4-氨基哌啶类新化合物阻断N型钙离子通道的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,人类为了提高生活质量,缓解慢性疼痛,一直在寻找高效的非阿片类镇痛药。随着疼痛与N型钙离子通道之间关系的深入研究,人们发现,如果能研究出特异性、非阿片类、可口服、非肽类的N型钙通道阻断剂对解决慢性疼痛将是个突破。因此,近年来非肽类小分子化合物逐渐成为N型VDCCs阻断剂研究的新方向。为此,本所药物合成室以4-氨基哌啶为母核,合成了一系列非肽类小分子化合物。本研究的目的是拟从这一系列新化合物中发现出具有特异性N型钙通道阻断作用的化合物,并详细地探讨其对N型钙通道作用的分子机制,以寻找出更加理想的治疗慢性疼痛的新型化合物。
     在爪蟾卵母细胞瞬时表达人N型VDCCs的模型上,采用了双电极电压钳技术,初步评价了59个化合物。而后详细观察了ZC88及ZC101对N型VDCCs的作用机制。
     ZC101对爪蟾卵母细胞瞬时表达人N型VDCCs(α_(1B)/β_(1b)/α_2δ)的阻断作用呈明显的浓度依赖抑制但不具有电压依赖抑制,其IC_(50)为2.3±0.29μM;功能亚基与不同辅助亚基构成的重组体,ZC101对其阻断作用及可逆性均未发生改变,ZC101可能是作用于功能亚基来发挥阻断作用的;ZC101使通道电压依赖稳态失活曲线左移,这可能加速了通道的关闭;ZC101还作用于通道的静息态;ZC101对I_(Na)、I_(k(DR))、I_(k(A))及R、L、P/Q型VDCCs不具有抑制作用;
     在HEK-293细胞瞬时表达人N型VDCCs的模型上,采用膜片钳记录技术详细观察了ZC88对N型VDCCs(α_(1B)/β_(1b)/α_2δ)的作用机制。结果发现,ZC88及ZC1(对照)对N型VDCCs的阻断作用呈浓度依赖抑制;IC_(50)分别为0.45±0.09μM和0.34±0.04μM。ZC88的阻断作用具有可逆性而ZC1不具有可逆性。ZC88及ZC1呈电压依赖抑制N型VDCCs;ZC88及ZC1使通道的电压依赖稳态失活曲线左移;ZC88加速了通道的衰减;ZC88对I_(Na)、I_(k(DR))、I_(k(A))及R、L、P/Q型VDCCs不具有抑制作用。而ZC1对L型钙通道具有抑制作用;配体竞争结合实验证实ZC88及ZC101与阿片受体不具有亲和力。
     ZC101及ZC88在小鼠醋酸扭体模型及STZ诱导的大鼠糖尿病性神经痛模型上均具有理想的镇痛作用。
     基于上述研究,本文的主要结论为:4-氨基哌啶类新化合物的作用机制首次在分子水平上进行了深入研究,ZC88及ZC101有可能成为N型钙通道特异性阻断剂,这可能是为临床找到了新的非阿片类、无成瘾性、可口服、选择性良好的潜在镇痛药物,可能对解决慢性疼痛具有重要的现实意义。
Many diseases have chronic pain as an important symptom. So, Searching high effective and non-opioid analgesic agent is our goal for people. In recent years, drug discovery efforts focused on novel potent analgesic agents with no addict and new action mechanism.Therefore, there are great progresses in the researches of novel analgesic agents targeted N-type calcium channel.Recently, drug discovery efforts have been focused on small molecule N-type calcium channel blockers for analgesia. To look for no addictive analgesia and higher selective blockers for N-type Ca~(2+) channels, a series of new compounds were designed and synthesized in our institute by optimizing the 4-amino-piperidine template. Here, we observed the effects of a series of new derivates on N-type VDCCs expressed in oocytes and HEK-293 cells. Meanwhile, in vivo pharmacology was evaluated by STZ-induced diabetic neuropathic pain and mouse acetic writhing.
     In our experiment, the effects of 59 new 4-amino-piperidine derivates on N-type calcium channel expressed in oocytes were observed by two-electrode voltage clamp technique firstly. Then, we further observed the effects of ZC101 on N-type VDCCs (α_(1B)/β_(1b)/α_2δ) expressed in oocytes. ZC101 inhibited the channels with concentration-dependence manner and the effect of ZC101 was completely reversed. To evaluate mechanism of action ZC101, We constructed the four recombinant of subunits expressed in Xenopus oocytes.The results showed that inhibitory effects of ZC101 on four recombinant of subunits were similar. The I-V relationship showed the inhibitory effect of ZC101 on N-type I_(Ba) was voltage-independence. The steady-state inactivation relationship was shifted to more negative potentials after exposure to ZC101. ZC101 could block the expressed N-type calcium channels at resting states. ZC101 high selectively targeted N-type calcium channels, other than I_(Na), I_(k(DR)),I_(k(A)) and R, L, P/Q-type calcium channels.
     We further observed the effects of ZC88 and ZC1 on N-type VDCCs (α_(1B)/β_(1b)/α_2δ) expressed in HEK-293 cells by patch clamp technique. The result showed that ZC88 and ZC1 inhibited the channel current with concentration-dependence manner and the inhibition effect of ZC88 was partly reversed after wash-out for 5 min. However, the inhibition effect of ZC1 was irreversed. The I-V relationship also demonstrated the inhibitory effects of ZC88 and ZC1 on N-type I_(Ba) were voltage-dependence inhibition. The steady-state inactivation relationship was shifted to more negative potentials after exposure to ZC88 and ZC1. ZC88 accelerated the decay of N-type VDCCs. ZC88 selectively targeted N-type calcium channels, other than I_(Na), I_(k(DR)), I_k(A) and R, L, P/Q-type calcium channels. Then, ZC1 blocked L-type calcium channels expressed in oocytes. In competitive radioactive ligand binding test, which suggests ZC88 and ZC101 don't bind opioid receptor.
     ZC88 and ZC101 produced obvious analgesia on mouse acetic acid writhing test and STZ-induced diabetic neuropathic pain model.
     In conclusion: Molecular mechanism of action ZC88 and ZC101 on N-type VDCCs was observed detailed firstly. It would be find no addict, highly selective, non-peptide and potential analgesic. It is very important for chronic pain patient to find potential analgesic.
引文
1. John DL, Ronald M. Pain: an overview. Lancet 1999, 353: 1607-09.
    2. Merskey H, Bogduk N. Classification of chronic pain. 1994, 210-216.
    3.韩济生 主编.神经科学原理(第2版).北京医科大学出版社,北京.1999,9.
    4.赵志奇.疼痛及其脊髓机理.上海科技教育出版社,上海.2000,10.
    5.贾立华,高永良,王世岭,宫泽辉.慢性疼痛治疗药物的研究进展.国外医学药学分册,2004,31:89-93.
    6. Melzack R. Pain-An overview. Acta Anaesthesiol Scand, 1999, 43:880-884.
    7. Pietro A, Blanca LM, et al. Pain peptides. Solution structure of orphanin FQ2 FEBS Letters, 2000, 473:157-160.
    8. Blalock EM, Porter NM, Landifield PW. Decreased G-protein-mediated regulation and shift in calcium channel types with age in hippocampal cultures. Journal Neurosci, 1999, 19:8674-8684.
    9. Bell TJ, Thaler C, Castiglioni AJ, et al. Cell-specific alternative splicing increases calcium channel currents density in the pain pathway. Neuron, 2004, 41:127-138.
    10. Jarvis ES, Zamponi GW. Interactions between presynaptic Ca~(2+) channels, cytoplasmic messengers and proteins of the synaptic vesicle release complex. Trend Pharmacol Sci, 2001, 22:519-525.
    11. Chizh BA, Dickenson AH, Wnendt S. The race to control pain: more participants, more targets. Trends Pharmacol Sci, 1999,20:354-357.
    12.文磊,杨胜,周文霞,张永祥,周晓巍,黄培堂.N型钙通道与疼痛.生理科学进展,2005,36:23-28.
    13.吴乐,谢守珍,李云庆.腺苷受体参与痛信启、传递和调控的机制.医药导报,2004,23:795-798.
    14. Millan MJ. The induction of pain: An integrative review. Prog Neurobiol, 1999,57:1-164.
    15. Fabien M, Mauro P, et al. Role of the immune system in chronic pain. Focus On Pain, 2005, 6:521-531.
    16. Yaksh TL, Calcium channels as therapeutic targets in neuropathic pain. J Pain. 2006,7:13-30.
    17. Saegusa H, Kurihara T, Zong S, et al. Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca~(2+) channel EMBO J. 2001, 20(10): 2349-2356
    18. Joseph GM, Stefan IM. Voltage-gated calcium channels as targets for the treatment of chronic pain. Current Drug Targets-CNS & Neurological Disorders. 2004,3:457-478.
    19. Wermeling DP. Ziconotide, an Intrathecally Administered N-Type Calcium Channel Antagonist for the Treatment of Chronic Pain. Pharmacotherapy 2005, 25:1084-1094.
    20. Staats PS, Yearwood T, et al. Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS: a randomized controlled trial. JAMA 2004;291: 63-70.
    21. Hu LY, Todd RR, et al. The Discovery of [1-(4-Dimethylamino-benzul)-piperidin-4-yl]-[4-(3,3-dimethylbutyl)-phenyl]-(3-methyl-but-2-enyl)-Amine, an N-type Ca~(2+) channel Blocker with oral activity for Analgesia. Bioorganic &Medicinal Chemistry. 2000,8:1203-1212.
    22. Thaler C, G.ray AC. Cumulative inactivation of N-type Cav2.2 calcium channels modified by alternative splicing. PNAS 2004, 101:5675-5679.
    23. Cristobal R, Jose LM, Maria DC, et al. Novel tacrine derivatives that block neuronal calcium channels. Bioorganic & Medicinal Chemistry, 2002, 10: 2077-2088.
    24. Stefan M, Jack AB, Nirmala SC, David CH. Design and diological evaluation of non-peptide analogues of omega-conotoxin MⅦA. Bioorganic & Medicinal Chemistry Letters, 2000, 10:345-347.
    25. Zhang SP, Kauffman J, et al. High-throughputs screening for N-type calcium channel blockers using a scintillation Proximity assay. J Biomol Screen. 2006,11:672-677.
    26. Takuya S, Masashi K, et al. Structure-activity study of L-Amino acid-based N-type calcium channel blockers Bioorganic & Medicinal Chemistry 2003, 11:1901-1913.
    27. Saegusa H., Matsuda Y., Tanabe T. Effects of ablation of N-and R-type Ca~(2+) channels on pain transmission. Neurosci Res. 2002, 43:1-7
    28. Wakshull E, Johnson MI, Burton H. Postnatal rat sympathetic neurons in culture. Ⅰ. A comparison with embryonic neurons. J Neurophysiol, 1979, 42:1410-25
    29.何湘平,纪占欣,刘传缋.适用于膜片钳研究的新生大鼠骨骼肌细胞培养.中国应用生理学杂志,1995,15:83-86
    30.鄂征 主编.组织培养和分子细胞学技术.北京出版社,北京,1997.
    31.田辉凯,李学军.爪蟾卵母细胞表达体系在功能基因组学研究中的应用.国外医学分子生物学分册,2002,24(4):193-196
    32. Stuhmer W. Electrophysiological recording from Xenopus oocytes. Methods Enzymol. 1992,207:319-39.
    33. Taylor WR. Two-suction-electrode voltage-clamp analysis of the sustained calcium current in cat sensory neurones. J Physiol. 1988, 407:405-32.
    34. Finkel AS, Gage PW. Conventional voltage clamping with two intracellular microelectrodes. Baltimore. 1985, 11:47-94.
    35. Iris B, Timothy AB, Valerie JC, et al. Effects of memantine on recombinant rat NMDA receptors expressed in HEK-293 cells. British Journal of Pharmacology, 1996,119:195-204.
    36. Chen NS, Li B, Timothy H, et al. Site within N-Methyl-D-asparate receptor pore modulates channel gating. Molecular Pharmacology 2004, 65:157-164.
    37.邵福源,王宇卉 主编.分子神经生物学.上海科学技术出版社,上海.2005
    38. Takahiro Y, Chen L, et al. Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells. European Journal of Neuroscience, 2004, 20:1-13.
    39. Anne LC, Joyce, HH, Aaron PF. Coexpression of cloned α_(1B), β_(2a) and α_2δ Subunits produces non-inactivating calcium currents similar to those found in bovine chromaffin cells. The Journal of Neuroscience, 2000, 20(5): 1685-1693.
    40. Jeffrey RA, Bourdelles BL. Assembly intracellular targeting and cell surface expression of the human N-methyl-D-aspartate receptor subnits NR1a and NR2A in transfected cells Neuropharmacology 1998,37:1355-1367.
    41. Lisa PJ, Carla DD, et al. N-Type calcium channel inactivation probed by gatmg-current analysis. Biophys J, 1999, 76:2530-2552.
    42. Meza U, Thapliyal A, et al. Neurokinin 1 receptors trigger overlapping stimulation and inhibition of CaV2.3(R-type) calcium channels. Mol Pharmacol, 2007,71:284-293.
    43. Dascal, N. The use of Xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem, 1987,22:317-387.
    44. Weber WM, Ion currents of Xenopus laevis oocytes state of the art. Biochim Biophys Acta, 1999, 1421:213-233.
    45.候云德.分子克隆实验指南.第二版.科学出版社.2002.
    46.来茂德 主编.医学分子生物学.人民卫生出版社.1999.
    47. Logan SM, Rivera FE, et al. Leonard Protein Kinase C Modulation of Recombinant NMDA Receptor Currents: Roles for the C-Terminal C1 Exon and Calcium Ions. J Neurosci. 1999, 19:974-86.
    48. Chaplan SR, Bach FW, et al. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci Methods. 1994, 53: 55-63.
    49. Koster R, Aderson M, De Beer EJ. Acetic acid for analgesic screening. [J]. Fed Proc, 1959, 18:412-418.
    50. Banker GA, Cowan WM. Further observations on hippocampus neurons in dispersed cell cultures. J. Comp. Neurol. 1979,187:469-93.
    51. Peng SQ, Hajela R K, Atchison WD. Characteristics of Block by Pb~(2+)of Function of Human Neuronal L-,N-, and R-Type Ca~(2+) Channels Transiently Expressed in HumanEmbryonic Kidney 293 Cells. 2002,62: 1418-1430.
    52. Sutton KG, Siok C, et al. Inhibition of Neuronal Calcium Channels by a Novel Peptide Spider Toxin, DW13.3. Molecular Pharmacology. 1998, 54(2): 407-18.
    53. Hurley JH, Cahill AL. Syntaxin 1A regulation of weakly inactivating N-type Ca~(2+) channels. J. Physiol. 2004, 560(2):351-63.
    54. Stacker J W, Nadasdi L, et al., Preferential Interaction of ω-Conotoxins with Inactivated N-type Ca~(2+) Channels. Neuroscience, 1997, 17: 3002-3013.
    55. Feng ZP, Doering CJ, et al. Determinants of Inhibition of Transiently Expressed Voltage-gated Calcium Channels by ω-Conotoxins GⅥA and MⅦA J. Biol. Chem. 2003, 278: 20171-20178.
    56. Lewis R J, Nielsen K J, Craik D J, et al., Novel omega-Conotoxins from Conus catus Discriminate among Neuronal Calcium Channel Subtypes.J. Biol. Chem., 2000,275:35335-35344.
    57. Rana A, Bryan R, et al. Association of NR3A with the N-Methyl-D-aspartate receptor NR1 and NR2 subunits. Molecular Pharmacology, 2002,62: 1119-1127.
    58.张晓东,藏益民,谢安.用于离子通道基因表达的爪蟾卵母细胞的分离和培养.心脏杂志,2001,13(2):120-122.
    59. Machaca K, Hartzell HC, Asymmetrical distribution of Ca-activated C1 channels in Xenopus oocytes. Biophys J, 1998, 74:1286-1295.
    60. Kuruma A, Hartzell HC. Dynamics of calcium regulation of chloride currents in Xenopus oocytes. Am J Physiol, 1999, 276:161-175.
    61. Duan D, Zhong J, Hermoso M, et al. Functional inhibition of native volumesensitive outwardly rectifying anion channels in muscle cells and Xenopus oocytes by anti-CLC-3 antibody. J.Physiol, 2001, 531:437-444.
    62. Liang H. and Elmslie KS. Rapid and Reversible Block of N-Type Calcium Channels (CaⅤ 2.2) by omega-Conotoxin GⅥA in the Absence of Divalent Cations J. Neurosci., 2002, 503:8884-8890.
    63. Wachman ES, Poage RE, et al., Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone J. Neurosci., 2004, 24(12): 2877-2885.
    64. Zheng JQ, Yang AZ, Zhou JZ, et al., Effect of corticosteroneon voltage-gated calcium channel and spontaneous synaptic activities in cultured hippocampal neurons from neonatal rat. China J Pharmacol Toxicol, 2002, 16:182-187.
    65. Meyers DE, Barker JL. Whole-cell patch-clamp analysis of voltage-dependent calcium conductance in cultured embryonic rat hippocampal neurons. J Neurophysiol, 1989; 61:467-77.
    66. Blalock EM, Porter NM, Landfield PW. Decreased G-protein-mediated regulation and shift in calcium channel types with age in hippocampal cultures. J. Neurosci. 1999,19: 8674-8684.
    
    67. McDonough SI, Swartz KJ, Mintz IM, Boland LM, Bean BP Inhibition of ??calcium channels in rat central and peripheral neurons by ω-conotoxin MVIIC. J Neurosci, 1996,16:2612-2623
    
    68. Adams DJ, Smith AB, Schroeder CI, et al., ω-Conotoxin CVID inhibits a pharmacologically distinct voltage-sensitive calcium channel associated with transmitter release from preganglionic nerve terminals. J. Biol. Chem. 2003, 278: 4057-4062.
    
    69. Lew MJ, Flinn J.R, Pallghy P.K., et al., Structure-function relationships of ω-conotoxin GVIA. Synthesis, structure, calcium channel binding, and functional assay of alanine-substituted analogs. 1997, J. Biol. Chem. 272: 12014-12023.
    
    70. Scott DA, Wright CE, Angus JA. Actions of intrathecal ω-conotoxins CVID, GVIA, MVIIA, and morphine in acute and neuropathic pain in the rat. Eur. J. Pharmacol. 2002 ,451: 279-286.
    
    71. Terlau H, Olivera BM, Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev, 2004, 84:41-68.
    
    72. Wang CZ, Chi CW, Conus peptide-a rich pharmaceutical treasure. Acta Biochim Biophys Sin,2004, 36:713-723.
    
    73. Norton RS, Pallaghy PK.The cystine knot structure of ion channel toxins and related polypeptide. Toxicon, 1998, 36:1537-1583.
    
    74. Pallaghy PK, Nielsen KJ,Craik DJ, et al. Acommon structure motif incorporating a cystine knot and a triple-stranded P-sheet in toxin and inhibitory polypeptides. Protein Sci, 1994, 3:1833-1839.
    
    75. McDonough SI, Boland LM, et al. Interactions among Toxins That Inhibit N-type and P-type Calcium Channels. Journal of General Physiology, 2002, 119:313-328.
    
    76. Mould J, Yasuda T, Schroeder CI, et al.The α_1δ Auxiliary Subunit Reduces Affinity of ω-Conotoxins for Recombinant N-type (Cav2.2) Calcium Channels. J. Biol. Chem., 2004, 279(33): 34705-34714.
    77. Boland LM, Morrill JM, Bean BP. ω-Conotoxin block of N-type calcium channels in frog and rat sympathetic neurons. J Neurosci. 1994, 8:5011-5027.
    78. Grantham CJ, Bowman D, Bath CP, et al. ω-Conotoxin MⅦC reversiblv inhibits a human N-tvne calcium channel and calcium influx into chick synaptosomes. Neuropharmacology. 1994,33:255-258.
    79. Mintz IM, Venema VJ, et al. P-type calcium channels blocked by the spider toxin ω-Aga-ⅣA. Nature. 1992, 355:827-829.
    80. Sidach SS, Mintz IM. Low-Affinity Blockade of Neuronal N-Type Ca~(2+) Channels by the Spide Toxin ω-Agatoxin-ⅣA. The Journal of Neuroscience. 2000,20:7174-7182.
    81. Boland LM, Morrill JA, Bean BP. ω-Conotoxin block of N-type calcium channels in frog and rat sympathetic neurons. J. Neurosci. 1994, 14:5011-5027.
    82. Dubner R, Ruda MA. Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci. 1992, 15: 96-103.
    83. Zamponi GW, McCleskey EW. Splicing it up: a variant of the N-type calcium channel specific for pain. Neuron. 2004,41:3-4.
    84. Ding Y, Cesare P, Drew L, et al. ATP, P2X receptors and pain pathways. J. Auton Nerv Syst. 2000, 81:289-294.
    85. Babbedge R, Dray A, Urban L. Complex regional pain syndromes (CRPS): mechanism and therapy from experimental models. Pain. 1995, Rev.2:298-309.
    86. Kim C, Jun K, Lee T, et al. Altered nociceptive response in mice deficient in the α_(1B) subunit of the voltage-dependent calcium channel. Mol. Cell Neurosci. 2001, 18: 235-245.
    87. Ino M, Yoshinaga T, Wakamori,M, et al., Functional disorders of the sympathetic nervous system in mice lacking the α_(1B) subunits (Cav_(2.2)) of N-type calcium channels. Procnatl Acad Sci USA, 2001, 98:5323-5328.
    88.刘国凯,黄宇光,罗爱伦.加巴喷丁用于神经病理性疼痛治疗的研究进展.中国临床药理学与治疗学.2003,3-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700