Oxidants and Antioxidants,1999,299,152-178.
    [100] Wang Z., Luo D., Antioxidant activities of different fractions ofpolysaccharide purified from Gynostemma pentaphyllum Makino [J]Carbohydrate polymers,2007,68,54-58.
    [101] Yu R., Yang W., Song L., Structural characterization and antioxidant activityof a polysaccharide from the fruiting bodies of cultured Cordyceps militaris [J]Carbohydrate Polymers,2007,70,430-436
    [102] Luan J.F, Zhang Z.Q., Fan Z. C. Antioxidant effects and cytotoxicity of threepurified polysaccharides from Ligusticum chuanxiong Hort.[J] Carbohydratepolymers,2008,74,822-827.
    [103] Kurisawa M., Chung J.E., Kim Y.J., Amplification of antioxidant activity andxanthine oxidase inhibition of catechin by enzymatic polymerization,[J]Biomacromolecules,2003,4,469-471.
    [104] Jong H. K., Chong M. K., Yeong S. C.,Preparation and characterization ofpolypropylene/layered silicate nanocomposites using an antioxidant [J]. Polymer,2004,45,7719–7727.
    [105] Gao X.W, Hu G.J., Qian Z.Z., Ding Y.F., Zhang S.M., Wang D. J., Yang M.,Immobilization of antioxidant on nanosilica and the antioxidative behavior in lowdensity polyethylene [J]. Polymer,2007,48,7309-7315.
    [106]梁诚,亚磷酸脂类抗氧剂的现状与发展,[J]塑料助剂,2005,5,13-17.
    [107] Badía J.D., Santonja-Blasco L., Rosana M., Thermal analysis applied to thecharacterization of degradation in soil of polylactide: II. On the thermal stabilityand thermal decomposition kinetics [J]. Polymer Degradation and Satiability,2010,95,2192-2199.
    [108] Al-Malaika S., Learning from mother nature, exploiting a biologicalantioxidant for the melt stabilization of polymers.[J] Macromol Symp,2001,176,107-117.
    [109] Burgos N, Jiménez A., Degradation of poly(vinyl chloride) plasticized withnonphthalate plasticizers under sterilization conditions [J]. Polymer Degradationand Satiability,2009,94,1473-1478.
    [110] Zhou Q, Xanthos M. Nanosize and microsize clay effects on the kinetics ofthe thermal degradation of polylactides [J]. Polymer Degradation and Satiability,2009,94,327-338.
    [111] Huang J.C., Xu J., Thermal degradation of polypropylene in a capillaryrheometer [J]. Internal Journal of Polymer Material,2003,52,203-209.
    [112] Tochaceck J., Jancar J., Kalfus J., Zborilova P., Buran Z., Degradation ofpolypropylene impact-copolymer during processing [J]. Polymer Degradation andSatiability,2008,93,770-775.
    [113] Peltzer R., Navarro J., López A., Evaluation of the melt stabilizationperformance of hydroxytyrosol (3,4-dihydroxy-phenylethanol) inpolypropylene[J]. Polymer, Degradation and Stability2010,95,1636-1641.
    [114] Shin H., Ken S., Tadashi N., Radiation-induced graft polymerization ofstyrene into a poly(ether ether ketone) film for preparation of polymer electrolytemembranes [J] Journal of Membrane Science,2009,345,74–80.
    [115] Li H. M., Fouracre R. A., Given M. J., The Effects on Poly ether ether ketonePolyethersulfone of Electron and Irradiation [J]. IEEE Transactions Dielectricsand Electrical Insulation,1999,6,435-551.
    [116] Eckelt J., Knopf A., Roeder T., Viscosity–Molecular Weight Relationship forCellulose Solutions in Either NMMO Monohydrate or Cuen [J]. Journal ofApplied Polymer Science,2011,119,670-676.
    [117] Lousenberg R.D., Molar Mass distributions and viscosity behavior ofperfluorinated sulfonic acid polyelectrolyte aqueous dispersions [J]. Journal ofPolymer Science Part polymer Physics,2005,43,421-428
    [118] Macskasi L, A critical analysis of the models connecting molecular massdistribution and shea viscosity functions [J]. Express Polymer Letters,2009,3,385-399.
    [119]张莹.含萘聚芳醚酮添加抗氧剂后热性能的研究[D].吉林:吉林大学化学学院,2009.
    [120] Przemyslaw M., Jozua L., Srdjan K. Photo-degradation of poly(neopentylisophthalate). Part II: Mechanism of cross-linking [J]. Polymer Degradation andStability,2011,96,1141-1148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700